Пример #1
0
void GxEPD2_270::_Update_Part()
{
  _writeCommand(0x12); //display refresh
  _waitWhileBusy("_Update_Part", partial_refresh_time);
}
Пример #2
0
void GxEPD2_213c::writeImage(const uint8_t* black, const uint8_t* color, int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
  if (_initial_write) writeScreenBuffer(); // initial full screen buffer clean
  delay(1); // yield() to avoid WDT on ESP8266 and ESP32
  int16_t wb = (w + 7) / 8; // width bytes, bitmaps are padded
  x -= x % 8; // byte boundary
  w = wb * 8; // byte boundary
  int16_t x1 = x < 0 ? 0 : x; // limit
  int16_t y1 = y < 0 ? 0 : y; // limit
  int16_t w1 = x + w < int16_t(WIDTH) ? w : int16_t(WIDTH) - x; // limit
  int16_t h1 = y + h < int16_t(HEIGHT) ? h : int16_t(HEIGHT) - y; // limit
  int16_t dx = x1 - x;
  int16_t dy = y1 - y;
  w1 -= dx;
  h1 -= dy;
  if ((w1 <= 0) || (h1 <= 0)) return;
  _Init_Part();
  _writeCommand(0x91); // partial in
  _setPartialRamArea(x1, y1, w1, h1);
  _writeCommand(0x10);
  for (int16_t i = 0; i < h1; i++)
  {
    for (int16_t j = 0; j < w1 / 8; j++)
    {
      uint8_t data = 0xFF;
      if (black)
      {
        // use wb, h of bitmap for index!
        int16_t idx = mirror_y ? j + dx / 8 + ((h - 1 - (i + dy))) * wb : j + dx / 8 + (i + dy) * wb;
        if (pgm)
        {
#if defined(__AVR) || defined(ESP8266) || defined(ESP32)
          data = pgm_read_byte(&black[idx]);
#else
          data = black[idx];
#endif
        }
        else
        {
          data = black[idx];
        }
        if (invert) data = ~data;
      }
      _writeData(data);
    }
  }
  _writeCommand(0x13);
  for (int16_t i = 0; i < h1; i++)
  {
    for (int16_t j = 0; j < w1 / 8; j++)
    {
      uint8_t data = 0xFF;
      if (color)
      {
        // use wb, h of bitmap for index!
        int16_t idx = mirror_y ? j + dx / 8 + ((h - 1 - (i + dy))) * wb : j + dx / 8 + (i + dy) * wb;
        if (pgm)
        {
#if defined(__AVR) || defined(ESP8266) || defined(ESP32)
          data = pgm_read_byte(&color[idx]);
#else
          data = color[idx];
#endif
        }
        else
        {
          data = color[idx];
        }
        if (invert) data = ~data;
      }
      _writeData(data);
    }
  }
  _writeCommand(0x92); // partial out
  delay(1); // yield() to avoid WDT on ESP8266 and ESP32
}
Пример #3
0
void GxEPD2_270::_Update_Full()
{
  _writeCommand(0x12); //display refresh
  _waitWhileBusy("_Update_Full", full_refresh_time);
}
Пример #4
0
void GxEPD2_213c::writeImagePart(const uint8_t* black, const uint8_t* color, int16_t x_part, int16_t y_part, int16_t w_bitmap, int16_t h_bitmap,
                                 int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
  if (_initial_write) writeScreenBuffer(); // initial full screen buffer clean
  delay(1); // yield() to avoid WDT on ESP8266 and ESP32
  if ((w_bitmap < 0) || (h_bitmap < 0) || (w < 0) || (h < 0)) return;
  if ((x_part < 0) || (x_part >= w_bitmap)) return;
  if ((y_part < 0) || (y_part >= h_bitmap)) return;
  int16_t wb_bitmap = (w_bitmap + 7) / 8; // width bytes, bitmaps are padded
  x_part -= x_part % 8; // byte boundary
  w = w_bitmap - x_part < w ? w_bitmap - x_part : w; // limit
  h = h_bitmap - y_part < h ? h_bitmap - y_part : h; // limit
  x -= x % 8; // byte boundary
  w = 8 * ((w + 7) / 8); // byte boundary, bitmaps are padded
  int16_t x1 = x < 0 ? 0 : x; // limit
  int16_t y1 = y < 0 ? 0 : y; // limit
  int16_t w1 = x + w < int16_t(WIDTH) ? w : int16_t(WIDTH) - x; // limit
  int16_t h1 = y + h < int16_t(HEIGHT) ? h : int16_t(HEIGHT) - y; // limit
  int16_t dx = x1 - x;
  int16_t dy = y1 - y;
  w1 -= dx;
  h1 -= dy;
  if ((w1 <= 0) || (h1 <= 0)) return;
  if (!_using_partial_mode) _Init_Part();
  _writeCommand(0x91); // partial in
  _setPartialRamArea(x1, y1, w1, h1);
  _writeCommand(0x10);
  for (int16_t i = 0; i < h1; i++)
  {
    for (int16_t j = 0; j < w1 / 8; j++)
    {
      uint8_t data;
      // use wb_bitmap, h_bitmap of bitmap for index!
      int16_t idx = mirror_y ? x_part / 8 + j + dx / 8 + ((h_bitmap - 1 - (y_part + i + dy))) * wb_bitmap : x_part / 8 + j + dx / 8 + (y_part + i + dy) * wb_bitmap;
      if (pgm)
      {
#if defined(__AVR) || defined(ESP8266) || defined(ESP32)
        data = pgm_read_byte(&black[idx]);
#else
        data = black[idx];
#endif
      }
      else
      {
        data = black[idx];
      }
      if (invert) data = ~data;
      _writeData(data);
    }
  }
  _writeCommand(0x13);
  for (int16_t i = 0; i < h1; i++)
  {
    for (int16_t j = 0; j < w1 / 8; j++)
    {
      uint8_t data = 0xFF;
      if (color)
      {
        // use wb_bitmap, h_bitmap of bitmap for index!
        int16_t idx = mirror_y ? x_part / 8 + j + dx / 8 + ((h_bitmap - 1 - (y_part + i + dy))) * wb_bitmap : x_part / 8 + j + dx / 8 + (y_part + i + dy) * wb_bitmap;
        if (pgm)
        {
#if defined(__AVR) || defined(ESP8266) || defined(ESP32)
          data = pgm_read_byte(&color[idx]);
#else
          data = color[idx];
#endif
        }
        else
        {
          data = color[idx];
        }
        if (invert) data = ~data;
      }
      _writeData(data);
    }
  }
  _writeCommand(0x92); // partial out
  delay(1); // yield() to avoid WDT on ESP8266 and ESP32
}
Пример #5
0
void GxEPD2_213c::_PowerOff()
{
  _writeCommand(0x02); // power off
  _waitWhileBusy("_PowerOff", power_off_time);
  _power_is_on = false;
}
Пример #6
0
// ported from Screen_HX8353E
void _writeRegister(uint16_t command8, uint16_t data8)
{
    _writeCommand(command8);
    _writeData(data8);
}
Пример #7
0
//ported fromScreen_HX8353E
void invert(boolean flag) {
    _writeCommand(flag ? HX8353E_INVON : HX8353E_INVOFF);
}
Пример #8
0
void Screen_HX8353E::_writeRegister(uint8_t command8, uint8_t data8)
{
    _writeCommand(command8);
    _writeData(data8);
}
Пример #9
0
void Screen_HX8353E::invert(boolean flag)
{
    _writeCommand(flag ? HX8353E_INVON : HX8353E_INVOFF);
}
Пример #10
0
void GxGDEP015OC1::drawBitmap(const uint8_t *bitmap, uint32_t size, int16_t mode)
{
  if (_current_page != -1) return;
  // example bitmaps are made for y-decrement, x-increment, for origin on opposite corner
  // bm_flip_x for normal display (bm_flip_y would be rotated)
  if (mode & bm_default) mode |= bm_flip_x;
  uint8_t ram_entry_mode = 0x03; // y-increment, x-increment for normal mode
  if ((mode & bm_flip_y) && (mode & bm_flip_x)) ram_entry_mode = 0x00; // y-decrement, x-decrement
  else if (mode & bm_flip_y) ram_entry_mode = 0x01; // y-decrement, x-increment
  else if (mode & bm_flip_x) ram_entry_mode = 0x02; // y-increment, x-decrement
  if (mode & bm_partial_update)
  {
    _using_partial_mode = true; // remember
    _Init_Part(ram_entry_mode);
    _writeCommand(0x24);
    for (uint32_t i = 0; i < GxGDEP015OC1_BUFFER_SIZE; i++)
    {
      uint8_t data = 0xFF; // white is 0xFF on device
      if (i < size)
      {
#if defined(__AVR) || defined(ESP8266) || defined(ESP32)
        data = pgm_read_byte(&bitmap[i]);
#else
        data = bitmap[i];
#endif
        if (mode & bm_invert) data = ~data;
      }
      _writeData(data);
    }
    _Update_Part();
    delay(GxGDEP015OC1_PU_DELAY);
    // update erase buffer
    _writeCommand(0x24);
    for (uint32_t i = 0; i < GxGDEP015OC1_BUFFER_SIZE; i++)
    {
      uint8_t data = 0xFF; // white is 0xFF on device
      if (i < size)
      {
#if defined(__AVR) || defined(ESP8266) || defined(ESP32)
        data = pgm_read_byte(&bitmap[i]);
#else
        data = bitmap[i];
#endif
        if (mode & bm_invert) data = ~data;
      }
      _writeData(data);
    }
    delay(GxGDEP015OC1_PU_DELAY);
    _PowerOff();
  }
  else
  {
    _using_partial_mode = false; // remember
    _Init_Full(ram_entry_mode);
    _writeCommand(0x24);
    for (uint32_t i = 0; i < GxGDEP015OC1_BUFFER_SIZE; i++)
    {
      uint8_t data = 0xFF; // white is 0xFF on device
      if (i < size)
      {
#if defined(__AVR) || defined(ESP8266) || defined(ESP32)
        data = pgm_read_byte(&bitmap[i]);
#else
        data = bitmap[i];
#endif
        if (mode & bm_invert) data = ~data;
      }
      _writeData(data);
    }
    _Update_Full();
    _PowerOff();
  }
}
/**
 * brightness: 0-7
 */
void SkaarhojSmartSwitch2::setButtonBrightness(uint8_t brightness, uint8_t cs) {
	_writeCommand(0x41, (brightness<<5) | B11111, cs);	// 3 MSB
}
/**
 * red, green, blue: 0-3
 */
void SkaarhojSmartSwitch2::setButtonColor(uint8_t red, uint8_t green, uint8_t blue, uint8_t cs) {
	_writeCommand(0x40, (red & B11)<<6 | (green & B11)<<4 | (blue & B11)<<2 | B11, cs);
}