Пример #1
0
double MultiDomainRMSD::calculate( const std::vector<Vector>& pos, const Pbc& pbc,  const bool& squared ){
  clearDerivatives(); double totd=0.; Tensor tvirial; std::vector<Vector> mypos;
  for(unsigned i=0;i<domains.size();++i){
     // Must extract appropriate positions here
     mypos.resize( blocks[i+1] - blocks[i] + 1 );
     unsigned n=0;
     for(unsigned j=blocks[i];j<blocks[i+1];++j){ mypos[n]=pos[j]; n++; }

     // This actually does the calculation
     totd += weights[i]*domains[i]->calculate( mypos, pbc, true );

     // Must extract derivatives here
     n=0;
     for(unsigned j=blocks[i];j<blocks[i+1];++j){
         addAtomicDerivatives( j, weights[i]*domains[i]->getAtomDerivative(n) ); n++;
     }
     if( domains[i]->getVirial( tvirial ) ){
         addBoxDerivatives( weights[i]*tvirial );
     }
  }
  if( !squared ){
     totd=sqrt(totd); double xx=0.5/totd;
     for(unsigned iat=0;iat<atom_ders.size();iat++) atom_ders[iat]*=xx;
     if( virialWasSet ) virial*=xx;
  }
  return totd;
}
Пример #2
0
double VolumeCavity::calculateNumberInside( const Vector& cpos, HistogramBead& bead, Vector& derivatives ){
  // Calculate distance of atom from origin of new coordinate frame
  Vector datom=pbcDistance( origin, cpos );
  double ucontr, uder, vcontr, vder, wcontr, wder;

  // Calculate contribution from integral along bi
  bead.set( 0, len_bi, sigma );
  double upos=dotProduct( datom, bi );
  ucontr=bead.calculate( upos, uder );
  double udlen=bead.uboundDerivative( upos ); 
  double uder2 = bead.lboundDerivative( upos ) - udlen; 

  // Calculate contribution from integral along cross
  bead.set( 0, len_cross, sigma );
  double vpos=dotProduct( datom, cross );
  vcontr=bead.calculate( vpos, vder );
  double vdlen=bead.uboundDerivative( vpos );
  double vder2 = bead.lboundDerivative( vpos ) - vdlen;

  // Calculate contribution from integral along perp
  bead.set( 0, len_perp, sigma );
  double wpos=dotProduct( datom, perp );
  wcontr=bead.calculate( wpos, wder );
  double wdlen=bead.uboundDerivative( wpos );
  double wder2 = bead.lboundDerivative( wpos ) - wdlen;

  Vector dfd; dfd[0]=uder*vcontr*wcontr; dfd[1]=ucontr*vder*wcontr; dfd[2]=ucontr*vcontr*wder;
  derivatives[0] = (dfd[0]*bi[0]+dfd[1]*cross[0]+dfd[2]*perp[0]);
  derivatives[1] = (dfd[0]*bi[1]+dfd[1]*cross[1]+dfd[2]*perp[1]);
  derivatives[2] = (dfd[0]*bi[2]+dfd[1]*cross[2]+dfd[2]*perp[2]);
  double tot = ucontr*vcontr*wcontr*jacob_det; 

  // Add reference atom derivatives
  std::vector<Vector> rderiv(4);
  dfd[0]=uder2*vcontr*wcontr; dfd[1]=ucontr*vder2*wcontr; dfd[2]=ucontr*vcontr*wder2;
  Vector dfld; dfld[0]=udlen*vcontr*wcontr; dfld[1]=ucontr*vdlen*wcontr; dfld[2]=ucontr*vcontr*wdlen;
  rderiv[0] = dfd[0]*matmul(datom,dbi[0]) + dfd[1]*matmul(datom,dcross[0]) + dfd[2]*matmul(datom,dperp[0]) +
              dfld[0]*dlbi[0] + dfld[1]*dlcross[0] + dfld[2]*dlperp[0] - derivatives; 
  rderiv[1] = dfd[0]*matmul(datom,dbi[1]) + dfd[1]*matmul(datom,dcross[1]) + dfd[2]*matmul(datom,dperp[1]) + 
              dfld[0]*dlbi[1] + dfld[1]*dlcross[1] + dfld[2]*dlperp[1];
  rderiv[2] = dfd[0]*matmul(datom,dbi[2]) + dfd[1]*matmul(datom,dcross[2]) + dfd[2]*matmul(datom,dperp[2]) + 
              dfld[0]*dlbi[2] + dfld[1]*dlcross[2] + dfld[2]*dlperp[2];
  rderiv[3] = dfld[0]*dlbi[3] + dfld[1]*dlcross[3] + dfld[2]*dlperp[3];

  Tensor vir; vir.zero();
  vir-=Tensor( cpos,derivatives );
  for(unsigned i=0;i<4;++i){
     vir -= Tensor( getPosition(i), rderiv[i] ); addReferenceAtomDerivatives( i, rderiv[i] );
  }
  addBoxDerivatives( vir );
 
  return tot;
}
Пример #3
0
double OrientationSphere::compute(){
   // Make sure derivatives for central atom are only calculated once
   VectorMultiColvar* vv = dynamic_cast<VectorMultiColvar*>( getBaseMultiColvar(0) );
   vv->firstcall=true;

   weightHasDerivatives=true;   // The weight has no derivatives really
   double sw, value=0, denom=0, dot, f_dot, dot_df, dfunc; Vector distance;

   getVectorForBaseTask(0, catom_orient );
   for(unsigned i=1;i<getNAtoms();++i){
      distance=getSeparation( getPositionOfCentralAtom(0), getPositionOfCentralAtom(i) );
      sw = switchingFunction.calculateSqr( distance.modulo2(), dfunc );
      if( sw>=getTolerance() ){    
         getVectorForBaseTask( i, this_orient );
         // Calculate the dot product wrt to this position 
         dot=0; for(unsigned k=0;k<catom_orient.size();++k) dot+=catom_orient[k]*this_orient[k];  
         f_dot = transformDotProduct( dot, dot_df ); 
         // N.B. We are assuming here that the imaginary part of the dot product is zero
         for(unsigned k=0;k<catom_orient.size();++k){
            this_orient[k]*=sw*dot_df; catom_der[k]=sw*dot_df*catom_orient[k];
         }  

         // Set the derivatives wrt of the numerator
         addOrientationDerivatives( 0, this_orient ); 
         addOrientationDerivatives( i, catom_der );  
         addCentralAtomsDerivatives( 0, 0, f_dot*(-dfunc)*distance );
         addCentralAtomsDerivatives( i, 0, f_dot*(dfunc)*distance );
         addBoxDerivatives( f_dot*(-dfunc)*Tensor(distance,distance) );
         value += sw*f_dot;
         // Set the derivatives wrt to the numerator
         addCentralAtomsDerivatives( 0, 1, (-dfunc)*distance );
         addCentralAtomsDerivatives( i, 1, (dfunc)*distance );
         addBoxDerivativesOfWeight( (-dfunc)*Tensor(distance,distance) );
         denom += sw;
      }
   }
   
   // Now divide everything
   unsigned nder = getNumberOfDerivatives();
   for(unsigned i=0;i<nder;++i){
      setElementDerivative( i, getElementDerivative(i)/denom - (value*getElementDerivative(nder+i))/(denom*denom) );  
      setElementDerivative( nder + i, 0.0 );
   }
   weightHasDerivatives=false;   // Weight has no derivatives we just use the holder for weight to store some stuff
   return value / denom;
}
Пример #4
0
double DRMSD::calc( const std::vector<Vector>& pos, const Pbc& pbc, const bool& squared ){
  plumed_dbg_assert( !targets.empty() );

  Vector distance; 
  double drmsd=0.; 
  for(std::map< std::pair <unsigned,unsigned> , double>::const_iterator it=targets.begin();it!=targets.end();++it){
      
      unsigned i=getAtomIndex( it->first.first );
      unsigned j=getAtomIndex( it->first.second );

      if(nopbc){ distance=delta( pos[i] , pos[j] ); }
      else{ distance=pbc.distance( pos[i] , pos[j] ); }

      double len = distance.modulo();
      double diff = len - it->second;

      drmsd += diff * diff;
      addAtomicDerivatives( i, -( diff / len ) * distance );
      addAtomicDerivatives( j, ( diff / len ) * distance );
      addBoxDerivatives( -( diff / len ) * Tensor(distance,distance) );
  }

  double npairs = static_cast<double>(targets.size());
  double idrmsd;

  if(squared){
     drmsd = drmsd / npairs;
     idrmsd = 2.0 / npairs;
  } else {
     drmsd = sqrt( drmsd / npairs );
     idrmsd = 1.0/( drmsd * npairs );
  }

  virial *= idrmsd; 
  for(unsigned i=0;i<getNumberOfAtoms();++i){atom_ders[i] *= idrmsd;}

  return drmsd;
}
Пример #5
0
void Steinhardt::calculateVector(){
  double dfunc, dpoly_ass, md, tq6, itq6, real_z, imag_z; 
  Vector distance, dz, myrealvec, myimagvec, real_dz, imag_dz;
  // The square root of -1
  std::complex<double> ii( 0.0, 1.0 ), dp_x, dp_y, dp_z;

  double sw, poly_ass, dlen, nbond=0.0; std::complex<double> powered;
  for(unsigned i=1;i<getNAtoms();++i){
     distance=getSeparation( getPosition(0), getPosition(i) );
     dlen=distance.modulo(); sw = switchingFunction.calculate( dlen, dfunc );
     if( sw>=getTolerance() ){   
         nbond += sw;  // Accumulate total number of bonds
         double dlen3 = dlen*dlen*dlen;

         // Store derivatives of weight
         MultiColvarBase::addAtomsDerivatives( 0, getAtomIndex(0), (-dfunc)*distance );
         MultiColvarBase::addAtomsDerivatives( 0, getAtomIndex(i), (+dfunc)*distance );
         MultiColvarBase::addBoxDerivatives( 0, (-dfunc)*Tensor( distance,distance ) ); 

         // Do stuff for m=0
         poly_ass=deriv_poly( 0, distance[2]/dlen, dpoly_ass );
         // Derivatives of z/r wrt x, y, z
         dz = -( distance[2] / dlen3 )*distance; dz[2] += (1.0 / dlen);
         // Derivative wrt to the vector connecting the two atoms
         myrealvec = (+sw)*dpoly_ass*dz + poly_ass*(+dfunc)*distance;
         // Accumulate the derivatives
         addAtomsDerivative( tmom, 0, -myrealvec );      
         addAtomsDerivative( tmom, i, myrealvec ); 
         addBoxDerivatives( tmom, Tensor( -myrealvec,distance ) );
         // And store the vector function
         addComponent( tmom, sw*poly_ass );

         // The complex number of which we have to take powers
         std::complex<double> com1( distance[0]/dlen ,distance[1]/dlen );

         // Do stuff for all other m values
         for(unsigned m=1;m<=tmom;++m){
             // Calculate Legendre Polynomial
             poly_ass=deriv_poly( m, distance[2]/dlen, dpoly_ass );
             // Calculate powe of complex number
             powered=pow(com1,m-1); md=static_cast<double>(m);
             // Real and imaginary parts of z
             real_z = real(com1*powered); imag_z = imag(com1*powered );
 
             // Calculate steinhardt parameter
             tq6=poly_ass*real_z;   // Real part of steinhardt parameter
             itq6=poly_ass*imag_z;  // Imaginary part of steinhardt parameter

             // Derivatives wrt ( x/r + iy )^m
             dp_x = md*powered*( (1.0/dlen)-(distance[0]*distance[0])/dlen3-ii*(distance[0]*distance[1])/dlen3 );
             dp_y = md*powered*( ii*(1.0/dlen)-(distance[0]*distance[1])/dlen3-ii*(distance[1]*distance[1])/dlen3 );
             dp_z = md*powered*( -(distance[0]*distance[2])/dlen3-ii*(distance[1]*distance[2])/dlen3 );

             // Derivatives of real and imaginary parts of above
             real_dz[0] = real( dp_x ); real_dz[1] = real( dp_y ); real_dz[2] = real( dp_z );
             imag_dz[0] = imag( dp_x ); imag_dz[1] = imag( dp_y ); imag_dz[2] = imag( dp_z );  

             // Complete derivative of steinhardt parameter
             myrealvec = (+sw)*dpoly_ass*real_z*dz + (+dfunc)*distance*tq6 + (+sw)*poly_ass*real_dz; 
             myimagvec = (+sw)*dpoly_ass*imag_z*dz + (+dfunc)*distance*itq6 + (+sw)*poly_ass*imag_dz;

             // Real part
             addComponent( tmom+m, sw*tq6 );
             addAtomsDerivative( tmom+m, 0, -myrealvec );
             addAtomsDerivative( tmom+m, i, myrealvec );
             addBoxDerivatives( tmom+m, Tensor( -myrealvec,distance ) );
             // Imaginary part 
             addImaginaryComponent( tmom+m, sw*itq6 );
             addImaginaryAtomsDerivative( tmom+m, 0, -myimagvec );
             addImaginaryAtomsDerivative( tmom+m, i, myimagvec );
             addImaginaryBoxDerivatives( tmom+m, Tensor( -myimagvec,distance ) );
             // Store -m part of vector
             double pref=pow(-1.0,m); 
             // -m part of vector is just +m part multiplied by (-1.0)**m and multiplied by complex
             // conjugate of Legendre polynomial
             // Real part
             addComponent( tmom-m, pref*sw*tq6 );
             addAtomsDerivative( tmom-m, 0, -pref*myrealvec );
             addAtomsDerivative( tmom-m, i, pref*myrealvec );
             addBoxDerivatives( tmom-m, pref*Tensor( -myrealvec,distance ) );
             // Imaginary part
             addImaginaryComponent( tmom-m, -pref*sw*itq6 );
             addImaginaryAtomsDerivative( tmom-m, 0, pref*myimagvec );
             addImaginaryAtomsDerivative( tmom-m, i, -pref*myimagvec );
             addImaginaryBoxDerivatives( tmom-m, pref*Tensor( myimagvec,distance ) );
         }
     } else {
         removeAtomRequest( i, sw );
     }
  } 

  // Normalize 
  setElementValue(0, nbond ); updateActiveAtoms();
  for(unsigned i=0;i<2*getNumberOfComponentsInVector();++i) quotientRule( 5+i, 0, 5+i ); 
  // Clear tempory stuff
  clearDerivativesAfterTask(0);
}