Пример #1
0
extern "C" uint64_t pNXT_submit_tx(currency::core *m_core,currency::simple_wallet *wallet,unsigned char *txbytes,int16_t size)
{
    int i,j;
    crypto::hash h;
    uint64_t txid = 0;
    blobdata txb,b;
    transaction tx = AUTO_VAL_INIT(tx);
    txin_to_key input_to_key = AUTO_VAL_INIT(input_to_key);
    NOTIFY_NEW_TRANSACTIONS::request req;
    currency_connection_context fake_context = AUTO_VAL_INIT(fake_context);
    tx_verification_context tvc = AUTO_VAL_INIT(tvc);
    if ( m_core == 0 || wallet == 0 )
    {
        printf("pNXT_submit_tx missing m_core.%p or wallet.%p\n",m_core,wallet);
        return(0);
    }
    tx.vin.clear();
    tx.vout.clear();
    tx.signatures.clear();
    keypair txkey = keypair::generate();
    add_tx_pub_key_to_extra(tx, txkey.pub);
    if ( sizeof(input_to_key.k_image) != 32 )
    {
        printf("FATAL: expected sizeof(input_to_key.k_image) to be 32!\n");
        return(0);
    }
    j = add_byte(&tx,&input_to_key,0,size&0xff);
    j = add_byte(&tx,&input_to_key,j,(size>>8)&0xff);
    for (i=0; i<size; i++)
        j = add_byte(&tx,&input_to_key,j,txbytes[i]);
    if ( j != 0 )
        tx.vin.push_back(input_to_key);
    tx.version = 0;
    txb = tx_to_blob(tx);
    printf("FROM submit jl777\n");
    if ( !m_core->handle_incoming_tx(txb,tvc,false) )
    {
        LOG_PRINT_L0("[on_send_raw_tx]: Failed to process tx");
        return(0);
    }
    if ( tvc.m_verifivation_failed )
    {
        LOG_PRINT_L0("[on_send_raw_tx]: tx verification failed");
        return(0);
    }
    if( !tvc.m_should_be_relayed )
    {
        LOG_PRINT_L0("[on_send_raw_tx]: tx accepted, but not relayed");
        return(0);
    }
    req.txs.push_back(txb);
    m_core->get_protocol()->relay_transactions(req,fake_context);
    get_transaction_hash(tx,h);
    txid = calc_txid((unsigned char *)&h,sizeof(h));
    return(txid);
}
Пример #2
0
  //---------------------------------------------------------------
  bool construct_miner_tx(size_t height, size_t median_size, uint64_t already_generated_coins, size_t current_block_size, uint64_t fee, const account_public_address &miner_address, transaction& tx, const blobdata& extra_nonce, size_t max_outs, uint8_t hard_fork_version) {
    tx.vin.clear();
    tx.vout.clear();
    tx.extra.clear();

    keypair txkey = keypair::generate();
    add_tx_pub_key_to_extra(tx, txkey.pub);
    if(!extra_nonce.empty())
      if(!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce))
        return false;

    txin_gen in;
    in.height = height;

    uint64_t block_reward;
    if(!get_block_reward(median_size, current_block_size, already_generated_coins, block_reward, hard_fork_version))
    {
      LOG_PRINT_L0("Block is too big");
      return false;
    }

#if defined(DEBUG_CREATE_BLOCK_TEMPLATE)
    LOG_PRINT_L1("Creating block template: reward " << block_reward <<
      ", fee " << fee);
#endif
    block_reward += fee;

    // from hard fork 2, we cut out the low significant digits. This makes the tx smaller, and
    // keeps the paid amount almost the same. The unpaid remainder gets pushed back to the
    // emission schedule
    // from hard fork 4, we use a single "dusty" output. This makes the tx even smaller,
    // and avoids the quantization. These outputs will be added as rct outputs with identity
    // masks, to they can be used as rct inputs.
    if (hard_fork_version >= 2 && hard_fork_version < 4) {
      block_reward = block_reward - block_reward % ::config::BASE_REWARD_CLAMP_THRESHOLD;
    }

    std::vector<uint64_t> out_amounts;
    decompose_amount_into_digits(block_reward, hard_fork_version >= 2 ? 0 : ::config::DEFAULT_DUST_THRESHOLD,
      [&out_amounts](uint64_t a_chunk) { out_amounts.push_back(a_chunk); },
      [&out_amounts](uint64_t a_dust) { out_amounts.push_back(a_dust); });

    CHECK_AND_ASSERT_MES(1 <= max_outs, false, "max_out must be non-zero");
    if (height == 0 || hard_fork_version >= 4)
    {
      // the genesis block was not decomposed, for unknown reasons
      while (max_outs < out_amounts.size())
      {
        //out_amounts[out_amounts.size() - 2] += out_amounts.back();
        //out_amounts.resize(out_amounts.size() - 1);
        out_amounts[1] += out_amounts[0];
        for (size_t n = 1; n < out_amounts.size(); ++n)
          out_amounts[n - 1] = out_amounts[n];
        out_amounts.resize(out_amounts.size() - 1);
      }
    }
    else
    {
      CHECK_AND_ASSERT_MES(max_outs >= out_amounts.size(), false, "max_out exceeded");
    }

    uint64_t summary_amounts = 0;
    for (size_t no = 0; no < out_amounts.size(); no++)
    {
      crypto::key_derivation derivation = AUTO_VAL_INIT(derivation);;
      crypto::public_key out_eph_public_key = AUTO_VAL_INIT(out_eph_public_key);
      bool r = crypto::generate_key_derivation(miner_address.m_view_public_key, txkey.sec, derivation);
      CHECK_AND_ASSERT_MES(r, false, "while creating outs: failed to generate_key_derivation(" << miner_address.m_view_public_key << ", " << txkey.sec << ")");

      r = crypto::derive_public_key(derivation, no, miner_address.m_spend_public_key, out_eph_public_key);
      CHECK_AND_ASSERT_MES(r, false, "while creating outs: failed to derive_public_key(" << derivation << ", " << no << ", "<< miner_address.m_spend_public_key << ")");

      txout_to_key tk;
      tk.key = out_eph_public_key;

      tx_out out;
      summary_amounts += out.amount = out_amounts[no];
      out.target = tk;
      tx.vout.push_back(out);
    }

    CHECK_AND_ASSERT_MES(summary_amounts == block_reward, false, "Failed to construct miner tx, summary_amounts = " << summary_amounts << " not equal block_reward = " << block_reward);

    if (hard_fork_version >= 4)
      tx.version = 2;
    else
      tx.version = 1;

    //lock
    tx.unlock_time = height + CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW;
    tx.vin.push_back(in);

    tx.invalidate_hashes();

    //LOG_PRINT("MINER_TX generated ok, block_reward=" << print_money(block_reward) << "("  << print_money(block_reward - fee) << "+" << print_money(fee)
    //  << "), current_block_size=" << current_block_size << ", already_generated_coins=" << already_generated_coins << ", tx_id=" << get_transaction_hash(tx), LOG_LEVEL_2);
    return true;
  }
Пример #3
0
  //---------------------------------------------------------------
  bool construct_tx_and_get_tx_key(const account_keys& sender_account_keys, const std::vector<tx_source_entry>& sources, const std::vector<tx_destination_entry>& destinations, std::vector<uint8_t> extra, transaction& tx, uint64_t unlock_time, crypto::secret_key &tx_key, bool rct)
  {
    std::vector<rct::key> amount_keys;
    tx.set_null();
    amount_keys.clear();

    tx.version = rct ? 2 : 1;
    tx.unlock_time = unlock_time;

    tx.extra = extra;
    keypair txkey = keypair::generate();
    remove_field_from_tx_extra(tx.extra, typeid(tx_extra_pub_key));
    add_tx_pub_key_to_extra(tx, txkey.pub);
    tx_key = txkey.sec;

    // if we have a stealth payment id, find it and encrypt it with the tx key now
    std::vector<tx_extra_field> tx_extra_fields;
    if (parse_tx_extra(tx.extra, tx_extra_fields))
    {
      tx_extra_nonce extra_nonce;
      if (find_tx_extra_field_by_type(tx_extra_fields, extra_nonce))
      {
        crypto::hash8 payment_id = null_hash8;
        if (get_encrypted_payment_id_from_tx_extra_nonce(extra_nonce.nonce, payment_id))
        {
          LOG_PRINT_L2("Encrypting payment id " << payment_id);
          crypto::public_key view_key_pub = get_destination_view_key_pub(destinations, sender_account_keys);
          if (view_key_pub == null_pkey)
          {
            LOG_ERROR("Destinations have to have exactly one output to support encrypted payment ids");
            return false;
          }

          if (!encrypt_payment_id(payment_id, view_key_pub, txkey.sec))
          {
            LOG_ERROR("Failed to encrypt payment id");
            return false;
          }

          std::string extra_nonce;
          set_encrypted_payment_id_to_tx_extra_nonce(extra_nonce, payment_id);
          remove_field_from_tx_extra(tx.extra, typeid(tx_extra_nonce));
          if (!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce))
          {
            LOG_ERROR("Failed to add encrypted payment id to tx extra");
            return false;
          }
          LOG_PRINT_L1("Encrypted payment ID: " << payment_id);
        }
      }
    }
    else
    {
      LOG_ERROR("Failed to parse tx extra");
      return false;
    }

    struct input_generation_context_data
    {
      keypair in_ephemeral;
    };
    std::vector<input_generation_context_data> in_contexts;

    uint64_t summary_inputs_money = 0;
    //fill inputs
    int idx = -1;
    for(const tx_source_entry& src_entr:  sources)
    {
      ++idx;
      if(src_entr.real_output >= src_entr.outputs.size())
      {
        LOG_ERROR("real_output index (" << src_entr.real_output << ")bigger than output_keys.size()=" << src_entr.outputs.size());
        return false;
      }
      summary_inputs_money += src_entr.amount;

      //key_derivation recv_derivation;
      in_contexts.push_back(input_generation_context_data());
      keypair& in_ephemeral = in_contexts.back().in_ephemeral;
      crypto::key_image img;
      if(!generate_key_image_helper(sender_account_keys, src_entr.real_out_tx_key, src_entr.real_output_in_tx_index, in_ephemeral, img))
        return false;

      //check that derivated key is equal with real output key
      if( !(in_ephemeral.pub == src_entr.outputs[src_entr.real_output].second.dest) )
      {
        LOG_ERROR("derived public key mismatch with output public key at index " << idx << ", real out " << src_entr.real_output << "! "<< ENDL << "derived_key:"
          << string_tools::pod_to_hex(in_ephemeral.pub) << ENDL << "real output_public_key:"
          << string_tools::pod_to_hex(src_entr.outputs[src_entr.real_output].second) );
        LOG_ERROR("amount " << src_entr.amount << ", rct " << src_entr.rct);
        LOG_ERROR("tx pubkey " << src_entr.real_out_tx_key << ", real_output_in_tx_index " << src_entr.real_output_in_tx_index);
        return false;
      }

      //put key image into tx input
      txin_to_key input_to_key;
      input_to_key.amount = src_entr.amount;
      input_to_key.k_image = img;

      //fill outputs array and use relative offsets
      for(const tx_source_entry::output_entry& out_entry: src_entr.outputs)
        input_to_key.key_offsets.push_back(out_entry.first);

      input_to_key.key_offsets = absolute_output_offsets_to_relative(input_to_key.key_offsets);
      tx.vin.push_back(input_to_key);
    }

    // "Shuffle" outs
    std::vector<tx_destination_entry> shuffled_dsts(destinations);
    std::sort(shuffled_dsts.begin(), shuffled_dsts.end(), [](const tx_destination_entry& de1, const tx_destination_entry& de2) { return de1.amount < de2.amount; } );

    uint64_t summary_outs_money = 0;
    //fill outputs
    size_t output_index = 0;
    for(const tx_destination_entry& dst_entr:  shuffled_dsts)
    {
      CHECK_AND_ASSERT_MES(dst_entr.amount > 0 || tx.version > 1, false, "Destination with wrong amount: " << dst_entr.amount);
      crypto::key_derivation derivation;
      crypto::public_key out_eph_public_key;
      bool r = crypto::generate_key_derivation(dst_entr.addr.m_view_public_key, txkey.sec, derivation);
      CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to generate_key_derivation(" << dst_entr.addr.m_view_public_key << ", " << txkey.sec << ")");

      if (tx.version > 1)
      {
        crypto::secret_key scalar1;
        crypto::derivation_to_scalar(derivation, output_index, scalar1);
        amount_keys.push_back(rct::sk2rct(scalar1));
      }
      r = crypto::derive_public_key(derivation, output_index, dst_entr.addr.m_spend_public_key, out_eph_public_key);
      CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to derive_public_key(" << derivation << ", " << output_index << ", "<< dst_entr.addr.m_spend_public_key << ")");

      tx_out out;
      out.amount = dst_entr.amount;
      txout_to_key tk;
      tk.key = out_eph_public_key;
      out.target = tk;
      tx.vout.push_back(out);
      output_index++;
      summary_outs_money += dst_entr.amount;
    }

    //check money
    if(summary_outs_money > summary_inputs_money )
    {
      LOG_ERROR("Transaction inputs money ("<< summary_inputs_money << ") less than outputs money (" << summary_outs_money << ")");
      return false;
    }

    // check for watch only wallet
    bool zero_secret_key = true;
    for (size_t i = 0; i < sizeof(sender_account_keys.m_spend_secret_key); ++i)
      zero_secret_key &= (sender_account_keys.m_spend_secret_key.data[i] == 0);
    if (zero_secret_key)
    {
      MDEBUG("Null secret key, skipping signatures");
    }

    if (tx.version == 1)
    {
      //generate ring signatures
      crypto::hash tx_prefix_hash;
      get_transaction_prefix_hash(tx, tx_prefix_hash);

      std::stringstream ss_ring_s;
      size_t i = 0;
      for(const tx_source_entry& src_entr:  sources)
      {
        ss_ring_s << "pub_keys:" << ENDL;
        std::vector<const crypto::public_key*> keys_ptrs;
        std::vector<crypto::public_key> keys(src_entr.outputs.size());
        size_t ii = 0;
        for(const tx_source_entry::output_entry& o: src_entr.outputs)
        {
          keys[ii] = rct2pk(o.second.dest);
          keys_ptrs.push_back(&keys[ii]);
          ss_ring_s << o.second.dest << ENDL;
          ++ii;
        }

        tx.signatures.push_back(std::vector<crypto::signature>());
        std::vector<crypto::signature>& sigs = tx.signatures.back();
        sigs.resize(src_entr.outputs.size());
        if (!zero_secret_key)
          crypto::generate_ring_signature(tx_prefix_hash, boost::get<txin_to_key>(tx.vin[i]).k_image, keys_ptrs, in_contexts[i].in_ephemeral.sec, src_entr.real_output, sigs.data());
        ss_ring_s << "signatures:" << ENDL;
        std::for_each(sigs.begin(), sigs.end(), [&](const crypto::signature& s){ss_ring_s << s << ENDL;});
        ss_ring_s << "prefix_hash:" << tx_prefix_hash << ENDL << "in_ephemeral_key: " << in_contexts[i].in_ephemeral.sec << ENDL << "real_output: " << src_entr.real_output << ENDL;
        i++;
      }

      MCINFO("construct_tx", "transaction_created: " << get_transaction_hash(tx) << ENDL << obj_to_json_str(tx) << ENDL << ss_ring_s.str());
    }
    else
    {
      size_t n_total_outs = sources[0].outputs.size(); // only for non-simple rct

      // the non-simple version is slightly smaller, but assumes all real inputs
      // are on the same index, so can only be used if there just one ring.
      bool use_simple_rct = sources.size() > 1;

      if (!use_simple_rct)
      {
        // non simple ringct requires all real inputs to be at the same index for all inputs
        for(const tx_source_entry& src_entr:  sources)
        {
          if(src_entr.real_output != sources.begin()->real_output)
          {
            LOG_ERROR("All inputs must have the same index for non-simple ringct");
            return false;
          }
        }

        // enforce same mixin for all outputs
        for (size_t i = 1; i < sources.size(); ++i) {
          if (n_total_outs != sources[i].outputs.size()) {
            LOG_ERROR("Non-simple ringct transaction has varying mixin");
            return false;
          }
        }
      }

      uint64_t amount_in = 0, amount_out = 0;
      rct::ctkeyV inSk;
      // mixRing indexing is done the other way round for simple
      rct::ctkeyM mixRing(use_simple_rct ? sources.size() : n_total_outs);
      rct::keyV destinations;
      std::vector<uint64_t> inamounts, outamounts;
      std::vector<unsigned int> index;
      for (size_t i = 0; i < sources.size(); ++i)
      {
        rct::ctkey ctkey;
        amount_in += sources[i].amount;
        inamounts.push_back(sources[i].amount);
        index.push_back(sources[i].real_output);
        // inSk: (secret key, mask)
        ctkey.dest = rct::sk2rct(in_contexts[i].in_ephemeral.sec);
        ctkey.mask = sources[i].mask;
        inSk.push_back(ctkey);
        // inPk: (public key, commitment)
        // will be done when filling in mixRing
      }
      for (size_t i = 0; i < tx.vout.size(); ++i)
      {
        destinations.push_back(rct::pk2rct(boost::get<txout_to_key>(tx.vout[i].target).key));
        outamounts.push_back(tx.vout[i].amount);
        amount_out += tx.vout[i].amount;
      }

      if (use_simple_rct)
      {
        // mixRing indexing is done the other way round for simple
        for (size_t i = 0; i < sources.size(); ++i)
        {
          mixRing[i].resize(sources[i].outputs.size());
          for (size_t n = 0; n < sources[i].outputs.size(); ++n)
          {
            mixRing[i][n] = sources[i].outputs[n].second;
          }
        }
      }
      else
      {
        for (size_t i = 0; i < n_total_outs; ++i) // same index assumption
        {
          mixRing[i].resize(sources.size());
          for (size_t n = 0; n < sources.size(); ++n)
          {
            mixRing[i][n] = sources[n].outputs[i].second;
          }
        }
      }

      // fee
      if (!use_simple_rct && amount_in > amount_out)
        outamounts.push_back(amount_in - amount_out);

      // zero out all amounts to mask rct outputs, real amounts are now encrypted
      for (size_t i = 0; i < tx.vin.size(); ++i)
      {
        if (sources[i].rct)
          boost::get<txin_to_key>(tx.vin[i]).amount = 0;
      }
      for (size_t i = 0; i < tx.vout.size(); ++i)
        tx.vout[i].amount = 0;

      crypto::hash tx_prefix_hash;
      get_transaction_prefix_hash(tx, tx_prefix_hash);
      rct::ctkeyV outSk;
      if (use_simple_rct)
        tx.rct_signatures = rct::genRctSimple(rct::hash2rct(tx_prefix_hash), inSk, destinations, inamounts, outamounts, amount_in - amount_out, mixRing, amount_keys, index, outSk);
      else
        tx.rct_signatures = rct::genRct(rct::hash2rct(tx_prefix_hash), inSk, destinations, outamounts, mixRing, amount_keys, sources[0].real_output, outSk); // same index assumption

      CHECK_AND_ASSERT_MES(tx.vout.size() == outSk.size(), false, "outSk size does not match vout");

      MCINFO("construct_tx", "transaction_created: " << get_transaction_hash(tx) << ENDL << obj_to_json_str(tx) << ENDL);
    }

    tx.invalidate_hashes();

    return true;
  }
Пример #4
0
  bool Currency::constructMinerTx(size_t height, size_t medianSize, uint64_t alreadyGeneratedCoins, size_t currentBlockSize,
                                  uint64_t fee, const AccountPublicAddress& minerAddress, Transaction& tx,
                                  const blobdata& extraNonce/* = blobdata()*/, size_t maxOuts/* = 1*/) const {
      tx.vin.clear();
      tx.vout.clear();
      tx.extra.clear();

      KeyPair txkey = KeyPair::generate();
      add_tx_pub_key_to_extra(tx, txkey.pub);
      if (!extraNonce.empty()) {
        if (!add_extra_nonce_to_tx_extra(tx.extra, extraNonce)) {
          return false;
        }
      }

      TransactionInputGenerate in;
      in.height = height;

      uint64_t blockReward;
      int64_t emissionChange;
      if (!getBlockReward(medianSize, currentBlockSize, alreadyGeneratedCoins, fee, blockReward, emissionChange)) {
        LOG_PRINT_L0("Block is too big");
        return false;
      }
#if defined(DEBUG_CREATE_BLOCK_TEMPLATE)
      LOG_PRINT_L1("Creating block template: reward " << blockReward << ", fee " << fee);
#endif

      std::vector<uint64_t> outAmounts;
      decompose_amount_into_digits(blockReward, m_defaultDustThreshold,
        [&outAmounts](uint64_t a_chunk) { outAmounts.push_back(a_chunk); },
        [&outAmounts](uint64_t a_dust) { outAmounts.push_back(a_dust); });

      CHECK_AND_ASSERT_MES(1 <= maxOuts, false, "max_out must be non-zero");
      while (maxOuts < outAmounts.size()) {
        outAmounts[outAmounts.size() - 2] += outAmounts.back();
        outAmounts.resize(outAmounts.size() - 1);
      }

      uint64_t summaryAmounts = 0;
      for (size_t no = 0; no < outAmounts.size(); no++) {
        crypto::key_derivation derivation = boost::value_initialized<crypto::key_derivation>();
        crypto::public_key outEphemeralPubKey = boost::value_initialized<crypto::public_key>();
        bool r = crypto::generate_key_derivation(minerAddress.m_viewPublicKey, txkey.sec, derivation);
        CHECK_AND_ASSERT_MES(r, false, "while creating outs: failed to generate_key_derivation(" <<
          minerAddress.m_viewPublicKey << ", " << txkey.sec << ")");

        r = crypto::derive_public_key(derivation, no, minerAddress.m_spendPublicKey, outEphemeralPubKey);
        CHECK_AND_ASSERT_MES(r, false, "while creating outs: failed to derive_public_key(" << derivation << ", " <<
          no << ", "<< minerAddress.m_spendPublicKey << ")");

        TransactionOutputToKey tk;
        tk.key = outEphemeralPubKey;

        TransactionOutput out;
        summaryAmounts += out.amount = outAmounts[no];
        out.target = tk;
        tx.vout.push_back(out);
      }

      CHECK_AND_ASSERT_MES(summaryAmounts == blockReward, false,
        "Failed to construct miner tx, summaryAmounts = " << summaryAmounts << " not equal blockReward = " << blockReward);

      tx.version = CURRENT_TRANSACTION_VERSION;
      //lock
      tx.unlockTime = height + m_minedMoneyUnlockWindow;
      tx.vin.push_back(in);
      return true;
  }
Пример #5
0
bool construct_tx(
  const account_keys& sender_account_keys,
  const std::vector<tx_source_entry>& sources,
  const std::vector<tx_destination_entry>& destinations,
  std::vector<uint8_t> extra,
  Transaction& tx,
  uint64_t unlock_time,
  Logging::ILogger& log) {
  LoggerRef logger(log, "construct_tx");

  tx.vin.clear();
  tx.vout.clear();
  tx.signatures.clear();

  tx.version = CURRENT_TRANSACTION_VERSION;
  tx.unlockTime = unlock_time;

  tx.extra = extra;
  KeyPair txkey = KeyPair::generate();
  add_tx_pub_key_to_extra(tx, txkey.pub);

  struct input_generation_context_data {
    KeyPair in_ephemeral;
  };

  std::vector<input_generation_context_data> in_contexts;
  uint64_t summary_inputs_money = 0;
  //fill inputs
  for (const tx_source_entry& src_entr : sources) {
    if (src_entr.real_output >= src_entr.outputs.size()) {
      logger(ERROR) << "real_output index (" << src_entr.real_output << ")bigger than output_keys.size()=" << src_entr.outputs.size();
      return false;
    }
    summary_inputs_money += src_entr.amount;

    //key_derivation recv_derivation;
    in_contexts.push_back(input_generation_context_data());
    KeyPair& in_ephemeral = in_contexts.back().in_ephemeral;
    crypto::key_image img;
    if (!generate_key_image_helper(sender_account_keys, src_entr.real_out_tx_key, src_entr.real_output_in_tx_index, in_ephemeral, img))
      return false;

    //check that derivated key is equal with real output key
    if (!(in_ephemeral.pub == src_entr.outputs[src_entr.real_output].second)) {
      logger(ERROR) << "derived public key missmatch with output public key! " << ENDL << "derived_key:"
        << Common::podToHex(in_ephemeral.pub) << ENDL << "real output_public_key:"
        << Common::podToHex(src_entr.outputs[src_entr.real_output].second);
      return false;
    }

    //put key image into tx input
    TransactionInputToKey input_to_key;
    input_to_key.amount = src_entr.amount;
    input_to_key.keyImage = img;

    //fill outputs array and use relative offsets
    for (const tx_source_entry::output_entry& out_entry : src_entr.outputs) {
      input_to_key.keyOffsets.push_back(out_entry.first);
    }

    input_to_key.keyOffsets = absolute_output_offsets_to_relative(input_to_key.keyOffsets);
    tx.vin.push_back(input_to_key);
  }

  // "Shuffle" outs
  std::vector<tx_destination_entry> shuffled_dsts(destinations);
  std::sort(shuffled_dsts.begin(), shuffled_dsts.end(), [](const tx_destination_entry& de1, const tx_destination_entry& de2) { return de1.amount < de2.amount; });

  uint64_t summary_outs_money = 0;
  //fill outputs
  size_t output_index = 0;
  for (const tx_destination_entry& dst_entr : shuffled_dsts) {
    if (!(dst_entr.amount > 0)) {
      logger(ERROR, BRIGHT_RED) << "Destination with wrong amount: " << dst_entr.amount;
      return false;
    }
    crypto::key_derivation derivation;
    crypto::public_key out_eph_public_key;
    bool r = crypto::generate_key_derivation(dst_entr.addr.m_viewPublicKey, txkey.sec, derivation);

    if (!(r)) {
      logger(ERROR, BRIGHT_RED)
        << "at creation outs: failed to generate_key_derivation("
        << dst_entr.addr.m_viewPublicKey << ", " << txkey.sec << ")";
      return false;
    }

    r = crypto::derive_public_key(derivation, output_index,
      dst_entr.addr.m_spendPublicKey,
      out_eph_public_key);
    if (!(r)) {
      logger(ERROR, BRIGHT_RED)
        << "at creation outs: failed to derive_public_key(" << derivation
        << ", " << output_index << ", " << dst_entr.addr.m_spendPublicKey
        << ")";
      return false;
    }

    TransactionOutput out;
    out.amount = dst_entr.amount;
    TransactionOutputToKey tk;
    tk.key = out_eph_public_key;
    out.target = tk;
    tx.vout.push_back(out);
    output_index++;
    summary_outs_money += dst_entr.amount;
  }

  //check money
  if (summary_outs_money > summary_inputs_money) {
    logger(ERROR) << "Transaction inputs money (" << summary_inputs_money << ") less than outputs money (" << summary_outs_money << ")";
    return false;
  }

  //generate ring signatures
  crypto::hash tx_prefix_hash;
  get_transaction_prefix_hash(tx, tx_prefix_hash);

  size_t i = 0;
  for (const tx_source_entry& src_entr : sources) {
    std::vector<const crypto::public_key*> keys_ptrs;
    for (const tx_source_entry::output_entry& o : src_entr.outputs) {
      keys_ptrs.push_back(&o.second);
    }

    tx.signatures.push_back(std::vector<crypto::signature>());
    std::vector<crypto::signature>& sigs = tx.signatures.back();
    sigs.resize(src_entr.outputs.size());
    crypto::generate_ring_signature(tx_prefix_hash, boost::get<TransactionInputToKey>(tx.vin[i]).keyImage, keys_ptrs,
      in_contexts[i].in_ephemeral.sec, src_entr.real_output, sigs.data());
    i++;
  }

  return true;
}