Пример #1
0
static void numer_plus(giant x1, giant x2, giant res, curveParams *par)
/* Numerator algebra.
   res = (x1 x2 + a)(x1 + x2) + 2(c x1 x2 + b).
 */
{
    giant t1;
    giant t2;

    PROF_START;
    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);

    gtog(x1, t1); mulg(x2, t1); feemod(par, t1);
    gtog(x2, t2); addg(x1, t2); feemod(par, t2);
    gtog(t1, res);
    if(!isZero(par->a))
    	addg(par->a, res);
    mulg(t2, res); feemod(par, res);
    if(par->curveType == FCT_Weierstrass) {	// i.e., isZero(par->c)
    	int_to_giant(0, t1);
    }
    else {
        mulg(par->c, t1); feemod(par, t1);
    }
    if(!isZero(par->b))
    	addg(par->b, t1);
    gshiftleft(1, t1);
    addg(t1, res); feemod(par, res);

    returnGiant(t1);
    returnGiant(t2);
    PROF_END(numerPlusTime);
}
Пример #2
0
/*
 * Completely rewritten in CryptKit-18, 13 Jan 1997, for new IEEE-style
 * curveParameters.
 */
int which_curve(giant x, curveParams *par)
 /* Returns (+-1) depending on whether x is on curve
   (+-)y^2 = x^3 + c x^2 + a x + b.
 */
{
    giant t1;
    giant t2;
    giant t3;
    int result;
    PROF_START;

    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);
    t3 = borrowGiant(par->maxDigits);

   /* First, set t2:= x^3 + c x^2 + a x + b. */
    gtog(x, t2); addg(par->c, t2);
    mulg(x, t2); addg(par->a, t2);  /* t2 := x^2 + c x + a. */
    feemod(par, t2);
    mulg(x, t2); addg(par->b, t2);
    feemod(par, t2);
    /* Next, test whether t2 is a square. */
    gtog(t2, t1);
    make_base(par, t3); iaddg(1, t3); gshiftright(1, t3); /* t3 = (p+1)/2. */
    feepowermodg(par, t1, t3); 		      /* t1 := t2^((p+1)/2) (mod p). */
    if(gcompg(t1, t2) == 0)
            result = CURVE_PLUS;
    else
            result = CURVE_MINUS;
    returnGiant(t1);
    returnGiant(t2);
    returnGiant(t3);
    PROF_END(whichCurveTime);
    return result;
}
Пример #3
0
void
gmersennemod(
	int 	n,
	giant 	g
)
/* g := g (mod 2^n - 1) */
{
    int the_sign;
    giant scratch3 = borrowGiant(g->capacity);
    giant scratch4 = borrowGiant(1);

    if ((the_sign = gsign(g)) < 0) absg(g);
    while (bitlen(g) > n) {
	gtog(g,scratch3);
	gshiftright(n,scratch3);
	addg(scratch3,g);
	gshiftleft(n,scratch3);
	subg(scratch3,g);
    }
    if(isZero(g)) goto out;
    int_to_giant(1,scratch3);
    gshiftleft(n,scratch3);
    int_to_giant(1,scratch4);
    subg(scratch4,scratch3);
    if(gcompg(g,scratch3) >= 0) subg(scratch3,g);
    if (the_sign < 0) {
	g->sign = -g->sign;
	addg(scratch3,g);
    }
out:
    returnGiant(scratch3);
    returnGiant(scratch4);
}
Пример #4
0
int binvaux(giant p, giant x)
/* Binary inverse method.
   Returns zero if no inverse exists, in which case x becomes
   GCD(x,p). */
{
    giant scratch7;
    giant u0;
    giant u1;
    giant v0;
    giant v1;
    int result = 1;
    int giantSize;
    PROF_START;

    if(isone(x)) return(result);
    giantSize = 4 * abs(p->sign);
    scratch7 = borrowGiant(giantSize);
    u0 = borrowGiant(giantSize);
    u1 = borrowGiant(giantSize);
    v0 = borrowGiant(giantSize);
    v1 = borrowGiant(giantSize);
    int_to_giant(1, v0); gtog(x, v1);
    int_to_giant(0,x); gtog(p, u1);
    while(!isZero(v1)) {
        gtog(u1, u0); bdivg(v1, u0);
        gtog(x, scratch7);
        gtog(v0, x);
        mulg(u0, v0);
        subg(v0,scratch7);
        gtog(scratch7, v0);

        gtog(u1, scratch7);
        gtog(v1, u1);
        mulg(u0, v1);
        subg(v1,scratch7);
        gtog(scratch7, v1);
    }
    if (!isone(u1)) {
        gtog(u1,x);
        if(x->sign<0) addg(p, x);
        result = 0;
        goto done;
    }
    if (x->sign<0) addg(p, x);
  done:
    returnGiant(scratch7);
    returnGiant(u0);
    returnGiant(u1);
    returnGiant(v0);
    returnGiant(v1);
    PROF_END(binvauxTime);
    return(result);
}
Пример #5
0
static void numer_times(giant x1, giant z1, giant x2, giant z2, giant res,
	curveParams *par)
/* Numerator algebra.
    res := (x1 x2 - a z1 z2)^2 -
  	          4 b(x1 z2 + x2 z1 + c z1 z2) z1 z2
 */
{
    giant t1;
    giant t2;
    giant t3;
    giant t4;

    PROF_START;
    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);
    t3 = borrowGiant(par->maxDigits);
    t4 = borrowGiant(par->maxDigits);

    gtog(x1, t1); mulg(x2, t1); feemod(par, t1);
    gtog(z1, t2); mulg(z2, t2); feemod(par, t2);
    gtog(t1, res);
    if(!isZero(par->a)) {
	gtog(par->a, t3);
      	mulg(t2, t3); feemod(par, t3);
      	subg(t3, res);
    }
    gsquare(res); feemod(par, res);
    if(isZero(par->b))
        goto done;
    if(par->curveType != FCT_Weierstrass) {	// i.e., !isZero(par->c)
        gtog(par->c, t3);
    	mulg(t2, t3); feemod(par, t3);
    } else int_to_giant(0, t3);
    gtog(z1, t4); mulg(x2, t4); feemod(par, t4);
    addg(t4, t3);
    gtog(x1, t4); mulg(z2, t4); feemod(par, t4);
    addg(t4, t3); mulg(par->b, t3); feemod(par, t3);
    mulg(t2, t3); gshiftleft(2, t3); feemod(par, t3);
    subg(t3, res);
    feemod(par, res);

done:
    returnGiant(t1);
    returnGiant(t2);
    returnGiant(t3);
    returnGiant(t4);
    PROF_END(numerTimesTime);
}
Пример #6
0
void iaddg(int	i, giant g)
/* Giant g becomes g + (int)i. */
{
	int 	w, j = 0, carry = 0, size = abs(g->sign);
	giant	tmp;

	if (isZero(g))
	{
		itog(i, g);
	}
	else if (g->sign < 0) {
		tmp = popg();
		itog(i, tmp);
		addg(tmp, g);
		pushg(1);
		return;
	}
	else
	{
		w = g->n[0] + i;
		do
		{
			g->n[j] = (unsigned short)(w & 65535L);
			carry = w >> 16;
			w = g->n[++j] + carry;
		} while ((carry != 0) && (j < size));
	}
	if (carry)
	{
		++g->sign;
		g->n[size] = (unsigned short)carry;
	}
}
Пример #7
0
main(int argc, char **argv) {
    giant p = newgiant(CM_SHORTS);
	giant u = newgiant(CM_SHORTS);
	giant v = newgiant(CM_SHORTS);
	giant g[6];
    giant plus_order = newgiant(CM_SHORTS);
    giant minus_order = newgiant(CM_SHORTS);
	giant a = newgiant(CM_SHORTS);
    giant b = newgiant(CM_SHORTS);
    int d, dc, olen, k;

    init_tools(CM_SHORTS);    /* Basic algorithms. */
    printf("Give base prime p:\n"); fflush(stdout);
    gin(p);
    for(dc=0; dc < 6; dc++) g[dc] = newgiant(CM_SHORTS);
    for(dc = 0; dc < DCOUNT; dc++) {
			d = disc12[dc];
			/* Next, seek representation 4N = u^2 + |d| v^2. */
			if(cornacchia4(p, d, u, v) == 0) continue;
/* Here, (u,v) give the quadratic representation of 4p. */
			printf("D: %d\n", d); fflush(stdout);
			gtog(u, g[0]);
			switch(d) {
				case -3: olen = 3;  /* Six orders: p + 1 +- g[0,1,2]. */
						gtog(u, g[1]); gtog(v, g[2]);
						addg(g[2], g[2]); addg(v, g[2]); /* g[2] := 3v. */
						addg(g[2], g[1]); gshiftright(1, g[1]);  /* g[1] = (u + 3v)/2. */
						subg(u, g[2]); gshiftright(1, g[2]); absg(g[2]); /* g[2] = |u-3v|/2. */
						break;
				case -4: olen = 2;  /* Four orders: p + 1 +- g[0,1]. */
						gtog(v, g[1]); addg(g[1], g[1]); /* g[1] = 2v. */
						break;
				default: olen = 1;  /* Two orders: p + 1 +- g[0]. */
			}
			for(k=0; k < olen; k++) {
				 gtog(p, plus_order); iaddg(1, plus_order);
				 gtog(p, minus_order); iaddg(1, minus_order);
				 addg(g[k], plus_order);
				 subg(g[k], minus_order);
				 printf("curve orders: \n");
				 printf("(%d) ", prime_probable(plus_order));
                 gout(plus_order);
				 printf("(%d) ", prime_probable(minus_order));
				 gout(minus_order);
			}
   }
}
Пример #8
0
static void numer_double(giant x, giant z, giant res, curveParams *par)
/* Numerator algebra.
   res := (x^2 - a z^2)^2 - 4 b (2 x + c z) z^3.
 */
{
    giant t1;
    giant t2;

    PROF_START;
    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);

    gtog(x, t1); gsquare(t1); feemod(par, t1);
    gtog(z, res); gsquare(res); feemod(par, res);
    gtog(res, t2);
    if(!isZero(par->a) ) {
        if(!isone(par->a)) { /* Speedup - REC 17 Jan 1997. */
	    mulg(par->a, res); feemod(par, res);
        }
        subg(res, t1); feemod(par, t1);
    }
    gsquare(t1); feemod(par, t1);
    /* t1 := (x^2 - a z^2)^2. */
    if(isZero(par->b))  {   /* Speedup - REC 17 Jan 1997. */
	gtog(t1, res);
        goto done;
    }
    if(par->curveType != FCT_Weierstrass) {	// i.e., !isZero(par->c)
    						// Speedup - REC 17 Jan 1997.
	gtog(z, res); mulg(par->c, res); feemod(par, res);
    } else {
        int_to_giant(0, res);
    }
    addg(x, res); addg(x, res); mulg(par->b, res);
    feemod(par, res);
    gshiftleft(2, res); mulg(z, res); feemod(par, res);
    mulg(t2, res); feemod(par, res);
    negg(res); addg(t1, res);
    feemod(par, res);

done:
    returnGiant(t1);
    returnGiant(t2);
    PROF_END(numerDoubleTime);
}
Пример #9
0
void make_recip(giant d, giant r)
/* r becomes the steady-state reciprocal
* 2^(2b)/d, where b = bit-length of d-1. */
{
	int		b;
	giant 	tmp, tmp2;

	if (isZero(d) || (d->sign < 0))
	{
		exit(SIGN);
	}
	tmp = popg();
	tmp2 = popg();
	itog(1, r);
	subg(r, d);
	b = bitlen(d);
	addg(r, d);
	gshiftleft(b, r);
	gtog(r, tmp2);
	while (1)
	{
		gtog(r, tmp);
		squareg(tmp);
		gshiftright(b, tmp);
		mulg(d, tmp);
		gshiftright(b, tmp);
		addg(r, r);
		subg(tmp, r);
		if (gcompg(r, tmp2) <= 0)
			break;
		gtog(r, tmp2);
	}
	itog(1, tmp);
	gshiftleft(2 * b, tmp);
	gtog(r, tmp2);
	mulg(d, tmp2);
	subg(tmp2, tmp);
	itog(1, tmp2);
	while (tmp->sign < 0)
	{
		subg(tmp2, r);
		addg(d, tmp);
	}
	pushg(2);
}
Пример #10
0
/* input: receive edge and initialize graph */
void input(int n)
{
    int i, v1, v2, pos1, pos2;

    for (i = numnode = 0; i < n; i++) {
        scanf("%d %d", &v1, &v2);
        pos1 = search(v1);
        if (pos1 == -1)
            pos1 = addg(v1);
        pos2 = search(v2);
        if (pos2 == -1)
            pos2 = addg(v2);
        if (pos1 != pos2) {
            update(pos1, pos2);
            update(pos2, pos1);
        }
    }
}
Пример #11
0
static void
powFp2(giant a, giant b, giant w2, giant n, curveParams *cp)
/* Perform powering in the field F_p^2:
   a + b w := (a + b w)^n (mod p), where parameter w2 is a quadratic
   nonresidue (formally equal to w^2).
 */
{
	int j;
	giant t6;
	giant t7;
	giant t8;
	giant t9;

	if(isZero(n)) {
		int_to_giant(1,a);
		int_to_giant(0,b);
		return;
	}
    	t6 = borrowGiant(cp->maxDigits);
    	t7 = borrowGiant(cp->maxDigits);
    	t8 = borrowGiant(cp->maxDigits);
    	t9 = borrowGiant(cp->maxDigits);
	gtog(a, t8); gtog(b, t9);
	for(j = bitlen(n)-2; j >= 0; j--) {
		gtog(b, t6);
		mulg(a, b); addg(b,b); feemod(cp, b);  /* b := 2 a b. */
		gsquare(t6); feemod(cp, t6);
		mulg(w2, t6); feemod(cp, t6);
		gsquare(a); addg(t6, a); feemod(cp, a);
						/* a := a^2 + b^2 w2. */
		if(bitval(n, j)) {
			gtog(b, t6); mulg(t8, b); feemod(cp, b);
			gtog(a, t7); mulg(t9, a); addg(a, b); feemod(cp, b);
			mulg(t9, t6); feemod(cp, t6);
			mulg(w2, t6); feemod(cp, t6);
			mulg(t8, a); addg(t6, a); feemod(cp, a);
		}
	}
	returnGiant(t6);
	returnGiant(t7);
	returnGiant(t8);
	returnGiant(t9);
	return;
}
Пример #12
0
void ellDoubleProj(pointProj pt, curveParams *cp)
/* pt := 2 pt on the curve. */
{
	giant x = pt->x, y = pt->y, z = pt->z;
	giant t1;
	giant t2;
	giant t3;

	if(isZero(y) || isZero(z)) {
		int_to_giant(1,x); int_to_giant(1,y); int_to_giant(0,z);
		return;
	}
	t1 = borrowGiant(cp->maxDigits);
	t2 = borrowGiant(cp->maxDigits);
	t3 = borrowGiant(cp->maxDigits);

	if((cp->a->sign >= 0) || (cp->a->n[0] != 3)) { /* Path prior to Apr2001. */
		gtog(z,t1); gsquare(t1); feemod(cp, t1);
		gsquare(t1); feemod(cp, t1);
		mulg(cp->a, t1); feemod(cp, t1);			/* t1 := a z^4. */
		gtog(x, t2); gsquare(t2); feemod(cp, t2);
			smulg(3, t2);                           /* t2 := 3x^2. */
		addg(t2, t1); feemod(cp, t1);	 			/* t1 := slope m. */
	} else { /* New optimization for a = -3 (post Apr 2001). */
		gtog(z, t1); gsquare(t1); feemod(cp, t1);   /* t1 := z^2. */
		gtog(x, t2); subg(t1, t2);                  /* t2 := x-z^2. */
		addg(x, t1); smulg(3, t1);                  /* t1 := 3(x+z^2). */
		mulg(t2, t1); feemod(cp, t1);               /* t1 := slope m. */
	}
	mulg(y, z); addg(z,z); feemod(cp, z);	  	/* z := 2 y z. */
	gtog(y, t2); gsquare(t2); feemod(cp, t2); 	/* t2 := y^2. */
	gtog(t2, t3); gsquare(t3); feemod(cp, t3);	/* t3 := y^4. */
	gshiftleft(3, t3);  				/* t3 := 8 y^4. */
	mulg(x, t2); gshiftleft(2, t2); feemod(cp, t2);	/* t2 := 4xy^2. */
	gtog(t1, x); gsquare(x); feemod(cp, x);
	subg(t2, x); subg(t2, x); feemod(cp, x);	/* x done. */
	gtog(t1, y); subg(x, t2); mulg(t2, y); subg(t3, y);
	feemod(cp, y);
	returnGiant(t1);
	returnGiant(t2);
	returnGiant(t3);
}
Пример #13
0
void ellMulProj(pointProj pt0, pointProj pt1, giant k, curveParams *cp)
/* General elliptic multiplication;
   pt1 := k*pt0 on the curve,
   with k an arbitrary integer.
 */
{
	giant x = pt0->x, y = pt0->y, z = pt0->z,
		  xx = pt1->x, yy = pt1->y, zz = pt1->z;
	int ksign, hlen, klen, b, hb, kb;
    	giant t0;

	CKASSERT(cp->curveType == FCT_Weierstrass);
	if(isZero(k)) {
		int_to_giant(1, xx);
		int_to_giant(1, yy);
		int_to_giant(0, zz);
		return;
	}
	t0 = borrowGiant(cp->maxDigits);
    	ksign = k->sign;
	if(ksign < 0) negg(k);
	gtog(x,xx); gtog(y,yy); gtog(z,zz);
	gtog(k, t0); addg(t0, t0); addg(k, t0); /* t0 := 3k. */
	hlen = bitlen(t0);
	klen = bitlen(k);
	for(b = hlen-2; b > 0; b--) {
		ellDoubleProj(pt1,cp);
		hb = bitval(t0, b);
		if(b < klen) kb = bitval(k, b); else kb = 0;
		if((hb != 0) && (kb == 0))
			ellAddProj(pt1, pt0, cp);
		else if((hb == 0) && (kb !=0))
			ellSubProj(pt1, pt0, cp);
	}
	if(ksign < 0) {
		ellNegProj(pt1, cp);
		k->sign = -k->sign;
	}
	returnGiant(t0);
}
Пример #14
0
void findPointProj(pointProj pt, giant seed, curveParams *cp)
/* Starting with seed, finds a random (projective) point {x,y,1} on curve.
 */
{
	giant x = pt->x, y = pt->y, z = pt->z;

	CKASSERT(cp->curveType == FCT_Weierstrass);
	feemod(cp, seed);
    	while(1) {
		gtog(seed, x);
		gsquare(x); feemod(cp, x);	// x := seed^2
		addg(cp->a, x);			// x := seed^2 + a
		mulg(seed,x); 			// x := seed^3 + a*seed
		addg(cp->b, x);
		feemod(cp, x);			// x := seed^3 + a seed + b.
		/* test cubic form for having root. */
		if(sqrtmod(x, cp)) break;
		iaddg(1, seed);
	}
	gtog(x, y);
    	gtog(seed,x);
	int_to_giant(1, z);
}
Пример #15
0
static void denom_double(giant x, giant z, giant res, curveParams *par)
/* Denominator algebra.
    res = 4 z (x^3 + c x^2 z + a x z^2 + b z^3). */
{
    giant t1;
    giant t2;

    PROF_START;
    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);

    gtog(x, res); gtog(z, t1);
    if(par->curveType != FCT_Weierstrass) {	// i.e., !isZero(par->c)
	gtog(par->c, t2); mulg(t1, t2); feemod(par, t2);
	addg(t2, res);
    }
    mulg(x, res); feemod(par, res);
    gsquare(t1); feemod(par, t1);
    if(!isZero(par->a)) {
	gtog(t1, t2);
    	mulg(par->a, t2); feemod(par, t2);
    	addg(t2, res);
    }
    mulg(x, res); feemod(par, res);
    if(!isZero(par->b)) {
	mulg(z, t1); feemod(par, t1);
    	mulg(par->b, t1); feemod(par, t1);
    	addg(t1, res);
    }
    mulg(z, res); gshiftleft(2, res);
    feemod(par, res);

    returnGiant(t1);
    returnGiant(t2);
    PROF_END(denomDoubleTime);
}
Пример #16
0
int signature_compare(giant p0x, giant p1x, giant p2x, curveParams *par)
/* Returns non-zero iff p0x cannot be the x-coordinate of the sum of two points whose respective x-coordinates are p1x, p2x. */
{
        int ret = 0;
        giant t1;
	giant t2;
        giant t3;
        giant t4;
        giant t5;

	PROF_START;

        t1 = borrowGiant(par->maxDigits);
	t2 = borrowGiant(par->maxDigits);
        t3 = borrowGiant(par->maxDigits);
        t4 = borrowGiant(par->maxDigits);
        t5 = borrowGiant(par->maxDigits);

        if(gcompg(p1x, p2x) == 0) {
		int_to_giant(1, t1);
		numer_double(p1x, t1, t2, par);
		denom_double(p1x, t1, t3, par);
		mulg(p0x, t3); subg(t3, t2);
		feemod(par, t2);
        } else {
		numer_plus(p1x, p2x, t1, par);
		gshiftleft(1, t1); feemod(par, t1);
		int_to_giant(1, t3);
		numer_times(p1x, t3, p2x, t3, t2, par);
		int_to_giant(1, t4); int_to_giant(1, t5);
		denom_times(p1x, t4 , p2x, t5, t3, par);
		/* Now we require t3 x0^2 - t1 x0 + t2 == 0. */
		mulg(p0x, t3); feemod(par, t3);
		subg(t1, t3); mulg(p0x, t3);
		feemod(par, t3);
		addg(t3, t2);
		feemod(par, t2);
        }

	if(!isZero(t2)) ret = SIGNATURE_INVALID;
        returnGiant(t1);
        returnGiant(t2);
        returnGiant(t3);
        returnGiant(t4);
        returnGiant(t5);
	PROF_END(sigCompTime);
	return(ret);
}
Пример #17
0
void gmersennemod(int n, giant g) {
/*   g becomes g mod ((2^n)-1)
     31 Jul 96 modified REC.
     17 Jan 97 modified REC.
*/
    unsigned bits = n & (GIANT_BITS_PER_DIGIT - 1);
    unsigned digits =  1 + ((n-1) >> GIANT_LOG2_BITS_PER_DIGIT);
    int isPositive = (g->sign > 0);
    int j;
    int b;
    int size;
    int foundzero;
    giantDigit mask = (bits == 0) ? GIANT_DIGIT_MASK : (giantDigit)((1<<bits)-1);
    giant scratch1;

    b = bitlen(g);
    if(b < n) {
        unsigned numDigits = (n + GIANT_BITS_PER_DIGIT - 1) >>
		GIANT_LOG2_BITS_PER_DIGIT;
	giantDigit lastWord = 0;
	giantDigit bits = 1;

        if(g->sign >= 0) return;

	/*
	 * Cons up ((2**n)-1), add to g.
	 */
	scratch1 = borrowGiant(numDigits + 1);
	scratch1->sign = numDigits;
	for(j=0; j<(int)(numDigits-1); j++) {
		scratch1->n[j] = GIANT_DIGIT_MASK;
	}

	/*
	 * Last word has lower (n & (GIANT_BITS_PER_DIGIT-1)) bits set.
	 */
	for(j=0; j < (int)(n & (GIANT_BITS_PER_DIGIT-1)); j++) {
		lastWord |= bits;
		bits <<= 1;
	}
	scratch1->n[numDigits-1] = lastWord;
	addg(g, scratch1);   /* One version. */
	gtog(scratch1, g);
	returnGiant(scratch1);
	return;
    }
Пример #18
0
void modg_via_recip(giant d, giant r, giant n)
/* This is the fastest mod of the present collection.
* n := n % d, where r is the precalculated
* steady-state reciprocal of d. */
{
	int		s = (bitlen(r) - 1), sign = n->sign;
	giant 	tmp, tmp2;

	if (isZero(d) || (d->sign < 0))
	{
		exit(SIGN);
	}

	tmp = popg();
	tmp2 = popg();

	n->sign = abs(n->sign);
	while (1)
	{
		gtog(n, tmp); gshiftright(s - 1, tmp);
		mulg(r, tmp);
		gshiftright(s + 1, tmp);
		mulg(d, tmp);
		subg(tmp, n);
		if (gcompg(n, d) >= 0)
			subg(d, n);
		if (gcompg(n, d) < 0)
			break;
	}
	if (sign >= 0)
		goto done;
	if (isZero(n))
		goto done;
	negg(n);
	addg(d, n);
done:
	pushg(2);
	return;
}
Пример #19
0
/*
 * Completely rewritten in CryptKit-18, 13 Jan 1997, for new IEEE-style
 * curveParameters.
 */
void elliptic_add(giant x1, giant x2, giant x3, curveParams *par, int s) {

 /* Addition algorithm for x3 = x1 + x2 on the curve, with sign ambiguity s.
    From theory, we know that if {x1,1} and {x2,1} are on a curve, then
    their elliptic sum (x1,1} + {x2,1} = {x3,1} must have x3 as one of two
    values:

       x3 = U/2 + s*Sqrt[U^2/4 - V]

    where sign s = +-1, and U,V are functions of x1,x2.  Tho present function
    is called a maximum of twice, to settle which of +- is s.  When a call
    is made, it is guaranteed already that x1, x2 both lie on the same curve
    (+- curve); i.e., which curve (+-) is not connected at all with sign s of
    the x3 relation.
  */

    giant cur_n;
    giant t1;
    giant t2;
    giant t3;
    giant t4;
    giant t5;

    PROF_START;
    cur_n = borrowGiant(par->maxDigits);
    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);
    t3 = borrowGiant(par->maxDigits);
    t4 = borrowGiant(par->maxDigits);
    t5 = borrowGiant(par->maxDigits);

    if(gcompg(x1, x2)==0) {
	int_to_giant(1, t1);
	numer_double(x1, t1, x3, par);
	denom_double(x1, t1, t2, par);
	binvg_cp(par, t2);
	mulg(t2, x3); feemod(par, x3);
	goto out;
    }
    numer_plus(x1, x2, t1, par);
    int_to_giant(1, t3);
    numer_times(x1, t3, x2, t3, t2, par);
    int_to_giant(1, t4); int_to_giant(1, t5);
    denom_times(x1, t4, x2, t5, t3, par);
    binvg_cp(par, t3);
    mulg(t3, t1); feemod(par, t1); /* t1 := U/2. */
    mulg(t3, t2); feemod(par, t2); /* t2 := V. */
    /* Now x3 will be t1 +- Sqrt[t1^2 - t2]. */
    gtog(t1, t4); gsquare(t4); feemod(par, t4);
    subg(t2, t4);
    make_base(par, cur_n); iaddg(1, cur_n); gshiftright(2, cur_n);
    	/* cur_n := (p+1)/4. */
    feepowermodg(par, t4, cur_n);      /* t4 := t2^((p+1)/4) (mod p). */
    gtog(t1, x3);
    if(s != SIGN_PLUS) negg(t4);
    addg(t4, x3);
    feemod(par, x3);

out:
    returnGiant(cur_n);
    returnGiant(t1);
    returnGiant(t2);
    returnGiant(t3);
    returnGiant(t4);
    returnGiant(t5);

    PROF_END(ellAddTime);
}
/*
 * Sign specified block of data (most likely a hash result) using
 * specified feePubKey.
 */
feeReturn feeSigSign(feeSig sig,
	const unsigned char *data,   		// data to be signed
	unsigned dataLen,			// in bytes
	feePubKey pubKey)
{
	sigInst 		*sinst = (sigInst*) sig;
	giant 			messageGiant = NULL;
	unsigned 		maxlen;
	giant 			privGiant;
	unsigned		privGiantBytes;
	feeReturn 		frtn = FR_Success;
	unsigned		randBytesLen;
	unsigned		uDigits;	// alloc'd digits in sinst->u
	curveParams		*cp;

	if(pubKey == NULL) {
		return FR_BadPubKey;
	}
	cp = feePubKeyCurveParams(pubKey);
	if(cp == NULL) {
		return FR_BadPubKey;
	}
	
	privGiant = feePubKeyPrivData(pubKey);
	if(privGiant == NULL) {
		dbgLog(("Attempt to Sign without private data\n"));
		frtn = FR_IllegalArg;
		goto abort;
	}
	privGiantBytes = abs(privGiant->sign) * GIANT_BYTES_PER_DIGIT;

	/*
	 * Note PmX = m 'o' P1.
	 * Get message/digest as giant. May be significantly different
	 * in size from pubKey's basePrime.
	 */
	messageGiant = giant_with_data(data, dataLen);	    // M(text)
	randBytesLen = feePubKeyBitsize(pubKey) / 8;
	maxlen = max(randBytesLen, dataLen);

	/* leave plenty of room.... */
	uDigits = (3 * (privGiantBytes + maxlen)) / GIANT_BYTES_PER_DIGIT;
	sinst->u = newGiant(uDigits);
	gtog(privGiant, sinst->u);			    // u := ourPri
	mulg(messageGiant, sinst->u);			    // u *= M(text)
	addg(sinst->randGiant, sinst->u);		    // u += m

	/*
	 * Paranoia: we're using the curveParams from the caller's pubKey;
	 * this cp will have a valid x1OrderPlusRecip if pubKey is the same
	 * as the one passed to feeSigNewWithKey() (since feeSigNewWithKey
	 * called x1OrderPlusJustify()). But the caller could conceivably be
	 * using a different instance of their pubKey, in which case
	 * the key's cp->x1OrderPlusRecip may not be valid.
	 */
	calcX1OrderPlusRecip(cp);

	/* u := u mod x1OrderPlus */
	#if	SIG_DEBUG
	if(sigDebug) {
		printf("sigSign:\n");
		printf("u pre-modg  : ");
		printGiant(sinst->u);
	}
	#endif
	modg_via_recip(cp->x1OrderPlus, cp->x1OrderPlusRecip, sinst->u);

	#if	SIG_DEBUG
	if(sigDebug) {
		printf("privGiant   : ");
		printGiant(privGiant);
		printf("u           : ");
		printGiant(sinst->u);
		printf("messageGiant: ");
		printGiant(messageGiant);
		printf("curveParams :\n");
		printCurveParams(cp);
	}
	#endif	// SIG_DEBUG
abort:
	if(messageGiant) {
		freeGiant(messageGiant);
	}
	return frtn;
}
Пример #21
0
static void ell_even(giant x1, giant z1, giant x2, giant z2, curveParams *par) {
    giant t1;
    giant t2;
    giant t3;

    EPROF_START;

    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);
    t3 = borrowGiant(par->maxDigits);

    if(par->curveType == FCT_Montgomery) {
	/* Begin Montgomery OPT: 10 Jan 98 REC. */
	gtog(x1, t1); gsquare(t1); feemod(par, t1); /* t1 := x1^2. */
	gtog(z1, t2); gsquare(t2); feemod(par, t2); /* t2 := z1^2. */

	gtog(x1, t3); mulg(z1, t3); feemod(par, t3);
	gtog(t3, z2); mulg(par->c, z2); feemod(par, z2);
	addg(t1, z2); addg(t2, z2); mulg(t3, z2); gshiftleft(2, z2);
	feemod(par, z2);  /* z2 := 4 x1 z1 (x1^2 + c x1 z1 + z1^2). */
	gtog(t1, x2); subg(t2, x2); gsquare(x2); feemod(par, x2);
						/* x2 := (x1^2 - z1^2)^2. */
	/* End OPT: 10 Jan 98 REC. */
    }
    else if((par->curveType == FCT_Weierstrass) && isZero(par->a)) {
	/* Begin Atkin3 OPT: 9 Jan 98 REC. */
	gtog(x1, t1);
	gsquare(t1); feemod(par, t1);
	mulg(x1, t1); feemod(par, t1);   	/* t1 := x^3. */
	gtog(z1, t2);
	gsquare(t2); feemod(par, t2);
	mulg(z1, t2); feemod(par, t2);	/* t2 := z1^3 */
	mulg(par->b, t2); feemod(par, t2); 	/* t2 := b z1^3. */
	gtog(t1, t3); addg(t2, t3);		/* t3 := x^3 + b z1^3 */
	mulg(z1, t3); feemod(par, t3);	/* t3 *= z1
						*     = z1 ( x^3 + b z1^3 ) */
	gshiftleft(2, t3); feemod(par, t3);	/* t3 = 4 z1 (x1^3 + b z1^3) */

	gshiftleft(3, t2);			/* t2 = 8 b z1^3 */
	subg(t2, t1);			/* t1 = x^3 - 8 b z1^3 */
	mulg(x1, t1); feemod(par, t1);	/* t1 = x1 (x1^3 - 8 b z1^3) */

	gtog(t3, z2);
	gtog(t1, x2);
	/* End OPT: 9 Jan 98 REC. */
    }
    else {
	numer_double(x1, z1, t1, par);
	denom_double(x1, z1, t2, par);
	gtog(t1, x2); gtog(t2, z2);
    }
    returnGiant(t1);
    returnGiant(t2);
    returnGiant(t3);

    EPROF_END(ellEvenTime);
    EPROF_INCR(numEllEvens);

    /*
    printf("ell_even end\n");
    printf(" x1 : "); printGiant(x1);
    printf(" z1 : "); printGiant(z1);
    printf(" x2 : "); printGiant(x2);
    printf(" z2 : "); printGiant(z2);
    */
}
Пример #22
0
static void ell_odd(giant x1, giant z1, giant x2, giant z2, giant xxor,
	giant zor, curveParams *par)
{

    giant t1;
    giant t2;

    EPROF_START;
    t1 = borrowGiant(par->maxDigits);
    t2 = borrowGiant(par->maxDigits);

    if(par->curveType == FCT_Montgomery) {
	/* Begin Montgomery OPT: 10 Jan 98 REC. */
	giant t3 = borrowGiant(par->maxDigits);
	giant t4 = borrowGiant(par->maxDigits);

	gtog(x1, t1); addg(z1, t1);  	/* t1 := x1 + z1. */
	gtog(x2, t2); subg(z2, t2);  	/* t2 := x2 - z2. */
	gtog(x1, t3); subg(z1, t3);  	/* t3 := x1 - z1. */
	gtog(x2, t4); addg(z2, t4);  	/* t4 := x2 + z2. */
	mulg(t2, t1); feemod(par, t1);      /* t1 := (x1 + z1)(x2 - z2) */
	mulg(t4, t3); feemod(par, t3);      /* t4 := (x2 + z2)(x1 - z1) */
	gtog(t1, z2); subg(t3, z2); 	/*???gshiftright(1, z2);*/
			    /* z2 := ((x1 + z1)(x2 - z2) - x2)/2 */
	gsquare(z2); feemod(par,  z2);
	mulg(xxor, z2); feemod(par, z2);
	gtog(t1, x2); addg(t3, x2); 	/*????gshiftright(1, x2);*/
	gsquare(x2); feemod(par, x2);
	mulg(zor, x2); feemod(par, x2);

	returnGiant(t3);
	returnGiant(t4);
    }
    else if((par->curveType == FCT_Weierstrass) && isZero(par->a)) {
	/* Begin Atkin3 OPT: 9 Jan 98 REC. */

	giant t3 = borrowGiant(par->maxDigits);
	giant t4 = borrowGiant(par->maxDigits);

	gtog(x1, t1); mulg(x2, t1);  feemod(par, t1);  /* t1 := x1 x2. */
	gtog(z1, t2); mulg(z2, t2);  feemod(par, t2);  /* t2 := z1 z2. */
	gtog(x1, t3); mulg(z2, t3);  feemod(par, t3);  /* t3 := x1 z2. */
	gtog(z1, t4); mulg(x2, t4);  feemod(par, t4);  /* t4 := x2 z1. */
	gtog(t3, z2); subg(t4, z2); gsquare(z2); feemod(par, z2);
	mulg(xxor, z2); feemod(par, z2);
	gtog(t1, x2); gsquare(x2); feemod(par, x2);
	addg(t4, t3); mulg(t2, t3); feemod(par, t3);
	mulg(par->b, t3); feemod(par, t3);
	addg(t3, t3); addg(t3, t3);
	subg(t3, x2); mulg(zor, x2); feemod(par, x2);

	returnGiant(t3);
	returnGiant(t4);
	/* End OPT: 9 Jan 98 REC. */
    }
    else {
	numer_times(x1, z1, x2, z2, t1, par);
	mulg(zor, t1); feemod(par, t1);
	denom_times(x1, z1, x2, z2, t2, par);
	mulg(xxor, t2); feemod(par, t2);

	gtog(t1, x2); gtog(t2, z2);
    }

    returnGiant(t1);
    returnGiant(t2);

    EPROF_END(ellOddTime);
    EPROF_INCR(numEllOdds);

    /*
    printf("ell_odd end\n");
    printf(" x2 : "); printGiant(x2);
    printf(" z2 : "); printGiant(z2);
    */
}
Пример #23
0
static int sqrtmod(giant x, curveParams *cp)
/* If Sqrt[x] (mod p) exists, function returns 1, else 0.
   In either case x is modified, but if 1 is returned,
   x:= Sqrt[x] (mod p).
 */
{
	int rtn;
	giant t0 = borrowGiant(cp->maxDigits);
	giant t1 = borrowGiant(cp->maxDigits);
	giant t2 = borrowGiant(cp->maxDigits);
	giant t3 = borrowGiant(cp->maxDigits);
	giant t4 = borrowGiant(cp->maxDigits);

	giant p = cp->basePrime;

    	feemod(cp, x);			/* Justify the argument. */
    	gtog(x, t0);  /* Store x for eventual validity check on square root. */
    	if((p->n[0] & 3) == 3) {  /* The case p = 3 (mod 4). */
		gtog(p, t1);
		iaddg(1, t1); gshiftright(2, t1);
		powermodg(x, t1, cp);
		goto resolve;
    	}
	/* Next, handle case p = 5 (mod 8). */
    	if((p->n[0] & 7) == 5) {
		gtog(p, t1); int_to_giant(1, t2);
		subg(t2, t1); gshiftright(2, t1);
		gtog(x, t2);
		powermodg(t2, t1, cp);  /* t2 := x^((p-1)/4) % p. */
		iaddg(1, t1);
		gshiftright(1, t1); /* t1 := (p+3)/8. */
		if(isone(t2)) {
			powermodg(x, t1, cp);  /* x^((p+3)/8) is root. */
			goto resolve;
		} else {
			int_to_giant(1, t2); subg(t2, t1);
				/* t1 := (p-5)/8. */
			gshiftleft(2,x);
			powermodg(x, t1, cp);
			mulg(t0, x); addg(x, x); feemod(cp, x);
				/* 2x (4x)^((p-5)/8. */
			goto resolve;
		}
	}

	/* Next, handle tougher case: p = 1 (mod 8). */
	int_to_giant(2, t1);
	while(1) {  /* Find appropriate nonresidue. */
		gtog(t1, t2);
		gsquare(t2); subg(x, t2); feemod(cp, t2);
		if(jacobi_symbol(t2, cp) == -1) break;
		iaddg(1, t1);
	}  /* t2 is now w^2 in F_p^2. */
   	int_to_giant(1, t3);
   	gtog(p, t4); iaddg(1, t4); gshiftright(1, t4);
	powFp2(t1, t3, t2, t4, cp);
	gtog(t1, x);

resolve:
   	gtog(x,t1); gsquare(t1); feemod(cp, t1);
    	if(gcompg(t0, t1) == 0) {
		rtn = 1; 	/* Success. */
	}
	else {
		rtn = 0;	/* no square root */
	}
	returnGiant(t0);
	returnGiant(t1);
	returnGiant(t2);
	returnGiant(t3);
	returnGiant(t4);
	return rtn;
}
Пример #24
0
void ellAddProj(pointProj pt0, pointProj pt1, curveParams *cp)
/* pt0 := pt0 + pt1 on the curve. */
{
	giant x0 = pt0->x, y0 = pt0->y, z0 = pt0->z,
		  x1 = pt1->x, y1 = pt1->y, z1 = pt1->z;
	giant t1;
	giant t2;
	giant t3;
	giant t4;
	giant t5;
	giant t6;
	giant t7;

	if(isZero(z0)) {
		gtog(x1,x0); gtog(y1,y0); gtog(z1,z0);
		return;
	}
	if(isZero(z1)) return;

	t1 = borrowGiant(cp->maxDigits);
	t2 = borrowGiant(cp->maxDigits);
	t3 = borrowGiant(cp->maxDigits);
	t4 = borrowGiant(cp->maxDigits);
	t5 = borrowGiant(cp->maxDigits);
	t6 = borrowGiant(cp->maxDigits);
	t7 = borrowGiant(cp->maxDigits);

	gtog(x0, t1); gtog(y0,t2); gtog(z0, t3);
	gtog(x1, t4); gtog(y1, t5);
	if(!isone(z1)) {
		gtog(z1, t6);
		gtog(t6, t7); gsquare(t7); feemod(cp, t7);
		mulg(t7, t1); feemod(cp, t1);
		mulg(t6, t7); feemod(cp, t7);
		mulg(t7, t2); feemod(cp, t2);
	}
	gtog(t3, t7); gsquare(t7); feemod(cp, t7);
	mulg(t7, t4); feemod(cp, t4);
	mulg(t3, t7); feemod(cp, t7);
	mulg(t7, t5); feemod(cp, t5);
	negg(t4); addg(t1, t4); feemod(cp, t4);
	negg(t5); addg(t2, t5); feemod(cp, t5);
	if(isZero(t4)) {
		if(isZero(t5)) {
			ellDoubleProj(pt0, cp);
	    	} else {
			int_to_giant(1, x0); int_to_giant(1, y0);
			int_to_giant(0, z0);
		}
		goto out;
	}
	addg(t1, t1); subg(t4, t1); feemod(cp, t1);
	addg(t2, t2); subg(t5, t2); feemod(cp, t2);
	if(!isone(z1)) {
		mulg(t6, t3); feemod(cp, t3);
	}
	mulg(t4, t3); feemod(cp, t3);
	gtog(t4, t7); gsquare(t7); feemod(cp, t7);
	mulg(t7, t4); feemod(cp, t4);
	mulg(t1, t7); feemod(cp, t7);
	gtog(t5, t1); gsquare(t1); feemod(cp, t1);
	subg(t7, t1); feemod(cp, t1);
	subg(t1, t7); subg(t1, t7); feemod(cp, t7);
	mulg(t7, t5); feemod(cp, t5);
	mulg(t2, t4); feemod(cp, t4);
	gtog(t5, t2); subg(t4,t2); feemod(cp, t2);
	if(t2->n[0] & 1) { /* Test if t2 is odd. */
		addg(cp->basePrime, t2);
	}
	gshiftright(1, t2);
	gtog(t1, x0); gtog(t2, y0); gtog(t3, z0);
out:
	returnGiant(t1);
	returnGiant(t2);
	returnGiant(t3);
	returnGiant(t4);
	returnGiant(t5);
	returnGiant(t6);
	returnGiant(t7);
}
Пример #25
0
feeReturn feeECDSASign(
    feePubKey pubKey,
    feeSigFormat  format,             // Signature format DER 9.62 / RAW
	const unsigned char *data,   		// data to be signed
	unsigned dataLen,					// in bytes
	feeRandFcn randFcn,					// optional
	void *randRef,						// optional 
	unsigned char **sigData,			// malloc'd and RETURNED
	unsigned *sigDataLen)				// RETURNED
{
	curveParams 		*cp;

	/* giant integers per IEEE P1363 notation */

	giant 			c;		// both 1363 'c' and 'i'
						// i.e., x-coord of u's pub key
	giant 			d;
	giant 			u;		// random private key
	giant			s;		// private key as giant
	giant			f;		// data (message) as giant

	feeReturn 		frtn = FR_Success;
	feeRand 		frand;
	unsigned char 	*randBytes;
	unsigned		randBytesLen;
    unsigned        groupBytesLen;
	giant			privGiant;
	#if	ECDSA_SIGN_USE_PROJ
	pointProjStruct	pt;		// pt->x = c
	giant			pty;		// pt->y
	giant			ptz;		// pt->z
	#endif	// ECDSA_SIGN_USE_PROJ

	if(pubKey == NULL) {
		return FR_BadPubKey;
	}
	cp = feePubKeyCurveParams(pubKey);
	if(cp == NULL) {
		return FR_BadPubKey;
	}
	if(cp->curveType != FCT_Weierstrass) {
		return FR_IllegalCurve;
	}

	CKASSERT(!isZero(cp->x1OrderPlus));

	/*
	 * Private key and message to be signed as giants
	 */
	privGiant = feePubKeyPrivData(pubKey);
	if(privGiant == NULL) {
		dbgLog(("Attempt to Sign without private data\n"));
		return FR_IllegalArg;
	}
	s = borrowGiant(cp->maxDigits);
	gtog(privGiant, s);
	if(dataLen > (cp->maxDigits * GIANT_BYTES_PER_DIGIT)) {
	    f = borrowGiant(BYTES_TO_GIANT_DIGITS(dataLen));
	}
	else {
	    f = borrowGiant(cp->maxDigits);
	}
	deserializeGiant(data, f, dataLen);

	/* 
	 * Certicom SEC1 states that if the digest is larger than the modulus, 
	 * use the left q bits of the digest. 
	 */
	unsigned hashBits = dataLen * 8;
	if(hashBits > cp->q) {
		gshiftright(hashBits - cp->q, f);
	}

	sigDbg(("ECDSA sign:\n"));
	sigLogGiant("  s        : ", s);
	sigLogGiant("  f        : ", f);

	c = borrowGiant(cp->maxDigits);
	d = borrowGiant(cp->maxDigits);
	u = borrowGiant(cp->maxDigits);
	if(randFcn == NULL) {
		frand = feeRandAlloc();
	}
	else {
		frand = NULL;
	}
	
	/*
	 * Random size is just larger than base prime
	 */
	groupBytesLen = ((feePubKeyBitsize(pubKey)+7) / 8);
    randBytesLen = groupBytesLen+8;  // +8bytes (64bits)  to reduce the biais when with reduction mod prime. Per FIPS186-4 - "Using Extra Random Bits"
	randBytes = (unsigned char*) fmalloc(randBytesLen);

	#if	ECDSA_SIGN_USE_PROJ
	/* quick temp pointProj */
	pty = borrowGiant(cp->maxDigits);
	ptz = borrowGiant(cp->maxDigits);
	pt.x = c;
	pt.y = pty;
	pt.z = ptz;
	#endif	// ECDSA_SIGN_USE_PROJ

	while(1) {
		/* Repeat this loop until we have a non-zero c and d */

		/*
		 * 1) Obtain random u in [2, x1OrderPlus-2]
		 */
		SIGPROF_START;
		if(randFcn) {
			randFcn(randRef, randBytes, randBytesLen);
		}
		else {
			feeRandBytes(frand, randBytes, randBytesLen);
		}
		deserializeGiant(randBytes, u, randBytesLen);
        sigLogGiant("  raw u        : ", u);
        sigLogGiant("  order        : ", cp->x1OrderPlus);
        x1OrderPlusJustify(u, cp);
		SIGPROF_END(signStep1);
		sigLogGiant("  in range u        : ", u);

    		/*
		 * note 'o' indicates elliptic multiply, * is integer mult.
		 *
    		 * 2) Compute x coordinate, call it c, of u 'o' G
		 * 3) Reduce: c := c mod x1OrderPlus;
   		 * 4) If c == 0, goto (1);
		 */
		SIGPROF_START;
		gtog(cp->x1Plus, c);

		#if	ECDSA_SIGN_USE_PROJ

		/* projective coordinates */
		gtog(cp->y1Plus, pty);
		int_to_giant(1, ptz);
		ellMulProjSimple(&pt, u, cp);

		#else	/* ECDSA_SIGN_USE_PROJ */

		/* the FEE way */
		elliptic_simple(c, u, cp);

		#endif	/* ECDSA_SIGN_USE_PROJ */

		SIGPROF_END(signStep2);
		SIGPROF_START;
		x1OrderPlusMod(c, cp);
		SIGPROF_END(signStep34);
		if(isZero(c)) {
			dbgLog(("feeECDSASign: zero modulo (1)\n"));
			continue;
		}

		/*
		 * 5) Compute u^(-1) mod x1OrderPlus;
		 */
		SIGPROF_START;
		gtog(u, d);
		binvg_x1OrderPlus(cp, d);
		SIGPROF_END(signStep5);
		sigLogGiant("  u^(-1)   : ", d);

		/*
		 * 6) Compute signature d as:
	 	 *    d = [u^(-1) (f + s*c)] (mod x1OrderPlus)
		 */
		SIGPROF_START;
		mulg(c, s);	     	// s *= c
		x1OrderPlusMod(s, cp);
		addg(f, s);   		// s := f + (s * c)
		x1OrderPlusMod(s, cp);
		mulg(s, d);	     	// d := u^(-1) (f + (s * c))
		x1OrderPlusMod(d, cp);
		SIGPROF_END(signStep67);

		/*
		 * 7) If d = 0, goto (1);
		 */
		if(isZero(d)) {
			dbgLog(("feeECDSASign: zero modulo (2)\n"));
			continue;
		}
		sigLogGiant("  c        : ", c);
		sigLogGiant("  d        : ", d);
		break;			// normal successful exit
	}

	/*
	 * 8) signature is now the integer pair (c, d).
	 */

	/*
	 * Cook up raw data representing the signature.
	 */
	SIGPROF_START;
	ECDSA_encode(format,groupBytesLen, c, d, sigData, sigDataLen);
	SIGPROF_END(signStep8);

	if(frand != NULL) {
		feeRandFree(frand);
	}
	ffree(randBytes);
	returnGiant(u);
	returnGiant(d);
	returnGiant(c);
	returnGiant(f);
	returnGiant(s);
	#if	ECDSA_SIGN_USE_PROJ
	returnGiant(pty);
	returnGiant(ptz);
	#endif	/* ECDSA_SIGN_USE_PROJ */
	return frtn;
}
Пример #26
0
void
main(
	void
)
{
	giant 		x = newgiant(INFINITY), y = newgiant(INFINITY),
				p = newgiant(INFINITY), r = newgiant(100);
	int 		j;

   	printf("Give two integers x, y on separate lines:\n");
   	gin(x); 
   	gin(y); 

   	gtog(y, p);  /* p := y */
   	mulg(x, p);
   	printf("y * x = "); 
   	gout(p);

  	gtog(y, p);
   	subg(x, p);
   	printf("y - x = "); 
   	gout(p);

   	gtog(y, p);
   	addg(x, p);
   	printf("y + x = "); 
   	gout(p);

   	gtog(y, p);
   	divg(x, p);
   	printf("y div x = "); 
   	gout(p);

   	gtog(y, p);
   	modg(x, p);
   	printf("y mod x = "); 
   	gout(p);

   	gtog(y, p);
   	gcdg(x, p);
   	printf("GCD(x, y) = "); 
   	gout(p);
 
	/* Next, test which of x, y is greater. */
   	if (gcompg(x, y) < 0 ) 
   		printf("y is greater\n");
	else if (gcompg(x,y) == 0) 
		printf("x, y equal\n");
	else 
		printf("x is greater\n");

	/* Next, we see how a giant struct is comprised.
   	 * We make a random, bipolar number of about 100 
   	 * digits in base 65536. 
   	 */
	for (j=0; j < 100; j++) 
	{  /* Fill 100 digits randomly. */
		r->n[j] = (unsigned short)rand();
   	}
   	r->sign = 100 * (1 - 2*(rand()%2));

	/* Next, don't forget to check for leading zero digits,
     * even though such are unlikely. 
     */
   	j = abs(r->sign) - 1;
   	while ((r->n[j] == 0) && (j > 0)) 
   	{
   		--j;
   	}
   	r->sign = (j+1) * ((r->sign > 0) ? 1: -1);
   	printf("The random number: "); gout(r);

	/* Next, compare a large-FFT multiply with a standard,
     * grammar-school multiply. 
     */
   	itog(1, x); 
   	gshiftleft(65536, x); 
   	iaddg(1, x);
   	itog(5, y); 
   	gshiftleft(30000, y); 
   	itog(1, p); 
   	subg(p, y); 
	/* Now we multiply (2^65536 + 1)*(5*(2^30000) - 1). */
   	gtog(y, p);
   	mulg(x, p);  /* Actually invokes FFT method because
					bit lengths of x, y are sufficiently large. */
   	printf("High digit of (2^65536 + 1)*(5*(2^30000) - 1) via FFT mul: %d\n", (int) p->n[abs(p->sign)-1]);
   	fflush(stdout);
   	gtog(y, p);
   	grammarmulg(x, p);  /* Grammar-school method. */
   	printf("High digit via grammar-school mul: %d\n", (int) p->n[abs(p->sign)-1]);
   	fflush(stdout);

	/* Next, perform Fermat test for pseudoprimality. */
   	printf("Give prime candidate p:\n");
   	gin(p); 
   	gtog(p, y);
   	itog(1, x); subg(x, y);
   	itog(2, x);
   	powermodg(x, y, p);
   	if (isone(x)) 
   		printf("p is probably prime.\n");
	else 
		printf("p is composite.\n");
}
Пример #27
0
int 
expand(unsigned char *as, int rcnt)
{
	int	count;
	DIR	*dirf;
	BOOL	dir = 0;
	unsigned char	*rescan = 0;
	unsigned char 	*slashsav = 0;
	register unsigned char	*s, *cs;
	unsigned char *s2 = 0;
	struct argnod	*schain = gchain;
	BOOL	slash;
	int	len;
	wchar_t	wc;

	if (trapnote & SIGSET)
		return (0);
	s = cs = as;
	/*
	 * check for meta chars
	 */
	{
		register BOOL open;

		slash = 0;
		open = 0;
		do
		{
			if ((len = nextc(&wc, (char *)cs)) <= 0) {
				len = 1;
				wc = (unsigned char)*cs;
			}

			cs += len;
			switch (wc) {
			case 0:
				if (rcnt && slash)
					break;
				else
					return (0);

			case '/':
				slash++;
				open = 0;
				continue;

			case '[':
				open++;
				continue;

			case ']':
				if (open == 0)
					continue;

			case '?':
			case '*':
				if (rcnt > slash)
					continue;
				else
					cs--;
				break;

			case '\\':
				cs++;
			default:
				continue;
			}
			break;
		} while (TRUE);
	}

	for (;;)
	{
		if (cs == s)
		{
			s = (unsigned char *)nullstr;
			break;
		} else if (*--cs == '/')
		{
			*cs = 0;
			if (s == cs)
				s = (unsigned char *)"/";
			else {
				/*
				 * push trimmed copy of directory prefix
				 * onto stack
				 */
				s2 = cpystak(s);
				trim(s2);
				s = s2;
			}
			break;
		}
	}

	if ((dirf = opendir(*s ? (char *)s : (char *)".")) != 0)
		dir++;

	/* Let s point to original string because it will be trimmed later */
	if (s2)
		s = as;
	count = 0;
	if (*cs == 0)
		slashsav = cs++; /* remember where first slash in as is */

	/* check for rescan */
	if (dir)
	{
		register unsigned char *rs;
		struct dirent *e;

		rs = cs;
		do /* find next / in as */
		{
			if (*rs == '/')
			{
				rescan = rs;
				*rs = 0;
				gchain = 0;
			}
		} while (*rs++);

		while ((e = readdir(dirf)) && (trapnote & SIGSET) == 0)
		{
			if (e->d_name[0] == '.' && *cs != '.')
				continue;

			if (gmatch(e->d_name, cs))
			{
				addg(s, e->d_name, rescan, slashsav);
				count++;
			}
		}
		closedir(dirf);

		if (rescan)
		{
			register struct argnod	*rchain;

			rchain = gchain;
			gchain = schain;
			if (count)
			{
				count = 0;
				while (rchain)
				{
					count += expand(rchain->argval,
							slash + 1);
					rchain = rchain->argnxt;
				}
			}
			*rescan = '/';
		}
	}

	if (slashsav)
		*slashsav = '/';
	return (count);
}