Пример #1
0
uint64_t helper_stq_c_phys(CPUAlphaState *env, uint64_t p, uint64_t v)
{
    CPUState *cs = CPU(alpha_env_get_cpu(env));
    uint64_t ret = 0;

    if (p == env->lock_addr) {
        uint64_t old = ldq_phys(cs->as, p);
        if (old == env->lock_value) {
            stq_phys(cs->as, p, v);
            ret = 1;
        }
    }
    env->lock_addr = -1;

    return ret;
}
Пример #2
0
static uint64_t cchip_read(void *opaque, hwaddr addr, unsigned size)
{
    CPUAlphaState *env = cpu_single_env;
    TyphoonState *s = opaque;
    CPUState *cpu;
    uint64_t ret = 0;

    if (addr & 4) {
        return s->latch_tmp;
    }

    switch (addr) {
    case 0x0000:
        /* CSC: Cchip System Configuration Register.  */
        /* All sorts of data here; probably the only thing relevant is
           PIP<14> Pchip 1 Present = 0.  */
        break;

    case 0x0040:
        /* MTR: Memory Timing Register.  */
        /* All sorts of stuff related to real DRAM.  */
        break;

    case 0x0080:
        /* MISC: Miscellaneous Register.  */
        cpu = ENV_GET_CPU(env);
        ret = s->cchip.misc | (cpu->cpu_index & 3);
        break;

    case 0x00c0:
        /* MPD: Memory Presence Detect Register.  */
        break;

    case 0x0100: /* AAR0 */
    case 0x0140: /* AAR1 */
    case 0x0180: /* AAR2 */
    case 0x01c0: /* AAR3 */
        /* AAR: Array Address Register.  */
        /* All sorts of information about DRAM.  */
        break;

    case 0x0200:
        /* DIM0: Device Interrupt Mask Register, CPU0.  */
        ret = s->cchip.dim[0];
        break;
    case 0x0240:
        /* DIM1: Device Interrupt Mask Register, CPU1.  */
        ret = s->cchip.dim[1];
        break;
    case 0x0280:
        /* DIR0: Device Interrupt Request Register, CPU0.  */
        ret = s->cchip.dim[0] & s->cchip.drir;
        break;
    case 0x02c0:
        /* DIR1: Device Interrupt Request Register, CPU1.  */
        ret = s->cchip.dim[1] & s->cchip.drir;
        break;
    case 0x0300:
        /* DRIR: Device Raw Interrupt Request Register.  */
        ret = s->cchip.drir;
        break;

    case 0x0340:
        /* PRBEN: Probe Enable Register.  */
        break;

    case 0x0380:
        /* IIC0: Interval Ignore Count Register, CPU0.  */
        ret = s->cchip.iic[0];
        break;
    case 0x03c0:
        /* IIC1: Interval Ignore Count Register, CPU1.  */
        ret = s->cchip.iic[1];
        break;

    case 0x0400: /* MPR0 */
    case 0x0440: /* MPR1 */
    case 0x0480: /* MPR2 */
    case 0x04c0: /* MPR3 */
        /* MPR: Memory Programming Register.  */
        break;

    case 0x0580:
        /* TTR: TIGbus Timing Register.  */
        /* All sorts of stuff related to interrupt delivery timings.  */
        break;
    case 0x05c0:
        /* TDR: TIGbug Device Timing Register.  */
        break;

    case 0x0600:
        /* DIM2: Device Interrupt Mask Register, CPU2.  */
        ret = s->cchip.dim[2];
        break;
    case 0x0640:
        /* DIM3: Device Interrupt Mask Register, CPU3.  */
        ret = s->cchip.dim[3];
        break;
    case 0x0680:
        /* DIR2: Device Interrupt Request Register, CPU2.  */
        ret = s->cchip.dim[2] & s->cchip.drir;
        break;
    case 0x06c0:
        /* DIR3: Device Interrupt Request Register, CPU3.  */
        ret = s->cchip.dim[3] & s->cchip.drir;
        break;

    case 0x0700:
        /* IIC2: Interval Ignore Count Register, CPU2.  */
        ret = s->cchip.iic[2];
        break;
    case 0x0740:
        /* IIC3: Interval Ignore Count Register, CPU3.  */
        ret = s->cchip.iic[3];
        break;

    case 0x0780:
        /* PWR: Power Management Control.   */
        break;
    
    case 0x0c00: /* CMONCTLA */
    case 0x0c40: /* CMONCTLB */
    case 0x0c80: /* CMONCNT01 */
    case 0x0cc0: /* CMONCNT23 */
        break;

    default:
        cpu = CPU(alpha_env_get_cpu(cpu_single_env));
        cpu_unassigned_access(cpu, addr, false, false, 0, size);
        return -1;
    }

    s->latch_tmp = ret >> 32;
    return ret;
}
Пример #3
0
static void pchip_write(void *opaque, hwaddr addr,
                        uint64_t v32, unsigned size)
{
    TyphoonState *s = opaque;
    CPUState *cs;
    uint64_t val, oldval;

    if (addr & 4) {
        val = v32 << 32 | s->latch_tmp;
        addr ^= 4;
    } else {
        s->latch_tmp = v32;
        return;
    }

    switch (addr) {
    case 0x0000:
        /* WSBA0: Window Space Base Address Register.  */
        s->pchip.win[0].base_addr = val;
        break;
    case 0x0040:
        /* WSBA1 */
        s->pchip.win[1].base_addr = val;
        break;
    case 0x0080:
        /* WSBA2 */
        s->pchip.win[2].base_addr = val;
        break;
    case 0x00c0:
        /* WSBA3 */
        s->pchip.win[3].base_addr = val;
        break;

    case 0x0100:
        /* WSM0: Window Space Mask Register.  */
        s->pchip.win[0].mask = val;
        break;
    case 0x0140:
        /* WSM1 */
        s->pchip.win[1].mask = val;
        break;
    case 0x0180:
        /* WSM2 */
        s->pchip.win[2].mask = val;
        break;
    case 0x01c0:
        /* WSM3 */
        s->pchip.win[3].mask = val;
        break;

    case 0x0200:
        /* TBA0: Translated Base Address Register.  */
        s->pchip.win[0].translated_base_pfn = val >> 10;
        break;
    case 0x0240:
        /* TBA1 */
        s->pchip.win[1].translated_base_pfn = val >> 10;
        break;
    case 0x0280:
        /* TBA2 */
        s->pchip.win[2].translated_base_pfn = val >> 10;
        break;
    case 0x02c0:
        /* TBA3 */
        s->pchip.win[3].translated_base_pfn = val >> 10;
        break;

    case 0x0300:
        /* PCTL: Pchip Control Register.  */
        oldval = s->pchip.ctl;
        oldval &= ~0x00001cff0fc7ffull;       /* RW fields */
        oldval |= val & 0x00001cff0fc7ffull;

        s->pchip.ctl = oldval;
        break;

    case 0x0340:
        /* PLAT: Pchip Master Latency Register.  */
        break;
    case 0x03c0:
        /* PERROR: Pchip Error Register.  */
        break;
    case 0x0400:
        /* PERRMASK: Pchip Error Mask Register.  */
        break;
    case 0x0440:
        /* PERRSET: Pchip Error Set Register.  */
        break;

    case 0x0480:
        /* TLBIV: Translation Buffer Invalidate Virtual Register.  */
        break;

    case 0x04c0:
        /* TLBIA: Translation Buffer Invalidate All Register (WO).  */
        break;

    case 0x0500:
        /* PMONCTL */
    case 0x0540:
        /* PMONCNT */
    case 0x0800:
        /* SPRST */
        break;

    default:
        cs = CPU(alpha_env_get_cpu(cpu_single_env));
        cpu_unassigned_access(cs, addr, true, false, 0, size);
        return;
    }
}
Пример #4
0
static void cchip_write(void *opaque, hwaddr addr,
                        uint64_t v32, unsigned size)
{
    TyphoonState *s = opaque;
    CPUState *cpu_single_cpu = CPU(alpha_env_get_cpu(cpu_single_env));
    uint64_t val, oldval, newval;

    if (addr & 4) {
        val = v32 << 32 | s->latch_tmp;
        addr ^= 4;
    } else {
        s->latch_tmp = v32;
        return;
    }

    switch (addr) {
    case 0x0000:
        /* CSC: Cchip System Configuration Register.  */
        /* All sorts of data here; nothing relevant RW.  */
        break;

    case 0x0040:
        /* MTR: Memory Timing Register.  */
        /* All sorts of stuff related to real DRAM.  */
        break;

    case 0x0080:
        /* MISC: Miscellaneous Register.  */
        newval = oldval = s->cchip.misc;
        newval &= ~(val & 0x10000ff0);     /* W1C fields */
        if (val & 0x100000) {
            newval &= ~0xff0000ull;        /* ACL clears ABT and ABW */
        } else {
            newval |= val & 0x00f00000;    /* ABT field is W1S */
            if ((newval & 0xf0000) == 0) {
                newval |= val & 0xf0000;   /* ABW field is W1S iff zero */
            }
        }
        newval |= (val & 0xf000) >> 4;     /* IPREQ field sets IPINTR.  */

        newval &= ~0xf0000000000ull;       /* WO and RW fields */
        newval |= val & 0xf0000000000ull;
        s->cchip.misc = newval;

        /* Pass on changes to IPI and ITI state.  */
        if ((newval ^ oldval) & 0xff0) {
            int i;
            for (i = 0; i < 4; ++i) {
                AlphaCPU *cpu = s->cchip.cpu[i];
                if (cpu != NULL) {
                    CPUState *cs = CPU(cpu);
                    /* IPI can be either cleared or set by the write.  */
                    if (newval & (1 << (i + 8))) {
                        cpu_interrupt(cs, CPU_INTERRUPT_SMP);
                    } else {
                        cpu_reset_interrupt(cs, CPU_INTERRUPT_SMP);
                    }

                    /* ITI can only be cleared by the write.  */
                    if ((newval & (1 << (i + 4))) == 0) {
                        cpu_reset_interrupt(cs, CPU_INTERRUPT_TIMER);
                    }
                }
            }
        }
        break;

    case 0x00c0:
        /* MPD: Memory Presence Detect Register.  */
        break;

    case 0x0100: /* AAR0 */
    case 0x0140: /* AAR1 */
    case 0x0180: /* AAR2 */
    case 0x01c0: /* AAR3 */
        /* AAR: Array Address Register.  */
        /* All sorts of information about DRAM.  */
        break;

    case 0x0200: /* DIM0 */
        /* DIM: Device Interrupt Mask Register, CPU0.  */
        s->cchip.dim[0] = val;
        cpu_irq_change(s->cchip.cpu[0], val & s->cchip.drir);
        break;
    case 0x0240: /* DIM1 */
        /* DIM: Device Interrupt Mask Register, CPU1.  */
        s->cchip.dim[0] = val;
        cpu_irq_change(s->cchip.cpu[1], val & s->cchip.drir);
        break;

    case 0x0280: /* DIR0 (RO) */
    case 0x02c0: /* DIR1 (RO) */
    case 0x0300: /* DRIR (RO) */
        break;

    case 0x0340:
        /* PRBEN: Probe Enable Register.  */
        break;

    case 0x0380: /* IIC0 */
        s->cchip.iic[0] = val & 0xffffff;
        break;
    case 0x03c0: /* IIC1 */
        s->cchip.iic[1] = val & 0xffffff;
        break;

    case 0x0400: /* MPR0 */
    case 0x0440: /* MPR1 */
    case 0x0480: /* MPR2 */
    case 0x04c0: /* MPR3 */
        /* MPR: Memory Programming Register.  */
        break;

    case 0x0580:
        /* TTR: TIGbus Timing Register.  */
        /* All sorts of stuff related to interrupt delivery timings.  */
        break;
    case 0x05c0:
        /* TDR: TIGbug Device Timing Register.  */
        break;

    case 0x0600:
        /* DIM2: Device Interrupt Mask Register, CPU2.  */
        s->cchip.dim[2] = val;
        cpu_irq_change(s->cchip.cpu[2], val & s->cchip.drir);
        break;
    case 0x0640:
        /* DIM3: Device Interrupt Mask Register, CPU3.  */
        s->cchip.dim[3] = val;
        cpu_irq_change(s->cchip.cpu[3], val & s->cchip.drir);
        break;

    case 0x0680: /* DIR2 (RO) */
    case 0x06c0: /* DIR3 (RO) */
        break;

    case 0x0700: /* IIC2 */
        s->cchip.iic[2] = val & 0xffffff;
        break;
    case 0x0740: /* IIC3 */
        s->cchip.iic[3] = val & 0xffffff;
        break;

    case 0x0780:
        /* PWR: Power Management Control.   */
        break;
    
    case 0x0c00: /* CMONCTLA */
    case 0x0c40: /* CMONCTLB */
    case 0x0c80: /* CMONCNT01 */
    case 0x0cc0: /* CMONCNT23 */
        break;

    default:
        cpu_unassigned_access(cpu_single_cpu, addr, true, false, 0, size);
        return;
    }
}
Пример #5
0
static uint64_t pchip_read(void *opaque, hwaddr addr, unsigned size)
{
    TyphoonState *s = opaque;
    CPUState *cs;
    uint64_t ret = 0;

    if (addr & 4) {
        return s->latch_tmp;
    }

    switch (addr) {
    case 0x0000:
        /* WSBA0: Window Space Base Address Register.  */
        ret = s->pchip.win[0].base_addr;
        break;
    case 0x0040:
        /* WSBA1 */
        ret = s->pchip.win[1].base_addr;
        break;
    case 0x0080:
        /* WSBA2 */
        ret = s->pchip.win[2].base_addr;
        break;
    case 0x00c0:
        /* WSBA3 */
        ret = s->pchip.win[3].base_addr;
        break;

    case 0x0100:
        /* WSM0: Window Space Mask Register.  */
        ret = s->pchip.win[0].mask;
        break;
    case 0x0140:
        /* WSM1 */
        ret = s->pchip.win[1].mask;
        break;
    case 0x0180:
        /* WSM2 */
        ret = s->pchip.win[2].mask;
        break;
    case 0x01c0:
        /* WSM3 */
        ret = s->pchip.win[3].mask;
        break;

    case 0x0200:
        /* TBA0: Translated Base Address Register.  */
        ret = (uint64_t)s->pchip.win[0].translated_base_pfn << 10;
        break;
    case 0x0240:
        /* TBA1 */
        ret = (uint64_t)s->pchip.win[1].translated_base_pfn << 10;
        break;
    case 0x0280:
        /* TBA2 */
        ret = (uint64_t)s->pchip.win[2].translated_base_pfn << 10;
        break;
    case 0x02c0:
        /* TBA3 */
        ret = (uint64_t)s->pchip.win[3].translated_base_pfn << 10;
        break;

    case 0x0300:
        /* PCTL: Pchip Control Register.  */
        ret = s->pchip.ctl;
        break;
    case 0x0340:
        /* PLAT: Pchip Master Latency Register.  */
        break;
    case 0x03c0:
        /* PERROR: Pchip Error Register.  */
        break;
    case 0x0400:
        /* PERRMASK: Pchip Error Mask Register.  */
        break;
    case 0x0440:
        /* PERRSET: Pchip Error Set Register.  */
        break;
    case 0x0480:
        /* TLBIV: Translation Buffer Invalidate Virtual Register (WO).  */
        break;
    case 0x04c0:
        /* TLBIA: Translation Buffer Invalidate All Register (WO).  */
        break;
    case 0x0500: /* PMONCTL */
    case 0x0540: /* PMONCNT */
    case 0x0800: /* SPRST */
        break;

    default:
        cs = CPU(alpha_env_get_cpu(cpu_single_env));
        cpu_unassigned_access(cs, addr, false, false, 0, size);
        return -1;
    }

    s->latch_tmp = ret >> 32;
    return ret;
}
Пример #6
0
void cpu_loop(CPUAlphaState *env)
{
    CPUState *cs = CPU(alpha_env_get_cpu(env));
    int trapnr;
    target_siginfo_t info;
    abi_long sysret;

    while (1) {
        bool arch_interrupt = true;

        cpu_exec_start(cs);
        trapnr = cpu_exec(cs);
        cpu_exec_end(cs);
        process_queued_cpu_work(cs);

        switch (trapnr) {
        case EXCP_RESET:
            fprintf(stderr, "Reset requested. Exit\n");
            exit(EXIT_FAILURE);
            break;
        case EXCP_MCHK:
            fprintf(stderr, "Machine check exception. Exit\n");
            exit(EXIT_FAILURE);
            break;
        case EXCP_SMP_INTERRUPT:
        case EXCP_CLK_INTERRUPT:
        case EXCP_DEV_INTERRUPT:
            fprintf(stderr, "External interrupt. Exit\n");
            exit(EXIT_FAILURE);
            break;
        case EXCP_MMFAULT:
            info.si_signo = TARGET_SIGSEGV;
            info.si_errno = 0;
            info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID
                            ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR);
            info._sifields._sigfault._addr = env->trap_arg0;
            queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
            break;
        case EXCP_UNALIGN:
            info.si_signo = TARGET_SIGBUS;
            info.si_errno = 0;
            info.si_code = TARGET_BUS_ADRALN;
            info._sifields._sigfault._addr = env->trap_arg0;
            queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
            break;
        case EXCP_OPCDEC:
        do_sigill:
            info.si_signo = TARGET_SIGILL;
            info.si_errno = 0;
            info.si_code = TARGET_ILL_ILLOPC;
            info._sifields._sigfault._addr = env->pc;
            queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
            break;
        case EXCP_ARITH:
            info.si_signo = TARGET_SIGFPE;
            info.si_errno = 0;
            info.si_code = TARGET_FPE_FLTINV;
            info._sifields._sigfault._addr = env->pc;
            queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
            break;
        case EXCP_FEN:
            /* No-op.  Linux simply re-enables the FPU.  */
            break;
        case EXCP_CALL_PAL:
            switch (env->error_code) {
            case 0x80:
                /* BPT */
                info.si_signo = TARGET_SIGTRAP;
                info.si_errno = 0;
                info.si_code = TARGET_TRAP_BRKPT;
                info._sifields._sigfault._addr = env->pc;
                queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
                break;
            case 0x81:
                /* BUGCHK */
                info.si_signo = TARGET_SIGTRAP;
                info.si_errno = 0;
                info.si_code = 0;
                info._sifields._sigfault._addr = env->pc;
                queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
                break;
            case 0x83:
                /* CALLSYS */
                trapnr = env->ir[IR_V0];
                sysret = do_syscall(env, trapnr,
                                    env->ir[IR_A0], env->ir[IR_A1],
                                    env->ir[IR_A2], env->ir[IR_A3],
                                    env->ir[IR_A4], env->ir[IR_A5],
                                    0, 0);
                if (sysret == -TARGET_ERESTARTSYS) {
                    env->pc -= 4;
                    break;
                }
                if (sysret == -TARGET_QEMU_ESIGRETURN) {
                    break;
                }
                /* Syscall writes 0 to V0 to bypass error check, similar
                   to how this is handled internal to Linux kernel.
                   (Ab)use trapnr temporarily as boolean indicating error.  */
                trapnr = (env->ir[IR_V0] != 0 && sysret < 0);
                env->ir[IR_V0] = (trapnr ? -sysret : sysret);
                env->ir[IR_A3] = trapnr;
                break;
            case 0x86:
                /* IMB */
                /* ??? We can probably elide the code using page_unprotect
                   that is checking for self-modifying code.  Instead we
                   could simply call tb_flush here.  Until we work out the
                   changes required to turn off the extra write protection,
                   this can be a no-op.  */
                break;
            case 0x9E:
                /* RDUNIQUE */
                /* Handled in the translator for usermode.  */
                abort();
            case 0x9F:
                /* WRUNIQUE */
                /* Handled in the translator for usermode.  */
                abort();
            case 0xAA:
                /* GENTRAP */
                info.si_signo = TARGET_SIGFPE;
                switch (env->ir[IR_A0]) {
                case TARGET_GEN_INTOVF:
                    info.si_code = TARGET_FPE_INTOVF;
                    break;
                case TARGET_GEN_INTDIV:
                    info.si_code = TARGET_FPE_INTDIV;
                    break;
                case TARGET_GEN_FLTOVF:
                    info.si_code = TARGET_FPE_FLTOVF;
                    break;
                case TARGET_GEN_FLTUND:
                    info.si_code = TARGET_FPE_FLTUND;
                    break;
                case TARGET_GEN_FLTINV:
                    info.si_code = TARGET_FPE_FLTINV;
                    break;
                case TARGET_GEN_FLTINE:
                    info.si_code = TARGET_FPE_FLTRES;
                    break;
                case TARGET_GEN_ROPRAND:
                    info.si_code = 0;
                    break;
                default:
                    info.si_signo = TARGET_SIGTRAP;
                    info.si_code = 0;
                    break;
                }
                info.si_errno = 0;
                info._sifields._sigfault._addr = env->pc;
                queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
                break;
            default:
                goto do_sigill;
            }
            break;
        case EXCP_DEBUG:
            info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP);
            if (info.si_signo) {
                info.si_errno = 0;
                info.si_code = TARGET_TRAP_BRKPT;
                queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
            } else {
                arch_interrupt = false;
            }
            break;
        case EXCP_INTERRUPT:
            /* Just indicate that signals should be handled asap.  */
            break;
        case EXCP_ATOMIC:
            cpu_exec_step_atomic(cs);
            arch_interrupt = false;
            break;
        default:
            fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr);
            cpu_dump_state(cs, stderr, fprintf, 0);
            exit(EXIT_FAILURE);
        }
        process_pending_signals (env);

        /* Most of the traps imply a transition through PALcode, which
           implies an REI instruction has been executed.  Which means
           that RX and LOCK_ADDR should be cleared.  But there are a
           few exceptions for traps internal to QEMU.  */
        if (arch_interrupt) {
            env->flags &= ~ENV_FLAG_RX_FLAG;
            env->lock_addr = -1;
        }
    }
}
Пример #7
0
void helper_stq_phys(CPUAlphaState *env, uint64_t p, uint64_t v)
{
    CPUState *cs = CPU(alpha_env_get_cpu(env));
    stq_phys(cs->as, p, v);
}
Пример #8
0
uint64_t helper_ldq_l_phys(CPUAlphaState *env, uint64_t p)
{
    CPUState *cs = CPU(alpha_env_get_cpu(env));
    env->lock_addr = p;
    return env->lock_value = ldq_phys(cs->as, p);
}
Пример #9
0
uint64_t helper_ldq_phys(CPUAlphaState *env, uint64_t p)
{
    CPUState *cs = CPU(alpha_env_get_cpu(env));
    return ldq_phys(cs->as, p);
}