Пример #1
0
void *
initarm(struct arm_boot_params *abp)
{
#define	next_chunk2(a,b)	(((a) + (b)) &~ ((b)-1))
#define	next_page(a)		next_chunk2(a,PAGE_SIZE)
	struct pv_addr  kernel_l1pt;
	struct pv_addr  dpcpu;
	int loop, i;
	u_int l1pagetable;
	vm_offset_t freemempos;
	vm_offset_t freemem_pt;
	vm_offset_t afterkern;
	vm_offset_t freemem_after;
	vm_offset_t lastaddr;
	uint32_t memsize;

	/* kernel text starts where we were loaded at boot */
#define	KERNEL_TEXT_OFF		(abp->abp_physaddr  - PHYSADDR)
#define	KERNEL_TEXT_BASE	(KERNBASE + KERNEL_TEXT_OFF)
#define	KERNEL_TEXT_PHYS	(PHYSADDR + KERNEL_TEXT_OFF)

	lastaddr = parse_boot_param(abp);
	arm_physmem_kernaddr = abp->abp_physaddr;
	set_cpufuncs();		/* NB: sets cputype */
	pcpu_init(pcpup, 0, sizeof(struct pcpu));
	PCPU_SET(curthread, &thread0);

	if (envmode == 1)
		kern_envp = static_env;
	/* Do basic tuning, hz etc */
      	init_param1();
		
	/*
	 * We allocate memory downwards from where we were loaded
	 * by RedBoot; first the L1 page table, then NUM_KERNEL_PTS
	 * entries in the L2 page table.  Past that we re-align the
	 * allocation boundary so later data structures (stacks, etc)
	 * can be mapped with different attributes (write-back vs
	 * write-through).  Note this leaves a gap for expansion
	 * (or might be repurposed).
	 */
	freemempos = abp->abp_physaddr;

	/* macros to simplify initial memory allocation */
#define alloc_pages(var, np) do {					\
	freemempos -= (np * PAGE_SIZE);					\
	(var) = freemempos;						\
	/* NB: this works because locore maps PA=VA */			\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));			\
} while (0)
#define	valloc_pages(var, np) do {					\
	alloc_pages((var).pv_pa, (np));					\
	(var).pv_va = (var).pv_pa + (KERNVIRTADDR - abp->abp_physaddr);	\
} while (0)

	/* force L1 page table alignment */
	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
		freemempos -= PAGE_SIZE;
	/* allocate contiguous L1 page table */
	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
	/* now allocate L2 page tables; they are linked to L1 below */
	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
			valloc_pages(kernel_pt_table[loop],
			    L2_TABLE_SIZE / PAGE_SIZE);
		} else {
			kernel_pt_table[loop].pv_pa = freemempos +
			    (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
			    L2_TABLE_SIZE_REAL;
			kernel_pt_table[loop].pv_va =
			    kernel_pt_table[loop].pv_pa +
				(KERNVIRTADDR - abp->abp_physaddr);
		}
	}
	freemem_pt = freemempos;		/* base of allocated pt's */

	/*
	 * Re-align allocation boundary so we can map the area
	 * write-back instead of write-through for the stacks and
	 * related structures allocated below.
	 */
	freemempos = PHYSADDR + 0x100000;
	/*
	 * Allocate a page for the system page mapped to V0x00000000
	 * This page will just contain the system vectors and can be
	 * shared by all processes.
	 */
	valloc_pages(systempage, 1);

	/* Allocate dynamic per-cpu area. */
	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
	dpcpu_init((void *)dpcpu.pv_va, 0);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, KSTACK_PAGES);
	alloc_pages(minidataclean.pv_pa, 1);
	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);

	/*
	 * Now construct the L1 page table.  First map the L2
	 * page tables into the L1 so we can replace L1 mappings
	 * later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_va;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00100000 - 1),
	    &kernel_pt_table[KERNEL_PT_SYS]);
	pmap_link_l2pt(l1pagetable, IXP425_IO_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO]);
	pmap_link_l2pt(l1pagetable, IXP425_MCU_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO + 1]);
	pmap_link_l2pt(l1pagetable, IXP425_PCI_MEM_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO + 2]);
	pmap_link_l2pt(l1pagetable, KERNBASE,
	    &kernel_pt_table[KERNEL_PT_BEFOREKERN]);
	pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR, 0x100000,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, PHYSADDR + 0x100000,
	    0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, KERNEL_TEXT_PHYS,
	    next_chunk2(((uint32_t)lastaddr) - KERNEL_TEXT_BASE, L1_S_SIZE),
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	freemem_after = next_page((int)lastaddr);
	afterkern = round_page(next_chunk2((vm_offset_t)lastaddr, L1_S_SIZE));
	for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
		pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000,
		    &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
	}
	pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);


	/* Map the Mini-Data cache clean area. */
	xscale_setup_minidata(l1pagetable, afterkern,
	    minidataclean.pv_pa);

	/* Map the vector page. */
	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	if (cpu_is_ixp43x())
		arm_devmap_bootstrap(l1pagetable, ixp435_devmap);
	else
		arm_devmap_bootstrap(l1pagetable, ixp425_devmap);
	/*
	 * Give the XScale global cache clean code an appropriately
	 * sized chunk of unmapped VA space starting at 0xff000000
	 * (our device mappings end before this address).
	 */
	xscale_cache_clean_addr = 0xff000000U;

	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	setttb(kernel_l1pt.pv_pa);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
	set_stackptrs(0);

	/*
	 * We must now clean the cache again....
	 * Cleaning may be done by reading new data to displace any
	 * dirty data in the cache. This will have happened in setttb()
	 * but since we are boot strapping the addresses used for the read
	 * may have just been remapped and thus the cache could be out
	 * of sync. A re-clean after the switch will cure this.
	 * After booting there are no gross relocations of the kernel thus
	 * this problem will not occur after initarm().
	 */
	cpu_idcache_wbinv_all();
	cpu_setup();

	/* ready to setup the console (XXX move earlier if possible) */
	cninit();
	/*
	 * Fetch the RAM size from the MCU registers.  The
	 * expansion bus was mapped above so we can now read 'em.
	 */
	if (cpu_is_ixp43x())
		memsize = ixp435_ddram_size();
	else
		memsize = ixp425_sdram_size();

	undefined_init();

	init_proc0(kernelstack.pv_va);

	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);

	pmap_curmaxkvaddr = afterkern + PAGE_SIZE;
	vm_max_kernel_address = 0xe0000000;
	pmap_bootstrap(pmap_curmaxkvaddr, &kernel_l1pt);
	msgbufp = (void*)msgbufpv.pv_va;
	msgbufinit(msgbufp, msgbufsize);
	mutex_init();

	/*
	 * Add the physical ram we have available.
	 *
	 * Exclude the kernel, and all the things we allocated which immediately
	 * follow the kernel, from the VM allocation pool but not from crash
	 * dumps.  virtual_avail is a global variable which tracks the kva we've
	 * "allocated" while setting up pmaps.
	 *
	 * Prepare the list of physical memory available to the vm subsystem.
	 */
	arm_physmem_hardware_region(PHYSADDR, memsize);
	arm_physmem_exclude_region(freemem_pt, KERNPHYSADDR -
	    freemem_pt, EXFLAG_NOALLOC);
	arm_physmem_exclude_region(freemempos, KERNPHYSADDR - 0x100000 -
	    freemempos, EXFLAG_NOALLOC);
	arm_physmem_exclude_region(abp->abp_physaddr, 
	    virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC);
	arm_physmem_init_kernel_globals();

	init_param2(physmem);
	kdb_init();

	/* use static kernel environment if so configured */
	if (envmode == 1)
		kern_envp = static_env;

	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
	    sizeof(struct pcb)));
#undef next_page
#undef next_chunk2
}
Пример #2
0
void *
initarm(struct arm_boot_params *abp)
{
	struct pv_addr  kernel_l1pt;
	struct pv_addr  dpcpu;
	int loop, i;
	u_int l1pagetable;
	vm_offset_t freemempos;
	vm_offset_t freemem_pt;
	vm_offset_t afterkern;
	vm_offset_t freemem_after;
	vm_offset_t lastaddr;
	uint32_t memsize, memstart;

	lastaddr = parse_boot_param(abp);
	arm_physmem_kernaddr = abp->abp_physaddr;
	set_cpufuncs();
	pcpu_init(pcpup, 0, sizeof(struct pcpu));
	PCPU_SET(curthread, &thread0);

	/* Do basic tuning, hz etc */
	init_param1();

	freemempos = 0xa0200000;
	/* Define a macro to simplify memory allocation */
#define	valloc_pages(var, np)			\
	alloc_pages((var).pv_pa, (np));		\
	(var).pv_va = (var).pv_pa + 0x20000000;

#define alloc_pages(var, np)			\
	freemempos -= (np * PAGE_SIZE);		\
	(var) = freemempos;		\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));

	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
		freemempos -= PAGE_SIZE;
	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
			valloc_pages(kernel_pt_table[loop],
			    L2_TABLE_SIZE / PAGE_SIZE);
		} else {
			kernel_pt_table[loop].pv_pa = freemempos +
			    (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
			    L2_TABLE_SIZE_REAL;
			kernel_pt_table[loop].pv_va =
			    kernel_pt_table[loop].pv_pa + 0x20000000;
		}
	}
	freemem_pt = freemempos;
	freemempos = 0xa0100000;
	/*
	 * Allocate a page for the system page mapped to V0x00000000
	 * This page will just contain the system vectors and can be
	 * shared by all processes.
	 */
	valloc_pages(systempage, 1);

	/* Allocate dynamic per-cpu area. */
	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
	dpcpu_init((void *)dpcpu.pv_va, 0);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, KSTACK_PAGES);
	alloc_pages(minidataclean.pv_pa, 1);
	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
	/*
	 * Allocate memory for the l1 and l2 page tables. The scheme to avoid
	 * wasting memory by allocating the l1pt on the first 16k memory was
	 * taken from NetBSD rpc_machdep.c. NKPT should be greater than 12 for
	 * this to work (which is supposed to be the case).
	 */

	/*
	 * Now we start construction of the L1 page table
	 * We start by mapping the L2 page tables into the L1.
	 * This means that we can replace L1 mappings later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_va;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00100000 - 1),
	    &kernel_pt_table[KERNEL_PT_SYS]);
	pmap_link_l2pt(l1pagetable, IQ80321_IOPXS_VBASE,
	    &kernel_pt_table[KERNEL_PT_IOPXS]);
	pmap_link_l2pt(l1pagetable, KERNBASE,
	    &kernel_pt_table[KERNEL_PT_BEFOREKERN]);
	pmap_map_chunk(l1pagetable, KERNBASE, IQ80321_SDRAM_START, 0x100000,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, IQ80321_SDRAM_START + 0x100000,
	    0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	pmap_map_chunk(l1pagetable, KERNBASE + 0x200000, IQ80321_SDRAM_START + 0x200000,
	    (((uint32_t)(lastaddr) - KERNBASE - 0x200000) + L1_S_SIZE) & ~(L1_S_SIZE - 1),
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	freemem_after = ((int)lastaddr + PAGE_SIZE) & ~(PAGE_SIZE - 1);
	afterkern = round_page(((vm_offset_t)lastaddr + L1_S_SIZE) & ~(L1_S_SIZE
	    - 1));
	for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
		pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000,
		    &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
	}
	pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	

	/* Map the Mini-Data cache clean area. */
	xscale_setup_minidata(l1pagetable, afterkern,
	    minidataclean.pv_pa);

	/* Map the vector page. */
	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	arm_devmap_bootstrap(l1pagetable, ep80219_devmap);
	/*
	 * Give the XScale global cache clean code an appropriately
	 * sized chunk of unmapped VA space starting at 0xff000000
	 * (our device mappings end before this address).
	 */
	xscale_cache_clean_addr = 0xff000000U;

	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	setttb(kernel_l1pt.pv_pa);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
	set_stackptrs(0);

	/*
	 * We must now clean the cache again....
	 * Cleaning may be done by reading new data to displace any
	 * dirty data in the cache. This will have happened in setttb()
	 * but since we are boot strapping the addresses used for the read
	 * may have just been remapped and thus the cache could be out
	 * of sync. A re-clean after the switch will cure this.
	 * After booting there are no gross relocations of the kernel thus
	 * this problem will not occur after initarm().
	 */
	cpu_idcache_wbinv_all();
	cpu_setup("");

	/*
	 * Fetch the SDRAM start/size from the i80321 SDRAM configration
	 * registers.
	 */
	i80321_calibrate_delay();
	i80321_sdram_bounds(obio_bs_tag, IQ80321_80321_VBASE + VERDE_MCU_BASE,
	    &memstart, &memsize);
	physmem = memsize / PAGE_SIZE;
	cninit();

	undefined_init();
				
	init_proc0(kernelstack.pv_va);
	
	/* Enable MMU, I-cache, D-cache, write buffer. */

	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
	vm_max_kernel_address = 0xd0000000;
	pmap_bootstrap(pmap_curmaxkvaddr, &kernel_l1pt);
	msgbufp = (void*)msgbufpv.pv_va;
	msgbufinit(msgbufp, msgbufsize);
	mutex_init();
	
	/*
	 * Add the physical ram we have available.
	 *
	 * Exclude the kernel (and all the things we allocated which immediately
	 * follow the kernel) from the VM allocation pool but not from crash
	 * dumps.  virtual_avail is a global variable which tracks the kva we've
	 * "allocated" while setting up pmaps.
	 *
	 * Prepare the list of physical memory available to the vm subsystem.
	 */
	arm_physmem_hardware_region(IQ80321_SDRAM_START, memsize);
	arm_physmem_exclude_region(abp->abp_physaddr, 
	    virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC);
	arm_physmem_init_kernel_globals();

	init_param2(physmem);
	kdb_init();
	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
	    sizeof(struct pcb)));
}
Пример #3
0
void *
initarm(struct arm_boot_params *abp)
{
    struct pv_addr	kernel_l1pt;
    int loop;
    u_int l1pagetable;
    vm_offset_t freemempos;
    vm_offset_t afterkern;
    vm_offset_t lastaddr;

    int i;
    uint32_t memsize;

    boothowto = 0;  /* Likely not needed */
    lastaddr = parse_boot_param(abp);
    arm_physmem_kernaddr = abp->abp_physaddr;
    i = 0;
    set_cpufuncs();
    cpufuncs.cf_sleep = s3c24x0_sleep;

    pcpu0_init();

    /* Do basic tuning, hz etc */
    init_param1();

#define KERNEL_TEXT_BASE (KERNBASE)
    freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
    /* Define a macro to simplify memory allocation */
#define valloc_pages(var, np)			\
	alloc_pages((var).pv_va, (np));		\
	(var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);

#define alloc_pages(var, np)			\
	(var) = freemempos;			\
	freemempos += (np * PAGE_SIZE);		\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));

    while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
        freemempos += PAGE_SIZE;
    valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
        if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
            valloc_pages(kernel_pt_table[loop],
                         L2_TABLE_SIZE / PAGE_SIZE);
        } else {
            kernel_pt_table[loop].pv_va = freemempos -
                                          (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
                                          L2_TABLE_SIZE_REAL;
            kernel_pt_table[loop].pv_pa =
                kernel_pt_table[loop].pv_va - KERNVIRTADDR +
                abp->abp_physaddr;
        }
    }
    /*
     * Allocate a page for the system page mapped to V0x00000000
     * This page will just contain the system vectors and can be
     * shared by all processes.
     */
    valloc_pages(systempage, 1);

    /* Allocate stacks for all modes */
    valloc_pages(irqstack, IRQ_STACK_SIZE);
    valloc_pages(abtstack, ABT_STACK_SIZE);
    valloc_pages(undstack, UND_STACK_SIZE);
    valloc_pages(kernelstack, KSTACK_PAGES);
    valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
    /*
     * Now we start construction of the L1 page table
     * We start by mapping the L2 page tables into the L1.
     * This means that we can replace L1 mappings later on if necessary
     */
    l1pagetable = kernel_l1pt.pv_va;

    /* Map the L2 pages tables in the L1 page table */
    pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
                   &kernel_pt_table[KERNEL_PT_SYS]);
    for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
        pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE,
                       &kernel_pt_table[KERNEL_PT_KERN + i]);
    pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR,
                   (((uint32_t)(lastaddr) - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1),
                   VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE
                           - 1));
    for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
        pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE,
                       &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
    }

    /* Map the vector page. */
    pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
                   VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    /* Map the stack pages */
    pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
                   IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
                   ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
                   UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
                   KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

    pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
                   L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
                   msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);


    for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
        pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
                       kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
                       VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    }

    arm_devmap_bootstrap(l1pagetable, s3c24x0_devmap);

    cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    setttb(kernel_l1pt.pv_pa);
    cpu_tlb_flushID();
    cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

    /*
     * Pages were allocated during the secondary bootstrap for the
     * stacks for different CPU modes.
     * We must now set the r13 registers in the different CPU modes to
     * point to these stacks.
     * Since the ARM stacks use STMFD etc. we must set r13 to the top end
     * of the stack memory.
     */

    cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
    set_stackptrs(0);

    /*
     * We must now clean the cache again....
     * Cleaning may be done by reading new data to displace any
     * dirty data in the cache. This will have happened in setttb()
     * but since we are boot strapping the addresses used for the read
     * may have just been remapped and thus the cache could be out
     * of sync. A re-clean after the switch will cure this.
     * After booting there are no gross reloations of the kernel thus
     * this problem will not occur after initarm().
     */
    cpu_idcache_wbinv_all();
    cpu_setup("");

    /* Disable all peripheral interrupts */
    ioreg_write32(S3C24X0_INTCTL_BASE + INTCTL_INTMSK, ~0);
    memsize = board_init();
    /* Find pclk for uart */
    switch(ioreg_read32(S3C24X0_GPIO_BASE + GPIO_GSTATUS1) >> 16) {
    case 0x3241:
        s3c2410_clock_freq2(S3C24X0_CLKMAN_BASE, NULL, NULL,
                            &s3c2410_pclk);
        break;
    case 0x3244:
        s3c2440_clock_freq2(S3C24X0_CLKMAN_BASE, NULL, NULL,
                            &s3c2410_pclk);
        break;
    }
    cninit();

    undefined_init();

    init_proc0(kernelstack.pv_va);

    arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);

    pmap_curmaxkvaddr = afterkern + 0x100000 * (KERNEL_PT_KERN_NUM - 1);
    vm_max_kernel_address = KERNVIRTADDR + 3 * memsize;
    pmap_bootstrap(freemempos, &kernel_l1pt);
    msgbufp = (void*)msgbufpv.pv_va;
    msgbufinit(msgbufp, msgbufsize);
    mutex_init();

    /*
     * Add the physical ram we have available.
     *
     * Exclude the kernel, and all the things we allocated which immediately
     * follow the kernel, from the VM allocation pool but not from crash
     * dumps.  virtual_avail is a global variable which tracks the kva we've
     * "allocated" while setting up pmaps.
     *
     * Prepare the list of physical memory available to the vm subsystem.
     */
    arm_physmem_hardware_region(PHYSADDR, memsize);
    arm_physmem_exclude_region(abp->abp_physaddr,
                               virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC);
    arm_physmem_init_kernel_globals();

    init_param2(physmem);
    kdb_init();

    return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
                     sizeof(struct pcb)));
}