static dc_status_t shearwater_predator_extract_petrel (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata) { shearwater_predator_device_t *device = (shearwater_predator_device_t*) abstract; dc_context_t *context = (abstract ? abstract->context : NULL); // Allocate memory for the profiles. unsigned char *buffer = (unsigned char *) malloc (RB_PROFILE_END - RB_PROFILE_BEGIN + SZ_BLOCK); if (buffer == NULL) { return DC_STATUS_NOMEMORY; } // Search the ringbuffer to locate matching header and footer // markers. Because the Petrel does reorder the internal ringbuffer // before sending the data, the most recent dive is always the first // one. Therefore, there is no need to search for it, as we have to // do for the Predator. unsigned int header = 0; unsigned int have_header = 0; unsigned int offset = RB_PROFILE_BEGIN; while (offset != RB_PROFILE_END) { if (array_isequal (data + offset, SZ_BLOCK, 0xFF)) { // Ignore empty blocks explicitly, because otherwise they are // incorrectly recognized as header markers. break; } else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFF) { // Remember the header marker. header = offset; have_header = 1; } else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFE && have_header) { // The dive number in the header and footer should be identical. if (memcmp (data + header + 2, data + offset + 2, 2) != 0) { ERROR (context, "Unexpected dive number."); free (buffer); return DC_STATUS_DATAFORMAT; } // Append the final block. unsigned int length = offset + SZ_BLOCK - header; memcpy (buffer, data + header, length); memcpy (buffer + length, data + SZ_MEMORY - SZ_BLOCK, SZ_BLOCK); // Check the fingerprint data. if (device && memcmp (buffer + 12, device->fingerprint, sizeof (device->fingerprint)) == 0) break; if (callback && !callback (buffer, length + SZ_BLOCK, buffer + 12, sizeof (device->fingerprint), userdata)) break; // Reset the header marker. have_header = 0; } offset += SZ_BLOCK; } free (buffer); return DC_STATUS_SUCCESS; }
static dc_status_t shearwater_predator_extract_predator (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata) { shearwater_predator_device_t *device = (shearwater_predator_device_t*) abstract; dc_context_t *context = (abstract ? abstract->context : NULL); // Locate the most recent dive. // The device maintains an internal counter which is incremented for every // dive, and the current value at the time of the dive is stored in the // dive header. Thus the most recent dive will have the highest value. unsigned int maximum = 0; unsigned int eop = RB_PROFILE_END; // Search the ringbuffer backwards to locate matching header and // footer markers. Because the ringbuffer search algorithm starts at // some arbitrary position, which does not necessary corresponds // with a boundary between two dives, the begin position is adjusted // as soon as the first dive has been found. Without this step, // dives crossing the ringbuffer wrap point won't be detected when // searching backwards from the ringbuffer end offset. unsigned int footer = 0; unsigned int have_footer = 0; unsigned int begin = RB_PROFILE_BEGIN; unsigned int offset = RB_PROFILE_END; while (offset != begin) { // Handle the ringbuffer wrap point. if (offset == RB_PROFILE_BEGIN) offset = RB_PROFILE_END; // Move to the start of the block. offset -= SZ_BLOCK; if (array_isequal (data + offset, SZ_BLOCK, 0xFF)) { // Ignore empty blocks explicitly, because otherwise they are // incorrectly recognized as header markers. } else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFF && have_footer) { // If the first header marker is found, the begin offset is moved // after the corresponding footer marker. This is necessary to be // able to detect dives that cross the ringbuffer wrap point. if (begin == RB_PROFILE_BEGIN) begin = footer + SZ_BLOCK; // Get the internal dive number. unsigned int current = array_uint16_be (data + offset + 2); if (current > maximum) { maximum = current; eop = footer + SZ_BLOCK; } // The dive number in the header and footer should be identical. if (current != array_uint16_be (data + footer + 2)) { ERROR (context, "Unexpected dive number."); return DC_STATUS_DATAFORMAT; } // Reset the footer marker. have_footer = 0; } else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFE) { // Remember the footer marker. footer = offset; have_footer = 1; } } // Allocate memory for the profiles. unsigned char *buffer = (unsigned char *) malloc (RB_PROFILE_END - RB_PROFILE_BEGIN + SZ_BLOCK); if (buffer == NULL) { return DC_STATUS_NOMEMORY; } // Linearize the ringbuffer. memcpy (buffer + 0, data + eop, RB_PROFILE_END - eop); memcpy (buffer + RB_PROFILE_END - eop, data + RB_PROFILE_BEGIN, eop - RB_PROFILE_BEGIN); // Find the dives again in the linear buffer. footer = 0; have_footer = 0; offset = RB_PROFILE_END; while (offset != RB_PROFILE_BEGIN) { // Move to the start of the block. offset -= SZ_BLOCK; if (array_isequal (buffer + offset, SZ_BLOCK, 0xFF)) { break; } else if (buffer[offset + 0] == 0xFF && buffer[offset + 1] == 0xFF && have_footer) { // Append the final block. unsigned int length = footer + SZ_BLOCK - offset; memcpy (buffer + offset + length, data + SZ_MEMORY - SZ_BLOCK, SZ_BLOCK); // Check the fingerprint data. if (device && memcmp (buffer + offset + 12, device->fingerprint, sizeof (device->fingerprint)) == 0) break; if (callback && !callback (buffer + offset, length + SZ_BLOCK, buffer + offset + 12, sizeof (device->fingerprint), userdata)) break; have_footer = 0; } else if (buffer[offset + 0] == 0xFF && buffer[offset + 1] == 0xFE) { footer = offset; have_footer = 1; } } free (buffer); return DC_STATUS_SUCCESS; }
static dc_status_t hw_ostc3_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata) { hw_ostc3_device_t *device = (hw_ostc3_device_t *) abstract; // Enable progress notifications. dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER; progress.maximum = (RB_LOGBOOK_SIZE * RB_LOGBOOK_COUNT) + SZ_MEMORY; device_event_emit (abstract, DC_EVENT_PROGRESS, &progress); // Download the version data. unsigned char id[SZ_VERSION] = {0}; dc_status_t rc = hw_ostc3_device_version (abstract, id, sizeof (id)); if (rc != DC_STATUS_SUCCESS) { ERROR (abstract->context, "Failed to read the version."); return rc; } // Emit a device info event. dc_event_devinfo_t devinfo; devinfo.model = 0; devinfo.firmware = array_uint16_be (id + 2); devinfo.serial = array_uint16_le (id + 0); device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo); // Allocate memory. unsigned char *header = (unsigned char *) malloc (RB_LOGBOOK_SIZE * RB_LOGBOOK_COUNT); if (header == NULL) { ERROR (abstract->context, "Failed to allocate memory."); return DC_STATUS_NOMEMORY; } // Download the logbook headers. rc = hw_ostc3_transfer (device, &progress, HEADER, NULL, 0, header, RB_LOGBOOK_SIZE * RB_LOGBOOK_COUNT); if (rc != DC_STATUS_SUCCESS) { ERROR (abstract->context, "Failed to read the header."); free (header); return rc; } // Locate the most recent dive. // The device maintains an internal counter which is incremented for every // dive, and the current value at the time of the dive is stored in the // dive header. Thus the most recent dive will have the highest value. unsigned int count = 0; unsigned int latest = 0; unsigned int maximum = 0; for (unsigned int i = 0; i < RB_LOGBOOK_COUNT; ++i) { unsigned int offset = i * RB_LOGBOOK_SIZE; // Ignore uninitialized header entries. if (array_isequal (header + offset, RB_LOGBOOK_SIZE, 0xFF)) continue; // Get the internal dive number. unsigned int current = array_uint16_le (header + offset + 80); if (current > maximum) { maximum = current; latest = i; } count++; } // Calculate the total and maximum size. unsigned int ndives = 0; unsigned int size = 0; unsigned int maxsize = 0; for (unsigned int i = 0; i < count; ++i) { unsigned int idx = (latest + RB_LOGBOOK_COUNT - i) % RB_LOGBOOK_COUNT; unsigned int offset = idx * RB_LOGBOOK_SIZE; // Uninitialized header entries should no longer be present at this // stage, unless the dives are interleaved with empty entries. But // that's something we don't support at all. if (array_isequal (header + offset, RB_LOGBOOK_SIZE, 0xFF)) { WARNING (abstract->context, "Unexpected empty header found."); break; } // Get the firmware version. unsigned int firmware = array_uint16_be (header + offset + 0x30); // Calculate the profile length. unsigned int length = RB_LOGBOOK_SIZE + array_uint24_le (header + offset + 9) - 6; if (firmware >= 93) length += 3; // Check the fingerprint data. if (memcmp (header + offset + 12, device->fingerprint, sizeof (device->fingerprint)) == 0) break; if (length > maxsize) maxsize = length; size += length; ndives++; } // Update and emit a progress event. progress.maximum = (RB_LOGBOOK_SIZE * RB_LOGBOOK_COUNT) + size; device_event_emit (abstract, DC_EVENT_PROGRESS, &progress); // Finish immediately if there are no dives available. if (ndives == 0) { free (header); return DC_STATUS_SUCCESS; } // Allocate enough memory for the largest dive. unsigned char *profile = (unsigned char *) malloc (maxsize); if (profile == NULL) { ERROR (abstract->context, "Failed to allocate memory."); free (header); return DC_STATUS_NOMEMORY; } // Download the dives. for (unsigned int i = 0; i < ndives; ++i) { unsigned int idx = (latest + RB_LOGBOOK_COUNT - i) % RB_LOGBOOK_COUNT; unsigned int offset = idx * RB_LOGBOOK_SIZE; // Get the firmware version. unsigned int firmware = array_uint16_be (header + offset + 0x30); // Calculate the profile length. unsigned int length = RB_LOGBOOK_SIZE + array_uint24_le (header + offset + 9) - 6; if (firmware >= 93) length += 3; // Download the dive. unsigned char number[1] = {idx}; rc = hw_ostc3_transfer (device, &progress, DIVE, number, sizeof (number), profile, length); if (rc != DC_STATUS_SUCCESS) { ERROR (abstract->context, "Failed to read the dive."); free (profile); free (header); return rc; } // Verify the header in the logbook and profile are identical. if (memcmp (profile, header + offset, RB_LOGBOOK_SIZE) != 0) { ERROR (abstract->context, "Unexpected profile header."); free (profile); free (header); return rc; } if (callback && !callback (profile, length, profile + 12, sizeof (device->fingerprint), userdata)) break; } free (profile); free (header); return DC_STATUS_SUCCESS; }
static dc_status_t shearwater_predator_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata) { shearwater_predator_parser_t *parser = (shearwater_predator_parser_t *) abstract; const unsigned char *data = abstract->data; unsigned int size = abstract->size; if (size < 2 * SZ_BLOCK) return DC_STATUS_DATAFORMAT; // Get the offset to the footer record. unsigned int footer = size - SZ_BLOCK; if (parser->petrel || array_uint16_be (data + footer) == 0xFFFD) { if (size < 3 * SZ_BLOCK) return DC_STATUS_DATAFORMAT; footer -= SZ_BLOCK; } // Get the sample size. unsigned int samplesize = SZ_SAMPLE_PREDATOR; if (parser->petrel) { samplesize = SZ_SAMPLE_PETREL; } // Get the unit system. unsigned int units = data[8]; // Previous gas mix. unsigned int o2_previous = 0, he_previous = 0; unsigned int time = 0; unsigned int offset = SZ_BLOCK; while (offset < footer) { dc_sample_value_t sample = {0}; // Ignore empty samples. if (array_isequal (data + offset, samplesize, 0x00)) { offset += samplesize; continue; } // Time (seconds). time += 10; sample.time = time; if (callback) callback (DC_SAMPLE_TIME, sample, userdata); // Depth (1/10 m or ft). unsigned int depth = array_uint16_be (data + offset); if (units == IMPERIAL) sample.depth = depth * FEET / 10.0; else sample.depth = depth / 10.0; if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata); // Temperature (°C or °F). unsigned int temperature = data[offset + 13]; if (units == IMPERIAL) sample.temperature = (temperature - 32.0) * (5.0 / 9.0); else sample.temperature = temperature; if (callback) callback (DC_SAMPLE_TEMPERATURE, sample, userdata); // PPO2 sample.ppo2 = data[offset + 6] / 100.0; if (callback) callback (DC_SAMPLE_PPO2, sample, userdata); // Gaschange. unsigned int o2 = data[offset + 7]; unsigned int he = data[offset + 8]; if (o2 != o2_previous || he != he_previous) { sample.event.type = SAMPLE_EVENT_GASCHANGE2; sample.event.time = 0; sample.event.flags = 0; sample.event.value = o2 | (he << 16); if (callback) callback (DC_SAMPLE_EVENT, sample, userdata); o2_previous = o2; he_previous = he; } // Deco stop / NDL. unsigned int decostop = array_uint16_be (data + offset + 2); if (decostop) { sample.deco.type = DC_DECO_DECOSTOP; if (units == IMPERIAL) sample.deco.depth = decostop * FEET; else sample.deco.depth = decostop; } else { sample.deco.type = DC_DECO_NDL; sample.deco.depth = 0.0; } sample.deco.time = data[offset + 9] * 60; if (callback) callback (DC_SAMPLE_DECO, sample, userdata); offset += samplesize; } return DC_STATUS_SUCCESS; }
dc_status_t diverite_nitekq_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata) { diverite_nitekq_device_t *device = (diverite_nitekq_device_t *) abstract; dc_context_t *context = (abstract ? abstract->context : NULL); if (abstract && !ISINSTANCE (abstract)) return DC_STATUS_INVALIDARGS; if (size < SZ_PACKET + SZ_MEMORY) return DC_STATUS_DATAFORMAT; // Skip the first packet. We don't need it for anything. It also // makes the logic easier because all offsets in the data are // relative to the real start of the memory (e.g. excluding this // artificial first block). data += SZ_PACKET; // Allocate memory. unsigned char *buffer = (unsigned char *) malloc (RB_PROFILE_END - RB_PROFILE_BEGIN); if (buffer == NULL) { ERROR (context, "Failed to allocate memory."); return DC_STATUS_NOMEMORY; } // Get the end of profile pointer. unsigned int eop = array_uint16_be(data + EOP); if (eop < RB_PROFILE_BEGIN || eop >= RB_PROFILE_END) { ERROR (context, "Invalid ringbuffer pointer detected."); free (buffer); return DC_STATUS_DATAFORMAT; } // When a new dive is added, the device moves all existing logbook // and address entries towards the end, such that the most recent // one is always the first one. This is not the case for the profile // data, which is added at the end. unsigned int previous = eop; for (unsigned int i = 0; i < 10; ++i) { // Get the pointer to the logbook entry. const unsigned char *p = data + LOGBOOK + i * SZ_LOGBOOK; // Abort if an empty logbook is found. if (array_isequal (p, SZ_LOGBOOK, 0x00)) break; // Get the address of the profile data. unsigned int address = array_uint16_be(data + ADDRESS + i * 2); if (address < RB_PROFILE_BEGIN || address >= RB_PROFILE_END) { ERROR (context, "Invalid ringbuffer pointer detected."); free (buffer); return DC_STATUS_DATAFORMAT; } // Check the fingerprint data. if (device && memcmp (p, device->fingerprint, sizeof (device->fingerprint)) == 0) break; // Copy the logbook entry. memcpy (buffer, p, SZ_LOGBOOK); // Copy the profile data. unsigned int length = 0; if (previous > address) { length = previous - address; memcpy (buffer + SZ_LOGBOOK, data + address, length); } else { unsigned int len_a = RB_PROFILE_END - address; unsigned int len_b = previous - RB_PROFILE_BEGIN; length = len_a + len_b; memcpy (buffer + SZ_LOGBOOK, data + address, len_a); memcpy (buffer + SZ_LOGBOOK + len_a, data + RB_PROFILE_BEGIN, len_b); } if (callback && !callback (buffer, length + SZ_LOGBOOK, buffer, SZ_LOGBOOK, userdata)) { break; } previous = address; } free (buffer); return DC_STATUS_SUCCESS; }
dc_status_t cressi_leonardo_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata) { cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract; dc_context_t *context = (abstract ? abstract->context : NULL); if (abstract && !ISINSTANCE (abstract)) return DC_STATUS_INVALIDARGS; if (size < SZ_MEMORY) return DC_STATUS_DATAFORMAT; // Locate the most recent dive. // The device maintains an internal counter which is incremented for every // dive, and the current value at the time of the dive is stored in the // dive header. Thus the most recent dive will have the highest value. unsigned int count = 0; unsigned int latest = 0; unsigned int maximum = 0; for (unsigned int i = 0; i < RB_LOGBOOK_COUNT; ++i) { unsigned int offset = RB_LOGBOOK_BEGIN + i * RB_LOGBOOK_SIZE; // Ignore uninitialized header entries. if (array_isequal (data + offset, RB_LOGBOOK_SIZE, 0xFF)) break; // Get the internal dive number. unsigned int current = array_uint16_le (data + offset); if (current > maximum) { maximum = current; latest = i; } count++; } unsigned char *buffer = (unsigned char *) malloc (RB_LOGBOOK_SIZE + RB_PROFILE_END - RB_PROFILE_BEGIN); if (buffer == NULL) { ERROR (context, "Failed to allocate memory."); return DC_STATUS_NOMEMORY; } for (unsigned int i = 0; i < count; ++i) { unsigned int idx = (latest + RB_LOGBOOK_COUNT - i) % RB_LOGBOOK_COUNT; unsigned int offset = RB_LOGBOOK_BEGIN + idx * RB_LOGBOOK_SIZE; // Get the ringbuffer pointers. unsigned int header = array_uint16_le (data + offset + 2); unsigned int footer = array_uint16_le (data + offset + 4); if (header < RB_PROFILE_BEGIN || header + 2 > RB_PROFILE_END || footer < RB_PROFILE_BEGIN || footer + 2 > RB_PROFILE_END) { ERROR (abstract->context, "Invalid ringbuffer pointer detected."); free (buffer); return DC_STATUS_DATAFORMAT; } // Get the same pointers from the profile. unsigned int header2 = array_uint16_le (data + footer); unsigned int footer2 = array_uint16_le (data + header); if (header2 != header || footer2 != footer) { ERROR (abstract->context, "Invalid ringbuffer pointer detected."); free (buffer); return DC_STATUS_DATAFORMAT; } // Calculate the profile address and length. unsigned int address = header + 2; unsigned int length = RB_PROFILE_DISTANCE (header, footer) - 2; // Check the fingerprint data. if (device && memcmp (data + offset + 8, device->fingerprint, sizeof (device->fingerprint)) == 0) break; // Copy the logbook entry. memcpy (buffer, data + offset, RB_LOGBOOK_SIZE); // Copy the profile data. if (address + length > RB_PROFILE_END) { unsigned int len_a = RB_PROFILE_END - address; unsigned int len_b = length - len_a; memcpy (buffer + RB_LOGBOOK_SIZE, data + address, len_a); memcpy (buffer + RB_LOGBOOK_SIZE + len_a, data + RB_PROFILE_BEGIN, len_b); } else { memcpy (buffer + RB_LOGBOOK_SIZE, data + address, length); } if (callback && !callback (buffer, RB_LOGBOOK_SIZE + length, buffer + 8, sizeof (device->fingerprint), userdata)) { break; } } free (buffer); return DC_STATUS_SUCCESS; }