int nmssmSUGRA(double m0,double mhf, double a0,double tb, double sgn, double Lambda, double aLambda, double aKappa) { int err; int del=getdelfilesstat_(); err=sugraLesH("inpsp.dat", m0,mhf,a0,tb, sgn,Lambda, aLambda, aKappa); if(err) return -1; err=runTools("nmspec","spectrsp.dat"); assignValW("Au",findValW("At")); assignValW("Ad",findValW("Ab")); if(del) system("rm -f inpsp.dat spectrsp.dat omegasp.dat decaysp.dat outsp.dat"); return err; }
static void CharginoZM(void) { double M2=NMassM[1][1]; double mu=-NMassM[2][3]; double g2v1= -NMassM[1][3]*sqrt(2.); double g2v2= NMassM[1][2]*sqrt(2.); double offQ=g2v1*g2v1+g2v2*g2v2; double TrX2=offQ +M2*M2+mu*mu; double detX=mu*M2 - g2v1*g2v2; double D=TrX2*TrX2 - 4.*detX*detX; double tU=(g2v2*g2v2-g2v1*g2v1-M2*M2+mu*mu-sqrt(D))/2./(M2*g2v2+mu*g2v1); double tV=(g2v1*g2v1-g2v2*g2v2-M2*M2+mu*mu-sqrt(D))/2./(M2*g2v1+mu*g2v2); double CU=cos(atan(tU)); double SU=sin(atan(tU)); double CV=cos(atan(tV)); double SV=sin(atan(tV)); double mc[2],Zv_[2][2],Zu_[2][2]; char name[10]; int i,j; Zu_[0][0]=CU; Zu_[0][1]=SU; Zu_[1][0]=-SU; Zu_[1][1]=CU; Zv_[0][0]=CV; Zv_[0][1]=SV; Zv_[1][0]=-SV; Zv_[1][1]=CV; for(i=0;i<2;i++) mc[i]=g2v1*Zu_[i][0]*Zv_[i][1] +g2v2*Zu_[i][1]*Zv_[i][0] + M2*Zu_[i][0]*Zv_[i][0] + mu*Zu_[i][1]*Zv_[i][1]; for(i=1;i<=2;i++) { sprintf(name,"MC%d",i); assignValW(name,mc[i-1]); for(j=1;j<=2;j++) { sprintf(name,"Zu%d%d",i,j); assignValW(name,Zu_[i-1][j-1]); sprintf(name,"Zv%d%d",i,j); assignValW(name,Zv_[i-1][j-1]); } } }
static void fillNeutralinoMassMatrix(void) { int i,j,k; double M[5]; M[0]=findValW("MNE1"); M[1]=findValW("MNE2"); M[2]=findValW("MNE3"); M[3]=findValW("MNE4"); M[4]=findValW("MNE5"); for(i=0;i<5;i++) for(j=0;j<5;j++) for(k=0,NMassM[i][j]=0;k<5;k++) NMassM[i][j]+=Zn_[k][i]*M[k]*Zn_[k][j]; assignValW("NMM55", NMassM[4][4]); assignValW("NMM34", NMassM[2][3]); assignValW("NMM35", NMassM[2][4]); assignValW("NMM45", NMassM[3][4]); assignValW("NMM13", NMassM[0][2]); assignValW("NMM14", NMassM[0][3]); assignValW("NMM23", NMassM[1][2]); assignValW("NMM24", NMassM[1][3]); CharginoZM(); }
int readVarMSSM(char * fname) { int rdCode; char*vlist[32]={ "alfEMZ","alfSMZ","SW","MZ","Ml","MbMb","Mtp","tb","MG1","MG2", "MG3","Am","Al","At","Ab","Au","Ad","MH3","mu","Ml2", "Ml3","Mr2","Mr3","Mq2","Mq3","Mu2","Mu3","Md2","Md3","wt", "wZ","wW"}; rdCode = readVarSpecial(fname,32,vlist); assignValW("Ml1",findValW("Ml2")); assignValW("Mr1",findValW("Mr2")); assignValW("Mq1",findValW("Mq2")); assignValW("Mu1",findValW("Mu2")); assignValW("Md1",findValW("Md2")); return rdCode; }
static double higgspotent_(void) { int i,j; double ee,sw,cw,lmax; double MZ,alfEMZ,tb,At,Ab; char name[10]; MZ=findValW("MZ"); alfEMZ=findValW("alfEMZ"); At=findValW("At"); Ab=findValW("Ab"); tb=findValW("tb"); for(i=1;i<=2;i++) for(j=1;j<=2;j++) { sprintf(name,"Pa%d%d",i,j); Pa_[i-1][j-1]=findValW(name);} for(i=1;i<=3;i++) for(j=1;j<=3;j++) { sprintf(name,"Zh%d%d",i,j); Zh_[i-1][j-1]=findValW(name);} for(i=1;i<=5;i++) for(j=1;j<=5;j++) { sprintf(name,"Zn%d%d",i,j); Zn_[i-1][j-1]=findValW(name);} extpar.tb = findValW("tb"); extpar.Lambda = findValW("Lambda"); extpar.Kappa = findValW("Kappa"); extpar.aLambda = findValW("aLmbd0"); extpar.vev=findValW("vev"); ee=sqrt(4*M_PI*alfEMZ); sw=sin(asin(extpar.vev*sqrt(2.0)*ee/MZ)/2); cw=sqrt(1.0-sw*sw); extpar.mw=MZ*cw; extpar.g2=ee*ee/(sw*cw)/(sw*cw)/2; extpar.aLambda=min1(extpar.aLambda-1, extpar.aLambda+1, varAlam); varAlam(extpar.aLambda); assignValW("mu",extpar.mu); assignValW("aLmbda",extpar.aLambda); assignValW("aKappa",extpar.aKappa); fillNeutralinoMassMatrix(); for(i=1;i<=5;i++) {sprintf(name,"la%d",i); assignValW(name, La[i]);} for(i=1;i<=2;i++) {sprintf(name,"la%ds",i); assignValW(name,Las[i]);} assignValW("lass", Lass); lmax=0; for(i=0;i<10;i++) { if(lmax<fabs(La[i]))lmax=fabs(La[i]); if(lmax<fabs(Las[i]))lmax=fabs(Las[i]); } if(lmax<fabs(Lass))lmax=fabs(Lass); if(nCall>2000) return -1; else return lmax; }
int hbBlocksMDL(char*fname,int*nHch) { FILE * f=fopen(fname,"w"); double tb,sb,cb,Q; if(!f) return 0; Q=findValW("Q"); fprintf(f,"Block Mass\n 25 %E # Higgs Mass\n\n",findValW("Mh")); slhaDecayPrint("h", 0,f); slhaDecayPrint("t", 0,f); slhaDecayPrint("~H+",0,f); // MbSM=findValW("Mb"); fprintf(f,"Block HiggsBoundsInputHiggsCouplingsBosons\n"); fprintf(f,"# Effective coupling normalised to SM one and squared\n"); fprintf(f,"# For (*) normalized on Sin(2*W)\n"); fprintf(f," %12.4E 3 25 24 24 # higgs-W-W \n", 1. ); fprintf(f," %12.4E 3 25 23 23 # higgs-Z-Z \n", 1. ); fprintf(f," %12.4E 3 25 25 23 # higgs-higgs-Z \n", 0. ); { double vev = findValW("V"), Mh = findValW("Mh"), aQCD=alphaQCD(Mh)/M_PI, LGGSM=lGGhSM(Mh,aQCD, findValW("Mcp"),findValW("Mbp"),findValW("Mtp"),vev), LAASM=lAAhSM(Mh,aQCD, findValW("Mcp"),findValW("Mbp"),findValW("Mtp"),vev); fprintf(f," %12.4E 3 25 21 21 # higgs-gluon-gluon\n", 1. ); fprintf(f," %12.4E 3 25 22 22 # higgs-gamma-gamma\n", SQR(findValW("LAAh")/LAASM) ); } fprintf(f,"Block HiggsBoundsInputHiggsCouplingsFermions\n"); fprintf(f,"# Effective coupling normalised to SM one and squared\n"); fprintf(f," %12.4E %12.4E 3 25 5 5 # higgs-b-b \n" ,1.,0.); fprintf(f," %12.4E %12.4E 3 25 6 6 # higgs-top-top \n",1.,0.); fprintf(f," %12.4E %12.4E 3 25 15 15 # higgs-tau-tau \n",1.,0.); assignValW("Q",Q); calcMainFunc(); fclose(f); if(nHch) *nHch=1; return 1; }
int HBblocks(char * fname) { FILE * f=fopen(fname,"w"); double tb,sb,cb,Q; if(!f) return 1; Q=findValW("Q"); fprintf(f,"Block Mass\n 25 %E # Higgs Mass\n\n",findValW("Mh")); slhaDecayPrint("h",f); slhaDecayPrint("t",f); slhaDecayPrint("~H+",f); // MbSM=findValW("Mb"); fprintf(f,"Block HiggsBoundsInputHiggsCouplingsBosons\n"); fprintf(f,"# Effective coupling normalised to SM one and squared\n"); fprintf(f,"# For (*) normalized on Sin(2*W)\n"); fprintf(f," %12.4E 3 25 24 24 # higgs-W-W \n", 1. ); fprintf(f," %12.4E 3 25 23 23 # higgs-Z-Z \n", 1. ); fprintf(f," %12.4E 3 25 25 23 # higgs-higgs-Z \n", 0. ); { assignVal("Q",pMass("h")); calcMainFunc(); fprintf(f," %12.4E 3 25 21 21 # higgs-gluon-gluon\n", 1. ); fprintf(f," %12.4E 3 25 22 22 # higgs-gamma-gamma\n", SQR(findValW("LAAh")/findValW("LAAhSM")) ); } fprintf(f,"Block HiggsBoundsInputHiggsCouplingsFermions\n"); fprintf(f,"# Effective coupling normalised to SM one and squared\n"); fprintf(f," %12.4E %12.4E 3 25 5 5 # higgs-b-b \n" ,1.,0.); fprintf(f," %12.4E %12.4E 3 25 6 6 # higgs-top-top \n",1.,0.); fprintf(f," %12.4E %12.4E 3 25 15 15 # higgs-tau-tau \n",1.,0.); assignValW("Q",Q); calcMainFunc(); fclose(f); return 0; }
void assignvalw_(char* f_name, double * val, int len) { char buff[20]; fName2c(f_name,buff,len); assignValW(buff, *val); }
int readlesh_(char *f_name,int len) { FILE *f; char buff[100], name[20]; int n1,n2,i,err=0; double val; char fname[100]; char Zf[3][3]={"Zb","Zt","Zl"}; int MG1ok=0, MG2ok=0, AmOK=0; fName2c(f_name,fname,len); f=fopen(fname,"r"); if(f==NULL) return -2; for(;;) { if(fscanf(f,"%s", buff)== EOF) break; if(buff[0]=='#') { fscanf(f,"%*[^\n]\n"); continue;} for(i=0;buff[i];i++) buff[i]=toupper(buff[i]); if(strcmp(buff,"BLOCK")==0) { char rest[200]; char *c; fscanf(f,"%s",buff); if(fscanf(f,"%[^\n]",rest)) { c=strchr(rest,'#'); if(c) c[0]=0; c=strchr(rest,'='); if(c && 1==sscanf(c+1,"%lf",&val))assignValW("QSUSY",val); } fscanf(f,"%*c"); for(i=0;buff[i];i++) buff[i]=toupper(buff[i]); if(strcmp(buff,"MODSEL")==0) { for(;nfscanf(f,&n1,NULL,&val)==2;) if(n1==1) assignValW("model",val); } else if(strcmp(buff,"SMINPUTS")==0) { for(;nfscanf(f,&n1,NULL,&val)==2;) { switch(n1) { case 1 : assignValW("alfEMZ", 1/val); break; case 2 : assignValW("GF",val); break; case 3 : assignValW("alfSMZ", val); break; case 4 : assignValW("MZ", val); break; case 5 : assignValW("MbMb",val); break; case 6 : assignValW("Mtp",val); break; case 7 : assignValW("Ml",val); break; } } } else if(strcmp(buff,"MINPAR")==0) { int model=findValW("model")+0.1; while(2==nfscanf(f,&n1,NULL,&val)) switch(model) { case 0: if(n1==3) assignValW("tb",val); break; case 1: switch(n1) { case 1: assignValW("M0",val); assignValW("gMHu",val); assignValW("gMHd",val); assignValW("gMl2",val); assignValW("gMl3",val); assignValW("gMr2",val); assignValW("gMr3",val); assignValW("gMq2",val); assignValW("gMq3",val); assignValW("gMu2",val); assignValW("gMd2",val); assignValW("gMu3",val); assignValW("gMd3",val); break; case 2: assignValW("Mhlf",val); assignValW("gMG1",val); assignValW("gMG2",val); assignValW("gMG3",val); break; case 3: assignValW("tb",val); break; case 4: assignValW("sgn",val); break; case 5: assignValW("A0", val); assignValW("gAl",val); assignValW("gAt",val); assignValW("gAb",val); break; } break; case 2: switch(n1) { case 1: assignValW("Lambda",val); break; case 2: assignValW("Mmess",val); break; case 3: assignValW("tb",val); break; case 4: assignValW("sgn",val); break; case 5: assignValW("N5",val); assignValW("N5_1",val); assignValW("N5_2",val); assignValW("N5_3",val); break; case 6: assignValW("Cgrav",val); break; } break; case 3: switch(n1) { case 1: assignValW("M0",val); break; case 2: assignValW("M32",val); break; case 3: assignValW("tb",val); break; case 4: assignValW("sgn",val); break; } break; } } else if(strcmp(buff,"EXTPAR")==0) while(2==nfscanf(f,&n1,NULL,&val)) switch(n1) { case 1 : assignValW("gMG1" , val); break; case 2 : assignValW("gMG2" , val); break; case 3 : assignValW("gMG3" , val); break; case 11 : assignValW("gAt" , val); break; case 12 : assignValW("gAb" , val); break; case 13 : assignValW("gAl" , val); break; case 21 : if(val>0) assignValW("gMHd",sqrt(val)); else assignValW("gMHd",-sqrt(-val)); break; case 22 : if(val>0)assignValW("gMHu", sqrt(val)); else assignValW("gMHu", -sqrt(-val));break; case 23 : assignValW("mu", val); break; case 26 : assignValW("MH3", val); break; case 31 : assignValW("gMl1" , val); break; case 32 : assignValW("gMl2" , val); break; case 33 : assignValW("gMl3" , val); break; case 34 : assignValW("gMr1" , val); break; case 35 : assignValW("gMr2" , val); break; case 36 : assignValW("gMr3" , val); break; case 41 : assignValW("gMq1" , val); break; case 42 : assignValW("gMq2" , val); break; case 43 : assignValW("gMq3" , val); break; case 44 : assignValW("gMu1" , val); break; case 45 : assignValW("gMu2" , val); break; case 46 : assignValW("gMu3" , val); break; case 47 : assignValW("gMd1" , val); break; case 48 : assignValW("gMd2" , val); break; case 49 : assignValW("gMd3" , val); break; case 51 : assignValW("N5_1" , val); break; case 52 : assignValW("N5_2" , val); break; case 53 : assignValW("N5_3" , val); break; } } } fclose(f); return err; }
int main(int argc,char** argv) { int err; char cdmName[10]; int spin2, charge3,cdim; // sysTimeLim=1000; ForceUG=0; /* to Force Unitary Gauge assign 1 */ // nPROCSS=0; /* to switch off multiprocessor calculations */ /* if you would like to work with superIso setenv("superIso","./superiso_v3.1",1); */ #ifdef SUGRA { double m0,mhf,a0,tb; double gMG1, gMG2, gMG3, gAl, gAt, gAb, sgn, gMHu, gMHd, gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3; printf("\n========= mSUGRA scenario =====\n"); PRINTRGE(RGE); if(argc<5) { printf(" This program needs 4 parameters:\n" " m0 common scalar mass at GUT scale\n" " mhf common gaugino mass at GUT scale\n" " a0 trilinear soft breaking parameter at GUT scale\n" " tb tan(beta) \n"); printf(" Auxiliary parameters are:\n" " sgn +/-1, sign of Higgsino mass term (default 1)\n" " Mtp top quark pole mass\n" " MbMb Mb(Mb) scale independent b-quark mass\n" " alfSMZ strong coupling at MZ\n"); /* printf("Example: ./main 70 250 -300 10\n"); */ printf("Example: ./main 120 500 -350 10 1 173.1 \n"); exit(1); } else { double Mtp,MbMb,alfSMZ; sscanf(argv[1],"%lf",&m0); sscanf(argv[2],"%lf",&mhf); sscanf(argv[3],"%lf",&a0); sscanf(argv[4],"%lf",&tb); if(argc>5)sscanf(argv[5],"%lf",&sgn); else sgn=1; if(argc>6){ sscanf(argv[6],"%lf",&Mtp); assignValW("Mtp",Mtp); } if(argc>7){ sscanf(argv[7],"%lf",&MbMb); assignValW("MbMb",MbMb); } if(argc>8){ sscanf(argv[8],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);} } /*==== simulation of mSUGRA =====*/ gMG1=mhf, gMG2=mhf,gMG3=mhf; gAl=a0, gAt=a0, gAb=a0; gMHu=m0, gMHd=m0; gMl2=m0, gMl3=m0, gMr2=m0, gMr3=m0; gMq2=m0, gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0; err= SUGRAMODEL(RGE) (tb, gMG1, gMG2, gMG3, gAl, gAt, gAb, sgn, gMHu, gMHd, gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3); } #elif defined(SUGRANUH) { double m0,mhf,a0,tb; double gMG1, gMG2, gMG3, gAl, gAt, gAb, gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3,mu,MA; printf("\n========= mSUGRA non-universal Higgs scenario =====\n"); PRINTRGE(RGE); if(argc<7) { printf(" This program needs 6 parameters:\n" " m0 common scalar mass at GUT scale\n" " mhf common gaugino mass at GUT scale\n" " a0 trilinear soft breaking parameter at GUT scale\n" " tb tan(beta) \n" " mu mu(EWSB)\n" " MA mass of pseudoscalar Higgs\n"); printf(" Auxiliary parameters are:\n" " Mtp top quark pole mass\n" " MbMb Mb(Mb) scale independent b-quark mass\n" " alfSMZ strong coupling at MZ\n"); /* printf("Example: ./main 70 250 -300 10\n"); */ printf("Example: ./main 120 500 -350 10 680 760 \n"); exit(1); } else { double Mtp,MbMb,alfSMZ; sscanf(argv[1],"%lf",&m0); sscanf(argv[2],"%lf",&mhf); sscanf(argv[3],"%lf",&a0); sscanf(argv[4],"%lf",&tb); sscanf(argv[5],"%lf",&mu); sscanf(argv[6],"%lf",&MA); if(argc>7){ sscanf(argv[7],"%lf",&Mtp); assignValW("Mtp",Mtp); } if(argc>8){ sscanf(argv[8],"%lf",&MbMb); assignValW("MbMb",MbMb); } if(argc>9){ sscanf(argv[9],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);} } /*==== simulation of mSUGRA =====*/ gMG1=mhf, gMG2=mhf,gMG3=mhf; gAl=a0, gAt=a0, gAb=a0; gMl2=m0, gMl3=m0, gMr2=m0, gMr3=m0; gMq2=m0, gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0; err= SUGRANUHMODEL(RGE) (tb,gMG1,gMG2,gMG3,gAl,gAt,gAb,gMl2,gMl3,gMr2,gMr3,gMq2,gMq3,gMu2,gMu3,gMd2,gMd3,mu,MA); } #elif defined(AMSB) { double m0,m32,sgn,tb; printf("\n========= AMSB scenario =====\n"); PRINTRGE(RGE); if(argc<4) { printf(" This program needs 3 parameters:\n" " m0 common scalar mass at GUT scale\n" " m3/2 gravitino mass\n" " tb tan(beta) \n"); printf(" Auxiliary parameters are:\n" " sgn +/-1, sign of Higgsino mass term (default 1)\n" " Mtp top quark pole mass\n" " MbMb Mb(Mb) scale independent b-quark mass\n" " alfSMZ strong coupling at MZ\n"); printf("Example: ./main 450 60000 10\n"); exit(1); } else { double Mtp,MbMb,alfSMZ; sscanf(argv[1],"%lf",&m0); sscanf(argv[2],"%lf",&m32); sscanf(argv[3],"%lf",&tb); if(argc>4)sscanf(argv[4],"%lf",&sgn); else sgn=1; if(argc>5){ sscanf(argv[5],"%lf",&Mtp); assignValW("Mtp",Mtp); } if(argc>6){ sscanf(argv[6],"%lf",&MbMb); assignValW("MbMb",MbMb); } if(argc>7){ sscanf(argv[7],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);} } err= AMSBMODEL(RGE)(m0,m32,tb,sgn); } #elif defined(EWSB) { printf("\n========= EWSB scale input =========\n"); PRINTRGE(RGE); if(argc <2) { printf("The program needs one argument:the name of file with MSSM parameters.\n" "Example: ./main mssm1.par \n"); exit(1); } printf("Initial file \"%s\"\n",argv[1]); err=readVarMSSM(argv[1]); if(err==-1) { printf("Can not open the file\n"); exit(2);} else if(err>0) { printf("Wrong file contents at line %d\n",err);exit(3);} err=EWSBMODEL(RGE)(); } #else { printf("\n========= SLHA file input =========\n"); if(argc <2) { printf("The program needs one argument:the name of SLHA input file.\n" "Example: ./main suspect2_lha.out \n"); exit(1); } printf("Initial file \"%s\"\n",argv[1]); err=lesHinput(argv[1]); if(err) exit(2); } #endif if(err==-1) { printf("Can not open the file\n"); exit(2);} else if(err>0) { printf("Wrong file contents at line %d\n",err);exit(3);} { int nw; printf("Warnings from spectrum calculator:\n"); nw=slhaWarnings(stdout); if(nw==0) printf(" .....none\n"); } if(err) exit(1); err=sortOddParticles(cdmName); if(err) { printf("Can't calculate %s\n",cdmName); return 1;} qNumbers(cdmName,&spin2, &charge3, &cdim); printf("\nDark matter candidate is '%s' with spin=%d/2 mass=%.2E\n", cdmName, spin2, Mcdm); if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);} if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);} if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); else o1Contents(stdout); #ifdef MASSES_INFO { printf("\n=== MASSES OF HIGGS AND SUSY PARTICLES: ===\n"); printHiggs(stdout); printMasses(stdout,1); } #endif #ifdef CONSTRAINTS { double SMbsg,dmunu; printf("\n\n==== Physical Constraints: =====\n"); printf("deltartho=%.2E\n",deltarho()); printf("gmuon=%.2E\n", gmuon()); printf("bsgnlo=%.2E ", bsgnlo(&SMbsg)); printf("( SM %.2E )\n",SMbsg); printf("bsmumu=%.2E\n", bsmumu()); printf("btaunu=%.2E\n", btaunu()); printf("dtaunu=%.2E ", dtaunu(&dmunu)); printf("dmunu=%.2E\n", dmunu); printf("Rl23=%.3E\n", Rl23()); if(masslimits()==0) printf("MassLimits OK\n"); } #endif #ifdef HIGGSBOUNDS if(access(HIGGSBOUNDS "/HiggsBounds",X_OK )) system( "cd " HIGGSBOUNDS "; ./configure; make "); slhaWrite("HB.in"); HBblocks("HB.in"); system(HIGGSBOUNDS "/HiggsBounds LandH SLHA 3 1 HB.in HB.out > hb.stdout"); slhaRead("HB.out",1+4); printf("HB result= %.0E obsratio=%.2E\n",slhaValFormat("HiggsBoundsResults",0.,"1 2 %lf"), slhaValFormat("HiggsBoundsResults",0.,"1 3 %lf" ) ); { char hbInfo[100]; if(0==slhaSTRFormat("HiggsBoundsResults","1 5 ||%[^|]||",hbInfo)) printf("Channel: %s\n",hbInfo); } #endif #ifdef HIGGSSIGNALS #define DataSet " latestresults " //#define Method " peak " //#define Method " mass " #define Method " both " #define PDF " 2 " // Gaussian //#define PDF " 1 " // box //#define PDF " 3 " // box+Gaussia #define dMh " 2 " printf("HiggsSignals:\n"); if(access(HIGGSSIGNALS "/HiggsSignals",X_OK )) system( "cd " HIGGSSIGNALS "; ./configure; make "); system("rm -f HS.in HS.out"); slhaWrite("HS.in"); HBblocks("HS.in"); system("echo 'BLOCK DMASS\n 25 " dMh " '>> HS.in"); system(HIGGSSIGNALS "/HiggsSignals" DataSet Method PDF " SLHA 3 1 HS.in > hs.stdout"); system("grep -A 10000 HiggsSignalsResults HS.in > HS.out"); slhaRead("HS.out",1+4); printf(" Number of observables %.0f\n",slhaVal("HiggsSignalsResults",0.,1,7)); printf(" total chi^2= %.1E\n",slhaVal("HiggsSignalsResults",0.,1,12)); printf(" HS p-value = %.1E\n", slhaVal("HiggsSignalsResults",0.,1,13)); #undef dMh #undef PDF #undef Method #undef DataSet #endif #ifdef LILITH if(LiLithF("Lilith_in.xml")) { double like; int exp_ndf; system("python " LILITH "/run_lilith.py Lilith_in.xml -s -r Lilith_out.slha"); slhaRead("Lilith_out.slha", 1); like = slhaVal("LilithResults",0.,1,0); exp_ndf = slhaVal("LilithResults",0.,1,1); printf("LILITH: -2*log(L): %f; exp ndf: %d \n", like,exp_ndf ); } else printf("LILITH: there is no Higgs candidate\n"); #endif #ifdef SMODELS { int res; smodels(4000.,5, 0.1, "smodels.in",0); system("make -C " SMODELS); system(SMODELS "/runTools.py xseccomputer -p -N -O -f smodels.in"); system(SMODELS "/runSModelS.py -f smodels.in -s smodels.res -particles ./ > smodels.out "); slhaRead("smodels.res", 1); res=slhaVal("SModelS_Exclusion",0.,2,0,0); switch(res) { case -1: printf("SMODELS: no channels for testing\n");break; case 0: printf("SMODELS: not excluded\n");break; case 1: printf("SMODELS: excluded\n");break; } } #endif #ifdef OMEGA { int fast=1; double Beps=1.E-5, cut=0.01; double Omega,Xf; // to exclude processes with virtual W/Z in DM annihilation VZdecay=0; VWdecay=0; cleanDecayTable(); // to include processes with virtual W/Z also in co-annihilation // VZdecay=2; VWdecay=2; cleanDecayTable(); printf("\n==== Calculation of relic density =====\n"); sortOddParticles(cdmName); Omega=darkOmega(&Xf,fast,Beps); printf("Xf=%.2e Omega=%.2e\n",Xf,Omega); // printChannels(Xf,cut,Beps,1,stdout); // direct access for annihilation channels /* if(omegaCh){ int i; for(i=0; omegaCh[i].weight>0 ;i++) printf(" %.2E %s %s -> %s %s\n", omegaCh[i].weight, omegaCh[i].prtcl[0], omegaCh[i].prtcl[1],omegaCh[i].prtcl[2],omegaCh[i].prtcl[3]); } */ // to restore default switches VZdecay=1; VWdecay=1; cleanDecayTable(); } #endif VZdecay=0; VWdecay=0; cleanDecayTable(); #ifdef INDIRECT_DETECTION { int err,i; double Emin=1,SMmev=320;/*Energy cut in GeV and solar potential in MV*/ double sigmaV; char txt[100]; double SpA[NZ],SpE[NZ],SpP[NZ]; double FluxA[NZ],FluxE[NZ],FluxP[NZ]; double SpNe[NZ],SpNm[NZ],SpNl[NZ]; // double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL; double Etest=Mcdm/2; /* default DarkSUSY parameters */ /* K_dif=0.036; L_dif=4; Delta_dif=0.6; Vc_dif=10; Rdisk=30; SMmev=320; */ printf("\n==== Indirect detection =======\n"); sigmaV=calcSpectrum(1+2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err); /* Returns sigma*v in cm^3/sec. SpX - calculated spectra of annihilation. Use SpectdNdE(E, SpX) to calculate energy distribution in 1/GeV units. First parameter 1-includes W/Z polarization 2-includes gammas for 2->2+gamma 4-print cross sections */ if(SpA) { double fi=0.1,dfi=M_PI/180.; /* angle of sight and 1/2 of cone angle in [rad] */ /* dfi corresponds to solid angle 1.E-3sr */ printf("\nPhoton flux for angle of sight f=%.2f[rad]\n" "and spherical region described by cone with angle %.4f[rad]\n",fi,2*dfi); gammaFluxTab(fi,dfi, sigmaV, SpA, FluxA); printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest); #ifdef SHOWPLOTS sprintf(txt,"Photon flux for angle of sight %.2f[rad] and cone angle %.2f[rad]",fi,2*dfi); displaySpectrum(txt,Emin,Mcdm,FluxA); #endif printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest); } if(SpE) { posiFluxTab(Emin, sigmaV, SpE, FluxE); if(SMmev>0) solarModulation(SMmev,0.0005,FluxE,FluxE); #ifdef SHOWPLOTS displaySpectrum("positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,FluxE); #endif printf("\nPositron flux = %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n", SpectdNdE(Etest, FluxE), Etest); } if(SpP) { pbarFluxTab(Emin, sigmaV, SpP, FluxP); if(SMmev>0) solarModulation(SMmev,1,FluxP,FluxP); #ifdef SHOWPLOTS displaySpectrum("antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,FluxP); #endif printf("\nAntiproton flux = %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n", SpectdNdE(Etest, FluxP), Etest); } } #endif #ifdef LoopGAMMA { double vcs_gz,vcs_gg; double fi=0.,dfi=M_PI/180.; /* fi angle of sight[rad], dfi 1/2 of cone angle in [rad] */ /* dfi corresponds to solid angle pi*(1-cos(dfi)) [sr] */ if(loopGamma(&vcs_gz,&vcs_gg)==0) { printf("\nGamma ray lines:\n"); printf("E=%.2E[GeV] vcs(Z,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm-91.19*91.19/4/Mcdm,vcs_gz, gammaFlux(fi,dfi,vcs_gz)); printf("E=%.2E[GeV] vcs(A,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm,vcs_gg, 2*gammaFlux(fi,dfi,vcs_gg)); } } #endif #ifdef RESET_FORMFACTORS { /* The user has approach to form factors which specifies quark contents of proton and nucleon via global parametes like <Type>FF<Nucleon><q> where <Type> can be "Scalar", "pVector", and "Sigma"; <Nucleon> "P" or "N" for proton and neutron <q> "d", "u","s" calcScalarQuarkFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigmaS[MeV]) calculates and rewrites Scalar form factors */ printf("protonFF (default) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs); printf("neutronFF(default) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs); calcScalarQuarkFF(0.46,27.5,34.,42.); // To restore default form factors of version 2 call // calcScalarQuarkFF(0.553,18.9,55.,243.5); printf("protonFF (new) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs); printf("neutronFF(new) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs); } #endif #ifdef CDM_NUCLEON { double pA0[2],pA5[2],nA0[2],nA5[2]; double Nmass=0.939; /*nucleon mass*/ double SCcoeff; printf("\n==== Calculation of CDM-nucleons amplitudes =====\n"); #ifdef TEST_Direct_Detection printf(" TREE LEVEL\n"); MSSMDDtest(0, pA0,pA5,nA0,nA5); printf("Analitic formulae\n"); printf(" proton: SI %.3E SD %.3E\n",pA0[0],pA5[0]); printf(" neutron: SI %.3E SD %.3E\n",nA0[0],nA5[0]); nucleonAmplitudes(CDM1,NULL, pA0,pA5,nA0,nA5); printf("CDM-nucleon micrOMEGAs amplitudes:\n"); printf("proton: SI %.3E SD %.3E\n",pA0[0],pA5[0]); printf("neutron: SI %.3E SD %.3E\n",nA0[0],nA5[0]); printf(" BOX DIAGRAMS\n"); MSSMDDtest(1, pA0,pA5,nA0,nA5); printf("Analitic formulae\n"); printf(" proton: SI %.3E SD %.3E\n",pA0[0],pA5[0]); printf(" neutron: SI %.3E SD %.3E\n",nA0[0],nA5[0]); #endif nucleonAmplitudes(CDM1,pA0,pA5,nA0,nA5); printf("CDM-nucleon micrOMEGAs amplitudes:\n"); printf("proton: SI %.3E SD %.3E\n",pA0[0],pA5[0]); printf("neutron: SI %.3E SD %.3E\n",nA0[0],nA5[0]); SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.); printf("\n==== CDM-nucleon cross sections[pb] ====\n"); printf(" proton SI %.3E SD %.3E\n",SCcoeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]); printf(" neutron SI %.3E SD %.3E\n",SCcoeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]); } #endif #ifdef CDM_NUCLEUS { double dNdE[300]; double nEvents; printf("\n======== Direct Detection ========\n"); nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,SxxGe73,dNdE); printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199); #endif nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,SxxXe131,dNdE); printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199); #endif nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,SxxNa23,dNdE); printf("23Na: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199); #endif nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,SxxI127,dNdE); printf("I127: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199); #endif } #endif #ifdef NEUTRINO { double nu[NZ], nu_bar[NZ],mu[NZ]; int forSun=1; double Emin=1; WIMPSIM=0; printf("\n===============Neutrino Telescope======= for "); if(forSun) printf("Sun\n"); else printf("Earth\n"); err=neutrinoFlux(Maxwell,forSun, nu,nu_bar); #ifdef SHOWPLOTS displaySpectra("neutrino fluxes [1/Year/km^2/GeV]",Emin,Mcdm,2,nu,"nu",nu_bar,"nu_bar"); #endif printf(" E>%.1E GeV neutrino/anti-neutrin fluxes %.2E/%.2E [1/Year/km^2]\n",Emin, spectrInfo(Emin,nu,NULL), spectrInfo(Emin,nu_bar,NULL)); // ICE CUBE if(forSun)printf("IceCube22 exclusion confidence level = %.2E%%\n", 100*exLevIC22(nu,nu_bar,NULL)); /* Upward events */ muonUpward(nu,nu_bar, mu); #ifdef SHOWPLOTS displaySpectrum("Upward muons[1/Year/km^2/GeV]",Emin,Mcdm/2,mu); #endif printf(" E>%.1E GeV Upward muon flux %.2E [1/Year/km^2]\n",Emin,spectrInfo(Emin,mu,NULL)); /* Contained events */ muonContained(nu,nu_bar,1., mu); #ifdef SHOWPLOTS displaySpectrum("Contained muons[1/Year/km^3/GeV]",Emin,Mcdm,mu); #endif printf(" E>%.1E GeV Contained muon flux %.2E [1/Year/km^3]\n",Emin,spectrInfo(Emin,mu,NULL)); } #endif #ifdef DECAYS { txtList L; double width,br; char * pname; printf("\n================= Decays ==============\n"); pname = "h"; width=pWidth(pname,&L); printf("\n%s : total width=%.2E \n and Branchings:\n",pname,width); printTxtList(L,stdout); pname = "~o2"; width=pWidth(pname,&L); printf("\n%s : total width=%.2E \n and Branchings:\n",pname,width); printTxtList(L,stdout); } #endif #ifdef CROSS_SECTIONS { double cs, Pcm=4000, Qren,Qfact=pMass("~o2"),pTmin=0; int nf=3; printf("pp collision at %.2E GeV\n",Pcm); Qren=Qfact; cs=hCollider(Pcm,1,nf,Qren, Qfact, "~o1","~o2",pTmin,1); printf("cs(pp->~o1,~o2)=%.2E[pb]\n",cs); } #endif #ifdef CLEAN killPlots(); system("rm -f suspect2_lha.in suspect2_lha.out suspect2.out Key.dat nngg.out output.flha "); system("rm -f HB.in HB.out HS.in HS.out hb.stdout hs.stdout debug_channels.txt debug_predratio.txt"); system("rm -f Lilith_in.xml Lilith_out.slha smodels.* summary.* particles.py"); #endif return 0; }
int main(int argc,char** argv) { int err; char cdmName[10]; int spin2, charge3,cdim; delFiles=0; /* switch to save/delete RGE input/output */ ForceUG=0; /* to Force Unitary Gauge assign 1 */ #ifdef SUGRA { double m0,mhf,a0,tb; double gMG1, gMG2, gMG3, gAl, gAt, gAb, sgn, gMHu, gMHd, gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3; printf("\n========= mSUGRA scenario =====\n"); PRINTRGE(RGE); if(argc<5) { printf(" This program needs 4 parameters:\n" " m0 common scalar mass at GUT scale\n" " mhf common gaugino mass at GUT scale\n" " a0 trilinear soft breaking parameter at GUT scale\n" " tb tan(beta) \n"); printf(" Auxiliary parameters are:\n" " sgn +/-1, sign of Higgsino mass term (default 1)\n" " Mtp top quark pole mass\n" " MbMb Mb(Mb) scale independent b-quark mass\n" " alfSMZ strong coupling at MZ\n"); /* printf("Example: ./main 70 250 -300 10\n"); */ printf("Example: ./main 120 500 -350 10 1 173.1 \n"); exit(1); } else { double Mtp,MbMb,alfSMZ; sscanf(argv[1],"%lf",&m0); sscanf(argv[2],"%lf",&mhf); sscanf(argv[3],"%lf",&a0); sscanf(argv[4],"%lf",&tb); if(argc>5)sscanf(argv[5],"%lf",&sgn); else sgn=1; if(argc>6){ sscanf(argv[6],"%lf",&Mtp); assignValW("Mtp",Mtp); } if(argc>7){ sscanf(argv[7],"%lf",&MbMb); assignValW("MbMb",MbMb); } if(argc>8){ sscanf(argv[8],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);} } /*==== simulation of mSUGRA =====*/ gMG1=mhf, gMG2=mhf,gMG3=mhf; gAl=a0, gAt=a0, gAb=a0; gMHu=m0, gMHd=m0; gMl2=m0, gMl3=m0, gMr2=m0, gMr3=m0; gMq2=m0, gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0; err= SUGRAMODEL(RGE) (tb, gMG1, gMG2, gMG3, gAl, gAt, gAb, sgn, gMHu, gMHd, gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3); } #elif defined(AMSB) { double m0,m32,sgn,tb; printf("\n========= AMSB scenario =====\n"); PRINTRGE(RGE); if(argc<4) { printf(" This program needs 3 parameters:\n" " m0 common scalar mass at GUT scale\n" " m3/2 gravitino mass\n" " tb tan(beta) \n"); printf(" Auxiliary parameters are:\n" " sgn +/-1, sign of Higgsino mass term (default 1)\n" " Mtp top quark pole mass\n" " MbMb Mb(Mb) scale independent b-quark mass\n" " alfSMZ strong coupling at MZ\n"); printf("Example: ./main 450 60000 10\n"); exit(1); } else { double Mtp,MbMb,alfSMZ; sscanf(argv[1],"%lf",&m0); sscanf(argv[2],"%lf",&m32); sscanf(argv[3],"%lf",&tb); if(argc>4)sscanf(argv[4],"%lf",&sgn); else sgn=1; if(argc>5){ sscanf(argv[5],"%lf",&Mtp); assignValW("Mtp",Mtp); } if(argc>6){ sscanf(argv[6],"%lf",&MbMb); assignValW("MbMb",MbMb); } if(argc>7){ sscanf(argv[7],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);} } err= AMSBMODEL(RGE)(m0,m32,tb,sgn); } #elif defined(EWSB) { printf("\n========= EWSB scale input =========\n"); PRINTRGE(RGE); if(argc <2) { printf("The program needs one argument:the name of file with MSSM parameters.\n" "Example: ./main mssm1.par \n"); exit(1); } printf("Initial file \"%s\"\n",argv[1]); err=readVarMSSM(argv[1]); if(err==-1) { printf("Can not open the file\n"); exit(2);} else if(err>0) { printf("Wrong file contents at line %d\n",err);exit(3);} err=EWSBMODEL(RGE)(); } #else { printf("\n========= SLHA file input =========\n"); if(argc <2) { printf("The program needs one argument:the name of SLHA input file.\n" "Example: ./main suspect2_lha.out \n"); exit(1); } printf("Initial file \"%s\"\n",argv[1]); err=lesHinput(argv[1]); if(err) exit(2); } #endif { int nw; printf("Warnings from spectrum calculator:\n"); nw=slhaWarnings(stdout); if(nw==0) printf(" .....none\n"); } if(err) exit(1); err=sortOddParticles(cdmName); if(err) { printf("Can't calculate %s\n",cdmName); return 1;} qNumbers(cdmName,&spin2, &charge3, &cdim); printf("\nDark matter candidate is '%s' with spin=%d/2 mass=%.2E\n", cdmName, spin2, Mcdm); if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);} if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);} if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); else o1Contents(stdout); #ifdef MASSES_INFO { printf("\n=== MASSES OF HIGGS AND SUSY PARTICLES: ===\n"); printHiggs(stdout); printMasses(stdout,1); } #endif #ifdef CONSTRAINTS { printf("\n\n==== Physical Constraints: =====\n"); printf("deltartho=%.2E\n",deltarho()); printf("gmuon=%.2E\n", gmuon()); printf("bsgnlo=%.2E\n", bsgnlo()); printf("bsmumu=%.2E\n", bsmumu()); printf("btaunu=%.2E\n", btaunu()); if(masslimits()==0) printf("MassLimits OK\n"); } #endif #ifdef OMEGA { int fast=1; double Beps=1.E-5, cut=0.01; double Omega,Xf; printf("\n==== Calculation of relic density =====\n"); Omega=darkOmega(&Xf,fast,Beps); printf("Xf=%.2e Omega=%.2e\n",Xf,Omega); printChannels(Xf,cut,Beps,1,stdout); } #endif #ifdef INDIRECT_DETECTION { int err,i; double Emin=1,SMmev=320;/*Energy cut in GeV and solar potential in MV*/ double sigmaV; double vcs_gz,vcs_gg; char txt[100]; double SpA[NZ],SpE[NZ],SpP[NZ]; double FluxA[NZ],FluxE[NZ],FluxP[NZ]; double SpNe[NZ],SpNm[NZ],SpNl[NZ]; // double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL; double Etest=Mcdm/2; /* default DarkSUSY parameters */ /* K_dif=0.036; L_dif=4; Delta_dif=0.6; Vc_dif=10; Rdisk=30; SMmev=320; */ printf("\n==== Indirect detection =======\n"); sigmaV=calcSpectrum( 1+2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err); /* Returns sigma*v in cm^3/sec. SpX - calculated spectra of annihilation. Use SpectdNdE(E, SpX) to calculate energy distribution in 1/GeV units. First parameter 1-includes W/Z polarization 2-includes gammas for 2->2+gamma 4-print cross sections */ printf("sigmav=%.2E[cm^3/s]\n",sigmaV); if(SpA) { double fi=0.,dfi=M_PI/180.; /* angle of sight and 1/2 of cone angle in [rad] */ /* dfi corresponds to solid angle 1.E-3sr */ printf("Photon flux for angle of sight f=%.2f[rad]\n" "and spherical region described by cone with angle %.4f[rad]\n",fi,2*dfi); gammaFluxTab(fi,dfi, sigmaV, SpA, FluxA); #ifdef SHOWPLOTS sprintf(txt,"Photon flux for angle of sight %.2f[rad] and cone angle %.2f[rad]",fi,2*dfi); displaySpectrum(FluxA,txt,Emin,Mcdm,1); #endif printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest); if(loopGamma(&vcs_gz,&vcs_gg)==0) { printf("Gamma ray lines:\n"); printf("E=%.2E[GeV] vcs(Z,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm-91.19*91.19/4/Mcdm,vcs_gz, gammaFlux(fi,dfi,vcs_gz)); printf("E=%.2E[GeV] vcs(A,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm,vcs_gg, 2*gammaFlux(fi,dfi,vcs_gg)); } } if(SpE) { posiFluxTab(Emin, sigmaV, SpE, FluxE); if(SMmev>0) solarModulation(SMmev,0.0005,FluxE,FluxE); #ifdef SHOWPLOTS displaySpectrum(SpE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1); #endif printf("Positron flux = %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n", SpectdNdE(Etest, FluxE), Etest); } if(SpP) { pbarFluxTab(Emin, sigmaV, SpP, FluxP); if(SMmev>0) solarModulation(SMmev,1,FluxP,FluxP); #ifdef SHOWPLOTS displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1); #endif printf("Antiproton flux = %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n", SpectdNdE(Etest, FluxP), Etest); } } #endif #ifdef RESET_FORMFACTORS { /* The user has approach to form factors which specifies quark contents of proton and nucleon via global parametes like <Type>FF<Nucleon><q> where <Type> can be "Scalar", "pVector", and "Sigma"; <Nucleon> "P" or "N" for proton and neutron <q> "d", "u","s" calcScalarFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigma0[MeV]) calculates and rewrites Scalar form factors */ printf("protonFF (default) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs); printf("neutronFF(default) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs); calcScalarFF(0.553,18.9,70.,35.); printf("protonFF (new) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs); printf("neutronFF(new) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs); /* Option to change parameters of DM velocity distribution */ SetfMaxwell(220.,600.); /* dN ~ exp(-v^2/arg1^2)*Theta(v-arg2) d^3v Earth velocity with respect to Galaxy defined by 'Vearth' parameter. All parameters are in [km/s] units. */ } #endif #ifdef CDM_NUCLEON { double pA0[2],pA5[2],nA0[2],nA5[2]; double Nmass=0.939; /*nucleon mass*/ double SCcoeff; printf("\n==== Calculation of CDM-nucleons amplitudes =====\n"); #ifdef TEST_Direct_Detection printf(" TREE LEVEL\n"); MSSMDDtest(0, pA0,pA5,nA0,nA5); printf("Analitic formulae\n"); printf("proton: SI %.3E SD %.3E\n",pA0[0],pA5[0]); printf("neutron: SI %.3E SD %.3E\n",nA0[0],nA5[0]); nucleonAmplitudes(NULL, pA0,pA5,nA0,nA5); printf("CDM-nucleon micrOMEGAs amplitudes:\n"); printf("proton: SI %.3E SD %.3E\n",pA0[0],pA5[0]); printf("neutron: SI %.3E SD %.3E\n",nA0[0],nA5[0]); printf(" BOX DIAGRAMS\n"); MSSMDDtest(1, pA0,pA5,nA0,nA5); printf("Analitic formulae\n"); printf("proton: SI %.3E SD %.3E\n",pA0[0],pA5[0]); printf("neutron: SI %.3E SD %.3E\n",nA0[0],nA5[0]); #endif nucleonAmplitudes(FeScLoop, pA0,pA5,nA0,nA5); printf("CDM-nucleon micrOMEGAs amplitudes:\n"); printf("proton: SI %.3E SD %.3E\n",pA0[0],pA5[0]); printf("neutron: SI %.3E SD %.3E\n",nA0[0],nA5[0]); SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.); printf("CDM-nucleon cross sections[pb]:\n"); printf(" proton SI %.3E SD %.3E\n",SCcoeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]); printf(" neutron SI %.3E SD %.3E\n",SCcoeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]); } #endif #ifdef CDM_NUCLEUS { double dNdE[300]; double nEvents; printf("\n======== Direct Detection ========\n"); nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,S00Ge73,S01Ge73,S11Ge73,FeScLoop,dNdE); printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199); #endif nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,S00Xe131,S01Xe131,S11Xe131,FeScLoop,dNdE); printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199); #endif nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,S00Na23,S01Na23,S11Na23,FeScLoop,dNdE); printf("23Na: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199); #endif nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,S00I127,S01I127,S11I127,FeScLoop,dNdE); printf("I127: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199); #endif } #endif #ifdef DECAYS { txtList L; int dim; double width,br; char * pname; pname = "h"; width=pWidth(pname,&L,&dim); printf("%s->%d*x : total width=%E \n and Branchings:\n",pname,dim,width); printTxtList(L,stdout); pname = "l"; width=pWidth(pname,&L,&dim); printf("%s->%d*x : total width=%E \n and Branchings:\n",pname,dim,width); printTxtList(L,stdout); printf("Br(e,Ne,nl)= %E\n",findBr(L,"e,Ne,nl")); pname = "~o2"; width=pWidth(pname,&L,&dim); printf("%s->%d*x : total width=%E \n and Branchings:\n",pname,dim,width); printTxtList(L,stdout); pname = "~g"; width=pWidth(pname,&L,&dim); printf("%s->%d*x : total width=%E \n and Branchings:\n",pname,dim,width); printTxtList(L,stdout); } #endif #ifdef CROSS_SECTIONS { double Pcm=500, cosmin=-0.99, cosmax=0.99, cs; numout* cc; printf("\n====== Calculation of cross section ====\n"); printf(" e^+, e^- annihilation\n"); Pcm=500.; Helicity[0]=0.5; /* helicity : spin projection on direction of motion */ Helicity[1]=-0.5; /* helicities ={ 0.5, -0.5} corresponds to vector state */ printf("Process e,E->2*x at Pcm=%.3E GeV\n",Pcm); cc=newProcess("e%,E%->2*x","eE_2x"); if(cc) { int ntot,l; char * name[4]; procInfo1(cc,&ntot,NULL,NULL); for(l=1;l<=ntot; l++) { int err; double cs; char txt[100]; procInfo2(cc,l,name,NULL); sprintf(txt,"%3s,%3s -> %3s %3s ",name[0],name[1],name[2],name[3]); cs= cs22(cc,l,Pcm,cosmin,cosmax,&err); if(err) printf("%-20.20s Error\n",txt); else if(cs) printf("%-20.20s %.2E [pb]\n",txt,cs); } } } #endif killPlots(); return 0; }
void FillVal(int mode) { double Q=0.; if(mode) { assignValW("MG1",slhaVal("EXTPAR", Q, 1, 1)); assignValW("MG2",slhaVal("EXTPAR", Q, 1, 2)); assignValW("MG3",slhaVal("EXTPAR", Q, 1, 3)); assignValW("At", slhaVal("EXTPAR", Q, 1, 11)); assignValW("Ab", slhaVal("EXTPAR", Q, 1, 12)); assignValW("Al", slhaVal("EXTPAR", Q, 1, 13)); assignValW("Ml2",slhaVal("EXTPAR", Q, 1, 32)); assignValW("Ml3",slhaVal("EXTPAR", Q, 1, 33)); assignValW("Mr2",slhaVal("EXTPAR", Q, 1, 35)); assignValW("Mr3",slhaVal("EXTPAR", Q, 1, 36)); assignValW("Mq2",slhaVal("EXTPAR", Q, 1, 42)); assignValW("Mq3",slhaVal("EXTPAR", Q, 1, 43)); assignValW("Mu2",slhaVal("EXTPAR", Q, 1, 45)); assignValW("Mu3",slhaVal("EXTPAR", Q, 1, 46)); assignValW("Md2",slhaVal("EXTPAR", Q, 1, 48)); assignValW("Md3",slhaVal("EXTPAR", Q, 1, 49)); assignValW("Mn2",slhaVal("EXTPAR", Q, 1, 58)); assignValW("Mnlr",slhaVal("EXTPAR", Q, 1,59)); assignValW("Alda",slhaVal("EXTPAR", Q, 1,63)); assignValW("mu", slhaVal("EXTPAR", Q, 1, 65)); assignValW("MZ2",slhaVal("EXTPAR", Q, 1,101)); assignValW("aZZ",slhaVal("EXTPAR", Q, 1,102)); assignValW("MK", slhaVal("EXTPAR", Q, 1,103)); assignValW("M1p",slhaVal("EXTPAR", Q, 1,104)); assignValW("tE6",slhaVal("EXTPAR", Q, 1,105)); } if(mode>1) { assignValW("alfSMZ",slhaVal("SMINPUTS",Q,1,3) ); assignValW("MbMb", slhaVal("SMINPUTS",Q,1,5) ); assignValW("Mtp", slhaVal("SMINPUTS",Q,1,6) ); assignValW("Ml", slhaVal("SMINPUTS",Q,1,7) ); } }
int main(int argc,char** argv) { int err; char cdmName[10]; int spin2, charge3,cdim; ForceUG=0; /* to Force Unitary Gauge assign 1 */ // sysTimeLim=1000; /* if you would like to work with superIso setenv("superIso","./superiso_v3.1",1); */ #ifdef SUGRA { double m0,mhf,a0,tb; double gMG1, gMG2, gMG3, gAl, gAt, gAb, sgn, gMHu, gMHd, gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3; printf("\n========= mSUGRA scenario =====\n"); PRINTRGE(RGE); if(argc<5) { printf(" This program needs 4 parameters:\n" " m0 common scalar mass at GUT scale\n" " mhf common gaugino mass at GUT scale\n" " a0 trilinear soft breaking parameter at GUT scale\n" " tb tan(beta) \n"); printf(" Auxiliary parameters are:\n" " sgn +/-1, sign of Higgsino mass term (default 1)\n" " Mtp top quark pole mass\n" " MbMb Mb(Mb) scale independent b-quark mass\n" " alfSMZ strong coupling at MZ\n"); /* printf("Example: ./main 70 250 -300 10\n"); */ printf("Example: ./main 120 500 -350 10 1 173.1 \n"); exit(1); } else { double Mtp,MbMb,alfSMZ; sscanf(argv[1],"%lf",&m0); sscanf(argv[2],"%lf",&mhf); sscanf(argv[3],"%lf",&a0); sscanf(argv[4],"%lf",&tb); if(argc>5)sscanf(argv[5],"%lf",&sgn); else sgn=1; if(argc>6){ sscanf(argv[6],"%lf",&Mtp); assignValW("Mtp",Mtp); } if(argc>7){ sscanf(argv[7],"%lf",&MbMb); assignValW("MbMb",MbMb); } if(argc>8){ sscanf(argv[8],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);} } /*==== simulation of mSUGRA =====*/ gMG1=mhf, gMG2=mhf,gMG3=mhf; gAl=a0, gAt=a0, gAb=a0; gMHu=m0, gMHd=m0; gMl2=m0, gMl3=m0, gMr2=m0, gMr3=m0; gMq2=m0, gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0; err= SUGRAMODEL(RGE) (tb, gMG1, gMG2, gMG3, gAl, gAt, gAb, sgn, gMHu, gMHd, gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3); } #elif defined(SUGRANUH) { double m0,mhf,a0,tb; double gMG1, gMG2, gMG3, gAl, gAt, gAb, gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3,mu,MA; printf("\n========= mSUGRA non-universal Higgs scenario =====\n"); PRINTRGE(RGE); if(argc<7) { printf(" This program needs 6 parameters:\n" " m0 common scalar mass at GUT scale\n" " mhf common gaugino mass at GUT scale\n" " a0 trilinear soft breaking parameter at GUT scale\n" " tb tan(beta) \n" " mu mu(EWSB)\n" " MA mass of pseudoscalar Higgs\n"); printf(" Auxiliary parameters are:\n" " Mtp top quark pole mass\n" " MbMb Mb(Mb) scale independent b-quark mass\n" " alfSMZ strong coupling at MZ\n"); /* printf("Example: ./main 70 250 -300 10\n"); */ printf("Example: ./main 120 500 -350 10 680 760 \n"); exit(1); } else { double Mtp,MbMb,alfSMZ; sscanf(argv[1],"%lf",&m0); sscanf(argv[2],"%lf",&mhf); sscanf(argv[3],"%lf",&a0); sscanf(argv[4],"%lf",&tb); sscanf(argv[5],"%lf",&mu); sscanf(argv[6],"%lf",&MA); if(argc>7){ sscanf(argv[7],"%lf",&Mtp); assignValW("Mtp",Mtp); } if(argc>8){ sscanf(argv[8],"%lf",&MbMb); assignValW("MbMb",MbMb); } if(argc>9){ sscanf(argv[9],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);} } /*==== simulation of mSUGRA =====*/ gMG1=mhf, gMG2=mhf,gMG3=mhf; gAl=a0, gAt=a0, gAb=a0; gMl2=m0, gMl3=m0, gMr2=m0, gMr3=m0; gMq2=m0, gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0; err= SUGRANUHMODEL(RGE) (tb,gMG1,gMG2,gMG3,gAl,gAt,gAb,gMl2,gMl3,gMr2,gMr3,gMq2,gMq3,gMu2,gMu3,gMd2,gMd3,mu,MA); } #elif defined(AMSB) { double m0,m32,sgn,tb; printf("\n========= AMSB scenario =====\n"); PRINTRGE(RGE); if(argc<4) { printf(" This program needs 3 parameters:\n" " m0 common scalar mass at GUT scale\n" " m3/2 gravitino mass\n" " tb tan(beta) \n"); printf(" Auxiliary parameters are:\n" " sgn +/-1, sign of Higgsino mass term (default 1)\n" " Mtp top quark pole mass\n" " MbMb Mb(Mb) scale independent b-quark mass\n" " alfSMZ strong coupling at MZ\n"); printf("Example: ./main 450 60000 10\n"); exit(1); } else { double Mtp,MbMb,alfSMZ; sscanf(argv[1],"%lf",&m0); sscanf(argv[2],"%lf",&m32); sscanf(argv[3],"%lf",&tb); if(argc>4)sscanf(argv[4],"%lf",&sgn); else sgn=1; if(argc>5){ sscanf(argv[5],"%lf",&Mtp); assignValW("Mtp",Mtp); } if(argc>6){ sscanf(argv[6],"%lf",&MbMb); assignValW("MbMb",MbMb); } if(argc>7){ sscanf(argv[7],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);} } err= AMSBMODEL(RGE)(m0,m32,tb,sgn); } #elif defined(EWSB) { printf("\n========= EWSB scale input =========\n"); PRINTRGE(RGE); if(argc <2) { printf("The program needs one argument:the name of file with MSSM parameters.\n" "Example: ./main mssm1.par \n"); exit(1); } printf("Initial file \"%s\"\n",argv[1]); err=readVarMSSM(argv[1]); if(err==-1) { printf("Can not open the file\n"); exit(2);} else if(err>0) { printf("Wrong file contents at line %d\n",err);exit(3);} err=EWSBMODEL(RGE)(); } #else { printf("\n========= SLHA file input =========\n"); if(argc <2) { printf("The program needs one argument:the name of SLHA input file.\n" "Example: ./main suspect2_lha.out \n"); exit(1); } printf("Initial file \"%s\"\n",argv[1]); err=lesHinput(argv[1]); if(err) exit(2); } #endif #ifdef OBTAIN_LSP if(err==-1) { printf("Can not open the file\n"); exit(2);} else if(err>0) { printf("Wrong file contents at line %d\n",err);exit(3);} { int nw; printf("Warnings from spectrum calculator:\n"); nw=slhaWarnings(stdout); if(nw==0) printf(" .....none\n"); } if(err) exit(1); err=sortOddParticles(cdmName); if(err) { printf("Can't calculate %s\n",cdmName); return 1;} qNumbers(cdmName,&spin2, &charge3, &cdim); printf("\nDark matter candidate is '%s' with spin=%d/2 mass=%.2E\n", cdmName, spin2, Mcdm); if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);} if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);} if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); else o1Contents(stdout); #endif #ifdef OBTAIN_CROSS_SECTION { int err,i; double Emin=1,SMmev=320;/*Energy cut in GeV and solar potential in MV*/ double sigmaV; double vcs_gz,vcs_gg; char txt[100]; double SpA[NZ],SpE[NZ],SpP[NZ]; double FluxA[NZ],FluxE[NZ],FluxP[NZ]; double SpNe[NZ],SpNm[NZ],SpNl[NZ]; // double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL; double Etest=Mcdm/2; /* default DarkSUSY parameters */ /* K_dif=0.036; L_dif=4; Delta_dif=0.6; Vc_dif=10; Rdisk=30; SMmev=320; */ printf("\n==== Indirect detection =======\n"); sigmaV=calcSpectrum( 2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err); /* Returns sigma*v in cm^3/sec. SpX - calculated spectra of annihilation. Use SpectdNdE(E, SpX) to calculate energy distribution in 1/GeV units. First parameter 1-includes W/Z polarization 2-includes gammas for 2->2+gamma 4-print cross sections */ printf("sigmav=%.2E[cm^3/s]\n",sigmaV); //sigma_v = Sigma_v(sigmaV); if(SpA) { double fi=0.,dfi=M_PI/180.; /* angle of sight and 1/2 of cone angle in [rad] */ /* dfi corresponds to solid angle 1.E-3sr */ printf("Photon flux for angle of sight f=%.2f[rad]\n" "and spherical region described by cone with angle %.4f[rad]\n",fi,2*dfi); gammaFluxTab(fi,dfi, sigmaV, SpA, FluxA); #ifdef SHOWPLOTS sprintf(txt,"Photon flux for angle of sight %.2f[rad] and cone angle %.2f[rad]",fi,2*dfi); displaySpectrum(FluxA,txt,Emin,Mcdm,1); #endif printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest); #ifdef LoopGAMMA if(loopGamma(&vcs_gz,&vcs_gg)==0) { printf("Gamma ray lines:\n"); printf("E=%.2E[GeV] vcs(Z,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm-91.19*91.19/4/Mcdm,vcs_gz, gammaFlux(fi,dfi,vcs_gz)); printf("E=%.2E[GeV] vcs(A,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm,vcs_gg, 2*gammaFlux(fi,dfi,vcs_gg)); } #endif } if(SpE) { posiFluxTab(Emin, sigmaV, SpE, FluxE); if(SMmev>0) solarModulation(SMmev,0.0005,FluxE,FluxE); #ifdef SHOWPLOTS displaySpectrum(FluxE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1); #endif printf("Positron flux = %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n", SpectdNdE(Etest, FluxE), Etest); } if(SpP) { pbarFluxTab(Emin, sigmaV, SpP, FluxP); if(SMmev>0) solarModulation(SMmev,1,FluxP,FluxP); #ifdef SHOWPLOTS displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1); #endif printf("Antiproton flux = %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n", SpectdNdE(Etest, FluxP), Etest); } } #endif #ifdef CALCULATION_OF_MU { #ifdef TAKE_VALUES_FROM_LSP_OF_MICROMEGAS { mdm = mdm_calc(Mcdm); } #endif double z = pow(10,5); printf("***************** Values used for energy calculation ********************\n"); printf("H0 - %.2e \n", H0); printf("zeq - %.2e \n", zeq); printf("Omega_m - %.2e \n", Omega_m); printf("Omega_r - %.2e \n", Omega_r); printf("Omega_Lambda - %.2e \n", Omega_Lambda); printf("Rho_cr - %.2e \n", Rho_cr); printf("mdm - %.2e \n", mdm); printf("The H_z - is %.2e \n",H(z)); printf("The ndm_z is %.2e \n",ndm_z(z)); printf("The sigma_v is %.2e \n",sigma_v); printf("The tau is %.2e \n",tau(z)); printf("*************************************************************************\n"); double value = dQdz(z) * ( exp(-tau(z))/ H(z)); printf("For redshift %.2e ", z); printf("the energy injection is %.2e \n",value); double value_paper = dummy_energy_injection(z)* ( exp (-tau(z))/ H(z)); printf("While the calculation as in the paper is %.2e \n", value_paper); double z_min = 5 * pow(10,4); double z_i = 6 * pow(10,6); int subdivisions = 1000; value = mu_0(z_i, z_min, subdivisions); printf("Mu at our time is %.2e \n", value); } #endif return 0; }
int main(int argc,char** argv) { int err; char wimpName[10]; /* to save RGE input/output files uncomment the next line */ /*delFiles(0);*/ if(argc==1) { printf(" Correct usage: ./omg <file with parameters> \n"); exit(1); } err=readVar(argv[1]); /* err=readVarRHNM(argv[1]);*/ if(err==-1) {printf("Can not open the file\n"); exit(1);} else if(err>0) { printf("Wrong file contents at line %d\n",err);exit(1);} err=sortOddParticles(wimpName); if(err) { printf("Can't calculate %s\n",wimpName); return 1;} /*to print input parameters or model in SLHA format uncomment correspondingly*/ /* printVar(stdout); writeLesH("slha.out"); */ #ifdef MASSES_INFO { printf("\n=== MASSES OF PARTICLES OF ODD SECTOR: ===\n"); printMasses(stdout,1); } #endif #ifdef CONSTRAINTS printf("\n================= CONSTRAINTS =================\n"); #endif #ifdef OMEGA { int fast=1; double Beps=1.E-2, cut=0.01; double Omega,Xf; printf("\n==== Calculation of relic density =====\n"); Omega=darkOmega(&Xf,fast,Beps); printf("Xf=%.2e Omega=%.2e\n",Xf,Omega); printChannels(Xf,cut,Beps,1,stdout); } #endif #ifdef INDIRECT_DETECTION { /* See hep-ph/0607059 pages 10, 11 for complete explanation */ int err,outP; double Mwimp,Emin,Ntot,Etot,sigmaV,v=0.001,fi,tab[250]; char txt[100]; printf("\n==== Indirect detection =======\n"); outP=0; /* 0 for gamma rays 1-positron; 2-antiproton; 3,4,5 neutrinos (electron, muon and tau correspondinly) */ Emin=0.1; /* Energy cut in GeV */ fi=0; /* angle of sight in radians */ sigmaV=calcSpectrum(v,outP,tab,&err); /* Returns sigma*v in cm^3/sec. tab could be substituted in zInterp(z,tab) to get particle distribution in one collision dN/dz, where z=log (E/Mwinp) */ printf("sigma*v=%.2E [cm^3/sec]\n", sigmaV); Mwimp=lopmass_(); spectrInfo(Emin/Mwimp,tab, &Ntot,&Etot); printf("%.2E %s with E > %.2E are generated at one collision\n",Ntot,outNames[outP],Emin); #ifdef SHOWPLOTS /* Spectrum of photons produced in DM annihilation. */ sprintf(txt,"%s: N=%.2e,<E/2M>=%.2f,vsc=%.2e cm^3/sec,M(%s)=%.2e", outNames[outP],Ntot,Etot,sigmaV,wimpName,Mwimp); displaySpectrum(tab, txt ,Emin/Mwimp); #endif if(outP==0) { printf("gamma flux for fi=%.2E[rad] is %.2E[ph/cm^2/s/sr]\n", fi, HaloFactor(fi,rhoQisotermic)*sigmaV*Ntot/Mwimp/Mwimp); } /* Test of energy conservation */ /* { double e[6]; int i; printf("Check of energy conservation:\n"); for(i=0;i<6;i++) { sigmaV=calcSpectrum(v,i,tab,&err); spectrInfo(Emin/Mwimp,tab, NULL,e+i); } printf("1 = %.2f\n",e[0]+2*(e[1]+e[2]+e[3]+e[4]+e[5]) ); } */ } #endif #ifdef RESET_FORMFACTORS { /* The default nucleon form factors can be completely or partially modified by setProtonFF and setNeutronFF. For scalar form factors, one can first call getScalarFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigma0[MeV], protonFF,neutronFF) or set the new coefficients by directly assigning numerical values. */ { double ffS0P[3]={0.033,0.023,0.26}, ffS0N[3]={0.042,0.018,0.26}, ffV5P[3]={-0.427, 0.842,-0.085}, ffV5N[3]={ 0.842,-0.427,-0.085}; printf("\n=========== Redefinition of form factors =========\n"); getScalarFF(0.553,18.9,55.,35.,ffS0P, ffS0N); printf("protonFF d %E, u %E, s %E\n",ffS0P[0],ffS0P[1],ffS0P[2]); printf("neutronFF d %E, u %E, s %E\n",ffS0N[0],ffS0N[1],ffS0N[2]); /* Use NULL argument if there is no need for reassignment */ setProtonFF(ffS0P,ffV5P, NULL); setNeutronFF(ffS0N,ffV5N,NULL); } /* Option to change parameters of DM velocity distribution */ SetfMaxwell(220.,244.4,600.); /* arg1- defines DM velocity distribution in Galaxy rest frame: ~exp(-v^2/arg1^2)d^3v arg2- Earth velocity with respect to Galaxy arg3- Maximal DM velocity in Sun orbit with respect to Galaxy. All parameters are in [km/s] units. */ /* In case DM has velocity distribution close to delta-function the DM velocity V[km/s] can be defined by */ SetfDelta(350.); /* To reset parameters of Fermi nucleus distribution */ SetFermi(1.23,-0.6,0.52); /* with half-density radius for Fermi distribution: c=arg1*A^(1/3) + arg2 and arg3 is the surface thickness. All parameter in [fm]. */ } #endif #ifdef WIMP_NUCLEON { double pA0[2],pA5[2],nA0[2],nA5[2]; double Nmass=0.939; /*nucleon mass*/ double SCcoeff; double dpA0[2],dnA0[2]; printf("\n==== Calculation of WIMP-nucleons amplitudes =====\n"); nucleonAmplitudes(NULL, dpA0,pA5,dnA0,nA5); printf("====OFF/On======\n"); nucleonAmplitudes(NULL, pA0,pA5,nA0,nA5); dpA0[0]-=pA0[0]; dnA0[0]-=nA0[0]; printf("%s -nucleon amplitudes:\n",wimpName); printf("proton: SI %.3E SD %.3E\n",pA0[0],pA5[0]); printf("neutron: SI %.3E SD %.3E\n",nA0[0],nA5[0]); SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*lopmass_()/(Nmass+ lopmass_()),2.); printf("%s-nucleon cross sections:\n",wimpName); printf(" proton SI %.3E SD %.3E\n",SCcoeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]); printf(" neutron SI %.3E SD %.3E\n",SCcoeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]); printf(" twist-2 CS proton %.3E neutron %.3E \n", SCcoeff*dpA0[0]*dpA0[0], SCcoeff*dnA0[0]*dnA0[0]); printf("anti-%s -nucleon amplitudes:\n",wimpName); printf("proton: SI %.3E SD %.3E\n",pA0[1],pA5[1]); printf("neutron: SI %.3E SD %.3E\n",nA0[1],nA5[1]); SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*lopmass_()/(Nmass+ lopmass_()),2.); printf("anti-%s-nucleon cross sections:\n",wimpName); printf(" proton SI %.3E SD %.3E\n",SCcoeff*pA0[1]*pA0[1],3*SCcoeff*pA5[1]*pA5[1]); printf(" neutron SI %.3E SD %.3E\n",SCcoeff*nA0[1]*nA0[1],3*SCcoeff*nA5[1]*nA5[1]); } #endif #ifdef WIMP_NUCLEUS { double dNdE[200]; double nEvents; double rho=0.3; /* DM density GeV/sm^3 */ printf("\n=========== Direct Detection ===============\n"); nEvents=nucleusRecoil(rho,fDvMaxwell,73,Z_Ge,J_Ge73,S00Ge73,S01Ge73,S11Ge73,NULL,dNdE); /* See '../sources/micromegas.h' for description of arguments Instead of Maxwell (DvMaxwell) one can use 'fDvDelta' Delta-function velocity distribution. */ printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199); #endif nEvents=nucleusRecoil(rho,fDvMaxwell,131,Z_Xe,J_Xe131,S00Xe131,S01Xe131,S11Xe131,NULL,dNdE); printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199); #endif /* If SD form factors are not known or for spin=0 nucleus one can use */ nEvents=nucleusRecoil0(rho,fDvMaxwell,3,Z_He,J_He3,Sp_He3,Sn_He3,NULL,dNdE); printf("\n 3^He: Total number of events=%.2E /day/kg\n",nEvents); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 3He",0,50); #endif } #endif #ifdef CROSS_SECTIONS { double Pcm=500; numout* cc; double cosmin=-0.99, cosmax=0.99; double v=0.002; printf("\n====== Calculation of widths and cross sections ====\n"); decay2Info("Z",stdout); decay2Info("H",stdout); /* Helicity[0]=0.45; Helicity[1]=-0.45; printf("Process e,E->2*x at Pcm=%.3E GeV\n",Pcm); cc=newProcess("e%,E%->2*x","eE_2x"); if(cc) { int ntot,l; char * name[4]; procInfo1(cc,&ntot,NULL,NULL); for(l=1;l<=ntot; l++) { int err; double cs; procInfo2(cc,l,name,NULL); printf("%3s,%3s -> %3s %3s ",name[0],name[1],name[2],name[3]); cs= cs22(cc,l,Pcm,cosmin,cosmax,&err); if(err) printf("Error\n"); else if(cs==0.) printf("Zero\n"); else printf("%.2E [pb]\n",cs); } } */ printf("\n WIMP annihilation at V_rel=%.2E\n",v); cc=newProcess("",wimpAnnLib()); assignValW("Q",2*lopmass_()); if(cc) { int ntot,l; char * name[4]; double mass[4]; procInfo1(cc,&ntot,NULL,NULL); for(l=1;l<=ntot; l++) { int err; double cs; procInfo2(cc,l,name,mass); if(l==1) { Pcm=mass[0]*v/2; printf("(Pcm=%.2E)\n",Pcm);} printf("%3s,%3s -> %3s %3s ",name[0],name[1],name[2],name[3]); cs= cs22(cc,l,Pcm,-1.,1.,&err); if(err) printf("Error\n"); else if(cs==0.) printf("Zero\n"); else printf("%.2E [pb] ( sigma*v=%.2E [cm^3/sec] ) \n",cs,cs*v*2.9979E-26); } } } #endif return 0; }
void FillVal(int mode) { double Q=91.; if(mode) { assignValW("MH3",slhaVal("MASS", Q, 1, 36)); assignValW("mu", slhaVal("HMIX", Q, 1, 1) ); assignValW("MG1",slhaVal("MSOFT", Q, 1, 1)); assignValW("MG2",slhaVal("MSOFT", Q, 1, 2)); assignValW("MG3",slhaVal("MSOFT", Q, 1, 3)); assignValW("Ml1",slhaVal("MSOFT", Q, 1, 31)); assignValW("Ml2",slhaVal("MSOFT", Q, 1, 32)); assignValW("Ml3",slhaVal("MSOFT", Q, 1, 33)); assignValW("Mr1",slhaVal("MSOFT", Q, 1, 34)); assignValW("Mr2",slhaVal("MSOFT", Q, 1, 35)); assignValW("Mr3",slhaVal("MSOFT", Q, 1, 36)); assignValW("Mq1",slhaVal("MSOFT", Q, 1, 41)); assignValW("Mq2",slhaVal("MSOFT", Q, 1, 42)); assignValW("Mq3",slhaVal("MSOFT", Q, 1, 43)); assignValW("Mu1",slhaVal("MSOFT", Q, 1, 44)); assignValW("Mu2",slhaVal("MSOFT", Q, 1, 45)); assignValW("Mu3",slhaVal("MSOFT", Q, 1, 46)); assignValW("Md1",slhaVal("MSOFT", Q, 1, 47)); assignValW("Md2",slhaVal("MSOFT", Q, 1, 48)); assignValW("Md3",slhaVal("MSOFT", Q, 1, 49)); assignValW("At", slhaVal("Au", Q, 2, 3, 3) ); assignValW("Ab", slhaVal("Ad", Q, 2, 3, 3) ); assignValW("Al", slhaVal("Ae", Q, 2, 3, 3) ); assignValW("Am", slhaValExists("Ae",2,2,2)>0 ? slhaVal("Ae",Q,2,2,2):slhaVal("Al",Q,2,3,3)); assignValW("Ad", slhaValExists("Ad",2,2,2)>0 ? slhaVal("Ad",Q,2,2,2):slhaVal("Ad",Q,2,3,3)); assignValW("At", slhaVal("Au",Q,2,3,3)); assignValW("Au", slhaValExists("Au",2,2,2)>0 ? slhaVal("Au",Q,2,2,2):slhaVal("Au",Q,2,3,3)); } if(mode>1) { assignValW("alfSMZ",slhaVal("SMINPUTS",Q,1,3) ); assignValW("MbMb", slhaVal("SMINPUTS",Q,1,5) ); assignValW("Mtp", slhaVal("SMINPUTS",Q,1,6) ); assignValW("Ml", slhaVal("SMINPUTS",Q,1,7) ); } }
int main(int argc,char** argv) { int err; char mess[10]; double dMb,dMd; double (*LF)(double,double,double,double); struct { char *lbl; double m0,mhf,A0,tb,sgn;} testPoints[4]= { {"BP", 70, 250,-300,10, 1}, {"KP", 2500, 550, -80,40,-1}, {"IP", 180, 350, 0,35, 1}, {"NUH", 250, 530, 0,30, 1} }; int I, K; /* to save RGE input/output files uncomment the next line */ /*delFiles(0);*/ for(I=0;I<5;I++) { if(I==4) { printf("================================================ MSSM1 ======\n"); err=readVarMSSM("mssm1.par"); if(err==0)err=EWSBMODEL(RGE)(); }else { double m0,mhf,a0,tb; double gMG1, gMG2, gMG3, gAl, gAt, gAb, sgn, gMHu, gMHd, gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3; printf("\n========= mSUGRA scenario =====\n"); printf("================================================ %s ======\n",testPoints[I].lbl); PRINTRGE(RGE); m0=testPoints[I].m0; mhf=testPoints[I].mhf; a0=testPoints[I].A0; tb=testPoints[I].tb; sgn=testPoints[I].sgn; /*==== simulation of mSUGRA =====*/ gMG1=mhf, gMG2=mhf,gMG3=mhf; gAl=a0, gAt=a0, gAb=a0; gMHu=m0, gMHd=m0; gMl2=m0, gMl3=m0, gMr2=m0, gMr3=m0; gMq2=m0, gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0; if(I==3){ /*==== Non universal SUGRA====*/ gMHu=2.*m0, gMHd=-0.6*m0; } err= SUGRAMODEL(RGE) (tb, gMG1, gMG2, gMG3, gAl, gAt, gAb, sgn, gMHu, gMHd, gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3); if(err>0){ printf(" non fatal problems in RGE\n");err=0;} } if(err) { printf("Problem with RGE solution or spectrum calculation\n"); exit(1); } err=sortOddParticles(mess); if(err) { printf("Can't calculate %s\n",mess); return 1;} dMb=findValW("dMb"); dMd=findValW("dMd"); printf("dMb=%.2E dMd=dMs=%.2E \n", dMb, dMd); for(K=1;K<=5;K++) { switch(K) { case 1: printf("================= Tree level \n"); QCDcorrections=0; assignValW("dMb",0.); assignValW("dMd",0.); assignValW("dMs",0.); break; case 2: printf("================= QCD \n"); QCDcorrections=1; assignValW("dMb",0.); assignValW("dMd",0.); assignValW("dMs",0.); break; case 3: printf("================= dMb \n"); QCDcorrections=0; assignValW("dMb",dMb); assignValW("dMd",dMd); assignValW("dMs",dMd); break; case 4: printf("================= QCD+dMb \n"); QCDcorrections=1; assignValW("dMb",dMb); assignValW("dMd",dMd); assignValW("dMs",dMd); break; case 5: printf("================= box+QCD+dMb\n"); QCDcorrections=1; assignValW("dMb",dMb); assignValW("dMd",dMd); assignValW("dMs",dMd); break; } { double pA0[2],pA5[2],nA0[2],nA5[2]; double Nmass=0.939; /*nucleon mass*/ double SCcoeff; //printf("\n==== Calculation of WIMP-nucleons amplitudes =====\n"); if(K==5) LF=FeScLoop; else LF=NULL; nucleonAmplitudes(LF, pA0,pA5,nA0,nA5); // printf("WIMP-nucleon amplitudes:\n"); // printf("proton: SI %.3E SD %.3E\n",pA0[0],pA5[0]); // printf("neutron: SI %.3E SD %.3E\n",nA0[0],nA5[0]); SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*lopmass_()/(Nmass+ lopmass_()),2.); // printf("WIMP-nucleon cross sections:\n"); printf(" proton SI %.3E neutron SI %.3E\n",SCcoeff*pA0[0]*pA0[0],SCcoeff*nA0[0]*nA0[0]); // printf(" neutron SI %.3E SD %.3E\n",SCcoeff*nA0[0]*nA0[0],SCcoeff*nA5[0]*nA5[0]); } } } return 0; }
int main(int argc,char** argv) { int err; char cdmName[10]; int spin2, charge3,cdim; ForceUG=0; /* to Force Unitary Gauge assign 1 */ // sysTimeLim=1000; /* if you would like to work with superIso setenv("superIso","./superiso_v3.1",1); */ #ifdef SUGRA { double m0,mhf,a0,tb; double gMG1, gMG2, gMG3, gAl, gAt, gAb, sgn, gMHu, gMHd, gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3; printf("\n========= mSUGRA scenario =====\n"); PRINTRGE(RGE); if(argc<5) { printf(" This program needs 4 parameters:\n" " m0 common scalar mass at GUT scale\n" " mhf common gaugino mass at GUT scale\n" " a0 trilinear soft breaking parameter at GUT scale\n" " tb tan(beta) \n"); printf(" Auxiliary parameters are:\n" " sgn +/-1, sign of Higgsino mass term (default 1)\n" " Mtp top quark pole mass\n" " MbMb Mb(Mb) scale independent b-quark mass\n" " alfSMZ strong coupling at MZ\n"); /* printf("Example: ./main 70 250 -300 10\n"); */ printf("Example: ./main 120 500 -350 10 1 173.1 \n"); exit(1); } else { double Mtp,MbMb,alfSMZ; sscanf(argv[1],"%lf",&m0); sscanf(argv[2],"%lf",&mhf); sscanf(argv[3],"%lf",&a0); sscanf(argv[4],"%lf",&tb); if(argc>5)sscanf(argv[5],"%lf",&sgn); else sgn=1; if(argc>6){ sscanf(argv[6],"%lf",&Mtp); assignValW("Mtp",Mtp); } if(argc>7){ sscanf(argv[7],"%lf",&MbMb); assignValW("MbMb",MbMb); } if(argc>8){ sscanf(argv[8],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);} } /*==== simulation of mSUGRA =====*/ gMG1=mhf, gMG2=mhf,gMG3=mhf; gAl=a0, gAt=a0, gAb=a0; gMHu=m0, gMHd=m0; gMl2=m0, gMl3=m0, gMr2=m0, gMr3=m0; gMq2=m0, gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0; err= SUGRAMODEL(RGE) (tb, gMG1, gMG2, gMG3, gAl, gAt, gAb, sgn, gMHu, gMHd, gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3); } #elif defined(SUGRANUH) { double m0,mhf,a0,tb; double gMG1, gMG2, gMG3, gAl, gAt, gAb, gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3,mu,MA; printf("\n========= mSUGRA non-universal Higgs scenario =====\n"); PRINTRGE(RGE); if(argc<7) { printf(" This program needs 6 parameters:\n" " m0 common scalar mass at GUT scale\n" " mhf common gaugino mass at GUT scale\n" " a0 trilinear soft breaking parameter at GUT scale\n" " tb tan(beta) \n" " mu mu(EWSB)\n" " MA mass of pseudoscalar Higgs\n"); printf(" Auxiliary parameters are:\n" " Mtp top quark pole mass\n" " MbMb Mb(Mb) scale independent b-quark mass\n" " alfSMZ strong coupling at MZ\n"); /* printf("Example: ./main 70 250 -300 10\n"); */ printf("Example: ./main 120 500 -350 10 680 760 \n"); exit(1); } else { double Mtp,MbMb,alfSMZ; sscanf(argv[1],"%lf",&m0); sscanf(argv[2],"%lf",&mhf); sscanf(argv[3],"%lf",&a0); sscanf(argv[4],"%lf",&tb); sscanf(argv[5],"%lf",&mu); sscanf(argv[6],"%lf",&MA); if(argc>7){ sscanf(argv[7],"%lf",&Mtp); assignValW("Mtp",Mtp); } if(argc>8){ sscanf(argv[8],"%lf",&MbMb); assignValW("MbMb",MbMb); } if(argc>9){ sscanf(argv[9],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);} } /*==== simulation of mSUGRA =====*/ gMG1=mhf, gMG2=mhf,gMG3=mhf; gAl=a0, gAt=a0, gAb=a0; gMl2=m0, gMl3=m0, gMr2=m0, gMr3=m0; gMq2=m0, gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0; err= SUGRANUHMODEL(RGE) (tb,gMG1,gMG2,gMG3,gAl,gAt,gAb,gMl2,gMl3,gMr2,gMr3,gMq2,gMq3,gMu2,gMu3,gMd2,gMd3,mu,MA); } #elif defined(AMSB) { double m0,m32,sgn,tb; printf("\n========= AMSB scenario =====\n"); PRINTRGE(RGE); if(argc<4) { printf(" This program needs 3 parameters:\n" " m0 common scalar mass at GUT scale\n" " m3/2 gravitino mass\n" " tb tan(beta) \n"); printf(" Auxiliary parameters are:\n" " sgn +/-1, sign of Higgsino mass term (default 1)\n" " Mtp top quark pole mass\n" " MbMb Mb(Mb) scale independent b-quark mass\n" " alfSMZ strong coupling at MZ\n"); printf("Example: ./main 450 60000 10\n"); exit(1); } else { double Mtp,MbMb,alfSMZ; sscanf(argv[1],"%lf",&m0); sscanf(argv[2],"%lf",&m32); sscanf(argv[3],"%lf",&tb); if(argc>4)sscanf(argv[4],"%lf",&sgn); else sgn=1; if(argc>5){ sscanf(argv[5],"%lf",&Mtp); assignValW("Mtp",Mtp); } if(argc>6){ sscanf(argv[6],"%lf",&MbMb); assignValW("MbMb",MbMb); } if(argc>7){ sscanf(argv[7],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);} } err= AMSBMODEL(RGE)(m0,m32,tb,sgn); } #elif defined(EWSB) { printf("\n========= EWSB scale input =========\n"); PRINTRGE(RGE); if(argc <2) { printf("The program needs one argument:the name of file with MSSM parameters.\n" "Example: ./main mssm1.par \n"); exit(1); } printf("Initial file \"%s\"\n",argv[1]); err=readVarMSSM(argv[1]); if(err==-1) { printf("Can not open the file\n"); exit(2);} else if(err>0) { printf("Wrong file contents at line %d\n",err);exit(3);} err=EWSBMODEL(RGE)(); } #else { printf("\n========= SLHA file input =========\n"); if(argc <2) { printf("The program needs one argument:the name of SLHA input file.\n" "Example: ./main suspect2_lha.out \n"); exit(1); } printf("Initial file \"%s\"\n",argv[1]); err=lesHinput(argv[1]); if(err) exit(2); } #endif if(err==-1) { printf("Can not open the file\n"); exit(2);} else if(err>0) { printf("Wrong file contents at line %d\n",err);exit(3);} { int nw; printf("Warnings from spectrum calculator:\n"); nw=slhaWarnings(stdout); if(nw==0) printf(" .....none\n"); } if(err) exit(1); err=sortOddParticles(cdmName); if(err) { printf("Can't calculate %s\n",cdmName); return 1;} qNumbers(cdmName,&spin2, &charge3, &cdim); printf("\nDark matter candidate is '%s' with spin=%d/2 mass=%.2E\n", cdmName, spin2, Mcdm); if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);} if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);} if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); else o1Contents(stdout); #ifdef MASSES_INFO { printf("\n=== MASSES OF HIGGS AND SUSY PARTICLES: ===\n"); printHiggs(stdout); printMasses(stdout,1); } #endif #ifdef CONSTRAINTS { double SMbsg,dmunu; printf("\n\n==== Physical Constraints: =====\n"); printf("deltartho=%.2E\n",deltarho()); printf("gmuon=%.2E\n", gmuon()); printf("bsgnlo=%.2E ", bsgnlo(&SMbsg)); printf("( SM %.2E )\n",SMbsg); printf("bsmumu=%.2E\n", bsmumu()); printf("btaunu=%.2E\n", btaunu()); printf("dtaunu=%.2E ", dtaunu(&dmunu)); printf("dmunu=%.2E\n", dmunu); printf("Rl23=%.3E\n", Rl23()); if(masslimits()==0) printf("MassLimits OK\n"); } #endif #ifdef SUPERISO slhaWrite("slha.in"); system( SUPERISO "/slha.x slha.in >/dev/null"); slhaRead("output.flha",1); unlink("slha.in"); printf("superIsoBSG=%.3E\n", slhaValFormat("FOBS",0., " 5 1 %lf 0 2 3 22")); #endif #ifdef HIGGSBOUNDS if(access(HIGGSBOUNDS "/HiggsBounds",X_OK )) system( "cd " HIGGSBOUNDS "; ./configure; make "); slhaWrite("slha.in"); system("cp slha.in HB.slha"); HBblocks("HB.slha"); System("%s/HiggsBounds LandH SLHA 3 1 HB.slha",HIGGSBOUNDS); slhaRead("HB.slha",1+4); printf("HB result= %.0E obsratio=%.2E\n",slhaValFormat("HiggsBoundsResults",0.,"1 2 %lf"), slhaValFormat("HiggsBoundsResults",0.,"1 3 %lf" ) ); { char hbInfo[100]; if(0==slhaSTRFormat("HiggsBoundsResults","1 5 ||%[^|]||",hbInfo)) printf("Channel: %s\n",hbInfo); } slhaRead("slha.in",0); unlink("slha.in"); #endif #ifdef OMEGA { int fast=1; double Beps=1.E-5, cut=0.01; double Omega,Xf; // to exclude processes with virtual W/Z in DM annihilation VZdecay=0; VWdecay=0; cleanDecayTable(); // to include processes with virtual W/Z also in co-annihilation // VZdecay=2; VWdecay=2; cleanDecayTable(); printf("\n==== Calculation of relic density =====\n"); sortOddParticles(cdmName); Omega=darkOmega(&Xf,fast,Beps); printf("Xf=%.2e Omega=%.2e\n",Xf,Omega); printChannels(Xf,cut,Beps,1,stdout); // direct access for annihilation channels /* if(omegaCh){ int i; for(i=0; omegaCh[i].weight>0 ;i++) printf(" %.2E %s %s -> %s %s\n", omegaCh[i].weight, omegaCh[i].prtcl[0], omegaCh[i].prtcl[1],omegaCh[i].prtcl[2],omegaCh[i].prtcl[3]); } */ // to restore VZdecay and VWdecay switches VZdecay=1; VWdecay=1; cleanDecayTable(); } #endif #ifdef INDIRECT_DETECTION { int err,i; double Emin=1,SMmev=320;/*Energy cut in GeV and solar potential in MV*/ double sigmaV; double vcs_gz,vcs_gg; char txt[100]; double SpA[NZ],SpE[NZ],SpP[NZ]; double FluxA[NZ],FluxE[NZ],FluxP[NZ]; double SpNe[NZ],SpNm[NZ],SpNl[NZ]; // double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL; double Etest=Mcdm/2; /* default DarkSUSY parameters */ /* K_dif=0.036; L_dif=4; Delta_dif=0.6; Vc_dif=10; Rdisk=30; SMmev=320; */ printf("\n==== Indirect detection =======\n"); sigmaV=calcSpectrum( 2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err); /* Returns sigma*v in cm^3/sec. SpX - calculated spectra of annihilation. Use SpectdNdE(E, SpX) to calculate energy distribution in 1/GeV units. First parameter 1-includes W/Z polarization 2-includes gammas for 2->2+gamma 4-print cross sections */ if(SpA) { double fi=0.,dfi=M_PI/180.; /* angle of sight and 1/2 of cone angle in [rad] */ /* dfi corresponds to solid angle 1.E-3sr */ printf("Photon flux for angle of sight f=%.2f[rad]\n" "and spherical region described by cone with angle %.4f[rad]\n",fi,2*dfi); gammaFluxTab(fi,dfi, sigmaV, SpA, FluxA); #ifdef SHOWPLOTS sprintf(txt,"Photon flux for angle of sight %.2f[rad] and cone angle %.2f[rad]",fi,2*dfi); displaySpectrum(FluxA,txt,Emin,Mcdm,1); #endif printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest); #ifdef LoopGAMMA if(loopGamma(&vcs_gz,&vcs_gg)==0) { printf("Gamma ray lines:\n"); printf("E=%.2E[GeV] vcs(Z,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm-91.19*91.19/4/Mcdm,vcs_gz, gammaFlux(fi,dfi,vcs_gz)); printf("E=%.2E[GeV] vcs(A,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm,vcs_gg, 2*gammaFlux(fi,dfi,vcs_gg)); } #endif } if(SpE) { posiFluxTab(Emin, sigmaV, SpE, FluxE); if(SMmev>0) solarModulation(SMmev,0.0005,FluxE,FluxE); #ifdef SHOWPLOTS displaySpectrum(FluxE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1); #endif printf("Positron flux = %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n", SpectdNdE(Etest, FluxE), Etest); } if(SpP) { pbarFluxTab(Emin, sigmaV, SpP, FluxP); if(SMmev>0) solarModulation(SMmev,1,FluxP,FluxP); #ifdef SHOWPLOTS displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1); #endif printf("Antiproton flux = %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n", SpectdNdE(Etest, FluxP), Etest); } } #endif #ifdef RESET_FORMFACTORS { /* The user has approach to form factors which specifies quark contents of proton and nucleon via global parametes like <Type>FF<Nucleon><q> where <Type> can be "Scalar", "pVector", and "Sigma"; <Nucleon> "P" or "N" for proton and neutron <q> "d", "u","s" calcScalarQuarkFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigmaS[MeV]) calculates and rewrites Scalar form factors */ printf("protonFF (default) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs); printf("neutronFF(default) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs); calcScalarQuarkFF(0.46,27.5,34.,42.); // To restore default form factors of version 2 call // calcScalarQuarkFF(0.553,18.9,55.,243.5); printf("protonFF (new) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs); printf("neutronFF(new) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs); } #endif #ifdef CDM_NUCLEON { double pA0[2],pA5[2],nA0[2],nA5[2]; double Nmass=0.939; /*nucleon mass*/ double SCcoeff; printf("\n==== Calculation of CDM-nucleons amplitudes =====\n"); #ifdef TEST_Direct_Detection printf(" TREE LEVEL\n"); MSSMDDtest(0, pA0,pA5,nA0,nA5); printf("Analitic formulae\n"); printf("proton: SI %.3E SD %.3E\n",pA0[0],pA5[0]); printf("neutron: SI %.3E SD %.3E\n",nA0[0],nA5[0]); nucleonAmplitudes(NULL, pA0,pA5,nA0,nA5); printf("CDM-nucleon micrOMEGAs amplitudes:\n"); printf("proton: SI %.3E SD %.3E\n",pA0[0],pA5[0]); printf("neutron: SI %.3E SD %.3E\n",nA0[0],nA5[0]); printf(" BOX DIAGRAMS\n"); MSSMDDtest(1, pA0,pA5,nA0,nA5); printf("Analitic formulae\n"); printf("proton: SI %.3E SD %.3E\n",pA0[0],pA5[0]); printf("neutron: SI %.3E SD %.3E\n",nA0[0],nA5[0]); #endif nucleonAmplitudes(FeScLoop, pA0,pA5,nA0,nA5); printf("CDM-nucleon micrOMEGAs amplitudes:\n"); printf("proton: SI %.3E SD %.3E\n",pA0[0],pA5[0]); printf("neutron: SI %.3E SD %.3E\n",nA0[0],nA5[0]); SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.); printf("CDM-nucleon cross sections[pb]:\n"); printf(" proton SI %.3E SD %.3E\n",SCcoeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]); printf(" neutron SI %.3E SD %.3E\n",SCcoeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]); } #endif #ifdef CDM_NUCLEUS { double dNdE[300]; double nEvents; printf("\n======== Direct Detection ========\n"); nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,SxxGe73,FeScLoop,dNdE); printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199); #endif nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,SxxXe131,FeScLoop,dNdE); printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199); #endif nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,SxxNa23,FeScLoop,dNdE); printf("23Na: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199); #endif nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,SxxI127,FeScLoop,dNdE); printf("I127: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199); #endif } #endif #ifdef NEUTRINO { double nu[NZ], nu_bar[NZ],mu[NZ]; double Ntot; int forSun=1; double Emin=0.01; printf("\n===============Neutrino Telescope======= for "); if(forSun) printf("Sun\n"); else printf("Earth\n"); err=neutrinoFlux(Maxwell,forSun, nu,nu_bar); #ifdef SHOWPLOTS displaySpectrum(nu,"nu flux from Sun [1/Year/km^2/GeV]",Emin,Mcdm,1); displaySpectrum(nu_bar,"nu-bar from Sun [1/Year/km^2/GeV]",Emin,Mcdm,1); #endif { double Ntot; double Emin=1; //GeV spectrInfo(Emin/Mcdm,nu, &Ntot,NULL); printf(" E>%.1E GeV neutrino flux %.2E [1/Year/km^2] \n",Emin,Ntot); spectrInfo(Emin/Mcdm,nu_bar, &Ntot,NULL); printf(" E>%.1E GeV anti-neutrino flux %.2E [1/Year/km^2]\n",Emin,Ntot); } /* Upward events */ muonUpward(nu,nu_bar, mu); #ifdef SHOWPLOTS displaySpectrum(mu,"Upward muons[1/Year/km^2/GeV]",1,Mcdm/2,1); #endif { double Ntot; double Emin=1; //GeV spectrInfo(Emin/Mcdm,mu, &Ntot,NULL); printf(" E>%.1E GeV Upward muon flux %.2E [1/Year/km^2]\n",Emin,Ntot); } /* Contained events */ muonContained(nu,nu_bar,1., mu); #ifdef SHOWPLOTS displaySpectrum(mu,"Contained muons[1/Year/km^3/GeV]",Emin,Mcdm,1); #endif { double Ntot; double Emin=1; //GeV spectrInfo(Emin/Mcdm,mu, &Ntot,NULL); printf(" E>%.1E GeV Contained muon flux %.2E [1/Year/km^3]\n",Emin,Ntot); } } #endif #ifdef DECAYS { txtList L; double width,br; char * pname; printf("\n================= Decays ==============\n"); pname = "h"; width=pWidth(pname,&L); printf("\n%s : total width=%.2E \n and Branchings:\n",pname,width); printTxtList(L,stdout); pname = "~o2"; width=pWidth(pname,&L); printf("\n%s : total width=%.2E \n and Branchings:\n",pname,width); printTxtList(L,stdout); } #endif #ifdef CROSS_SECTIONS { double Pcm=250, cosmin=-0.99, cosmax=0.99, cs; numout* cc; printf("\n====== Calculation of cross section ====\n"); printf(" e^+, e^- annihilation\n"); Pcm=250.; Helicity[0]=0.5; /* helicity : spin projection on direction of motion */ Helicity[1]=-0.5; /* helicities ={ 0.5, -0.5} corresponds to vector state */ printf("Process e,E->2*x at Pcm=%.3E GeV\n",Pcm); cc=newProcess("e%,E%->2*x"); if(cc) { int ntot,l; char * name[4]; procInfo1(cc,&ntot,NULL,NULL); for(l=1;l<=ntot; l++) { int err; double cs; char txt[100]; procInfo2(cc,l,name,NULL); sprintf(txt,"%3s,%3s -> %3s %3s ",name[0],name[1],name[2],name[3]); cs= cs22(cc,l,Pcm,cosmin,cosmax,&err); if(err) printf("%-20.20s Error\n",txt); else if(cs) printf("%-20.20s %.2E [pb]\n",txt,cs); } } /* { double stot=0; int i,j; char * sq[25]= {"~dL","~dR","~uL","~uR","~sL","~sR","~cL","~cR","~b1","~b2","~t1","~t2", "~DL","~DR","~UL","~UR","~SL","~SR","~CL","~CR","~B1","~B2","~T1","~T2", "~g"}; Pcm=4000; for(i=0;i<25;i++) for(j=0;j<25;j++) {double dcs=hCollider(Pcm,1,0,sq[i],sq[j]); stot+=dcs; printf("p,p -> %s %s %E\n", sq[i],sq[j],dcs); } printf("total cross section =%E (without K-factor)\n",stot); } */ } #endif #ifdef CLEAN killPlots(); system("rm -f suspect2_lha.in suspect2_lha.out suspect2.out HB.slha Key.dat nngg.in nngg.out output.flha "); #endif return 0; }
int main(int argc,char** argv) { int err,nw; char cdmName[10]; int spin2, charge3,cdim; double laMax; delFiles=0; /* switch to save/delete NMSSMTools input/output */ ForceUG=0; /* to Force Unitary Gauge assign 1 */ #ifdef SUGRA { double m0,mhf,a0,tb; double Lambda, aLambda,aKappa,sgn; if(argc<7) { printf(" This program needs 6 parameters:\n" " m0 common scalar mass at GUT scale\n" " mhf common gaugino mass at GUT scale\n" " a0 trilinear soft breaking parameter at GUT scale\n" " tb tan(beta) \n" " Lambda Lambda parameter at SUSY\n" " aKappa aKappa parameter at GUT\n" ); printf(" Auxiliary parameters are:\n" " sgn +/-1, sign of Higgsino mass term (default 1)\n" " aLambda at GUT (default aLambda=a0)\n" " Mtp top quark pole mass\n" " MbMb Mb(Mb) scale independent b-quark mass\n" " alfSMZ strong coupling at MZ\n"); printf("Example: ./main 320 600 -1300 2 0.5 -1400\n"); exit(1); } else { double Mtp,MbMb,alfSMZ; sscanf(argv[1],"%lf",&m0); sscanf(argv[2],"%lf",&mhf); sscanf(argv[3],"%lf",&a0); sscanf(argv[4],"%lf",&tb); sscanf(argv[5],"%lf",&Lambda); sscanf(argv[6],"%lf",&aKappa); if(argc>7) sscanf(argv[7],"%lf",&sgn); else sgn=1; if(argc>8) sscanf(argv[8],"%lf",&aLambda); else aLambda=a0; if(argc>9){ sscanf(argv[9],"%lf",&Mtp); assignValW("Mtp",Mtp); } if(argc>10){ sscanf(argv[10],"%lf",&MbMb); assignValW("MbMb",MbMb); } if(argc>11){ sscanf(argv[11],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);} } err=nmssmSUGRA( m0,mhf, a0,tb, sgn, Lambda, aLambda, aKappa); } #elif defined(EWSB) { if(argc!=2) { printf(" Correct usage: ./main <file with NMSSM parameters> \n"); printf(" Example : ./main data1.par \n"); exit(1); } err=readVarNMSSM(argv[1]); if(err==-1) {printf("Can not open the file\n"); exit(1);} else if(err>0) { printf("Wrong file contents at line %d\n",err);exit(1);} err=nmssmEWSB(); } #else { printf("\n========= SLHA file input =========\n"); if(argc <2) { printf("The program needs one argument:the name of SLHA input file.\n" "Example: ./main spectr.dat \n"); exit(1); } printf("Initial file \"%s\"\n",argv[1]); err=readSLHA(argv[1]); if(err) exit(2); } #endif slhaWarnings(stdout); if(err) exit(1); //assignValW("Ms2GeV",0.14); err=sortOddParticles(cdmName); if(err) { printf("Can't calculate %s\n",cdmName); return 1;} laMax=findValW("laMax"); printf("Largest coupling of Higgs self interaction %.1E\n",laMax); qNumbers(cdmName,&spin2, &charge3, &cdim); printf("\nDark matter candidate is '%s' with spin=%d/2\n", cdmName, spin2); if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);} if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);} if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); else o1Contents(stdout); /* printVar(stdout); */ #ifdef MASSES_INFO { printf("\n=== MASSES OF HIGGS AND SUSY PARTICLES: ===\n"); printHiggs(stdout); printMasses(stdout,1); } #endif #ifdef CONSTRAINTS { double constr0,constrM, constrP; printf("\n\n==== Physical Constraints: =====\n"); constr0=bsgnlo(&constrM,&constrP); printf("B->s,gamma = %.2E (%.2E , %.2E ) \n",constr0,constrM, constrP ); constr0= bsmumu(&constrM,&constrP); printf("Bs->mu,mu = %.2E (%.2E , %.2E ) \n",constr0,constrM, constrP ); constr0=btaunu(&constrM,&constrP); printf("B+->tau+,nu= %.2E (%.2E , %.2E ) \n",constr0, constrM, constrP ); constr0=deltaMd(&constrM,&constrP); printf("deltaMd = %.2E (%.2E , %.2E ) \n",constr0,constrM, constrP ); constr0=deltaMs(&constrM,&constrP); printf("deltaMs = %.2E (%.2E , %.2E ) \n",constr0,constrM, constrP ); constr0=gmuon(&constrM,&constrP); printf("(g-2)/BSM = %.2E (%.2E , %.2E ) \n",constr0,constrM, constrP ); } #endif #ifdef OMEGA { int fast=1; double Beps=1.E-5, cut=0.01; double Omega,Xf; printf("\n==== Calculation of relic density =====\n"); Omega=darkOmega(&Xf,fast,Beps); printf("Xf=%.2e Omega=%.2e\n",Xf,Omega); printChannels(Xf,cut,Beps,1,stdout); } #endif #ifdef INDIRECT_DETECTION { int err,i; double Emin=0.1,/* Energy cut in GeV */ sigmaV; double vcs_gz,vcs_gg; char txt[100]; double SpA[NZ],SpE[NZ],SpP[NZ]; double FluxA[NZ],FluxE[NZ],FluxP[NZ]; // double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL; double SpNe[NZ],SpNm[NZ],SpNl[NZ]; double Etest=Mcdm/2; printf("\n==== Indirect detection =======\n"); sigmaV=calcSpectrum(2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err); /* Returns sigma*v in cm^3/sec. SpX - calculated spectra of annihilation. Use SpectdNdE(E, SpX) to calculate energy distribution in 1/GeV units. First parameter 1-includes W/Z polarization 2-includes gammas for 2->2+gamma 4-print cross sections */ printf("sigmav=%.2E[cm^3/s]\n",sigmaV); if(SpA) { double fi=0.1,dfi=0.05; /* angle of sight and 1/2 of cone angle in [rad] */ gammaFluxTab(fi,dfi, sigmaV, SpA, FluxA); printf("Photon flux for angle of sight f=%.2f[rad]\n" "and spherical region described by cone with angle %.2f[rad]\n",fi,2*dfi); #ifdef SHOWPLOTS sprintf(txt,"Photon flux[cm^2 s GeV]^{1} at f=%.2f[rad], cone angle %.2f[rad]",fi,2*dfi); displaySpectrum(FluxA,txt,Emin,Mcdm,1); #endif printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, SpA), Etest); } if(SpE) { posiFluxTab(Emin, sigmaV, SpE, FluxE); #ifdef SHOWPLOTS displaySpectrum(FluxE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1); #endif printf("Positron flux = %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n", SpectdNdE(Etest, FluxE), Etest); } if(SpP) { pbarFluxTab(Emin, sigmaV, SpP, FluxP ); #ifdef SHOWPLOTS displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1); #endif printf("Antiproton flux = %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n", SpectdNdE(Etest, FluxP), Etest); } } #endif #ifdef RESET_FORMFACTORS { /* The user has approach to form factors which specifies quark contents of proton and nucleon via global parametes like <Type>FF<Nucleon><q> where <Type> can be "Scalar", "pVector", and "Sigma"; <Nucleon> "P" or "N" for proton and neutron <q> "d", "u","s" calcScalarFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigma0[MeV]) calculates and rewrites Scalar form factors */ printf("protonFF (default) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs); printf("neutronFF(default) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs); calcScalarFF(0.553,18.9,70.,35.); printf("protonFF (new) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs); printf("neutronFF(new) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs); /* Option to change parameters of DM velocity distribution */ SetfMaxwell(220.,600.); /* dN ~ exp(-v^2/arg1^2)*Theta(v-arg2) d^3v Earth velocity with respect to Galaxy defined by 'Vearth' parameter. All parameters are in [km/s] units. */ } #endif #ifdef CDM_NUCLEON { double pA0[2],pA5[2],nA0[2],nA5[2]; double Nmass=0.939; /*nucleon mass*/ double SCcoeff; printf("\n==== Calculation of CDM-nucleons amplitudes =====\n"); nucleonAmplitudes(FeScLoop, pA0,pA5,nA0,nA5); printf("CDM-nucleon micrOMEGAs amplitudes:\n"); printf("proton: SI %.3E SD %.3E\n",pA0[0],pA5[0]); printf("neutron: SI %.3E SD %.3E\n",nA0[0],nA5[0]); SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.); printf("CDM-nucleon cross sections[pb]:\n"); printf(" proton SI %.3E SD %.3E\n",SCcoeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]); printf(" neutron SI %.3E SD %.3E\n",SCcoeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]); } #endif #ifdef CDM_NUCLEUS { double dNdE[300]; double nEvents; printf("\n======== Direct Detection ========\n"); nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,S00Ge73,S01Ge73,S11Ge73,FeScLoop,dNdE); printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199); #endif nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,S00Xe131,S01Xe131,S11Xe131,FeScLoop,dNdE); printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199); #endif nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,S00Na23,S01Na23,S11Na23,FeScLoop,dNdE); printf("23Na: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199); #endif nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,S00I127,S01I127,S11I127,FeScLoop,dNdE); printf("I127: Total number of events=%.2E /day/kg\n",nEvents); printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n", cutRecoilResult(dNdE,10,50)); #ifdef SHOWPLOTS displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199); #endif } #endif #ifdef DECAYS { txtList L; int dim; double width,br; char * pname; printf("\nParticle decays\n"); pname = "h1"; width=pWidth(pname,&L,&dim); printf("%s->%d*x : total width=%E \n and Branchings:\n",pname,dim,width); printTxtList(L,stdout); pname = "l"; width=pWidth(pname,&L,&dim); printf("%s->%d*x : total width=%E \n and Branchings:\n",pname,dim,width); printTxtList(L,stdout); printf("Br(e,Ne,nl)= %E\n",findBr(L,"e,Ne,nl")); pname = "~o2"; width=pWidth(pname,&L,&dim); printf("%s->%d*x : total width=%E \n and Branchings:\n",pname,dim,width); printTxtList(L,stdout); } #endif #ifdef CROSS_SECTIONS { double Pcm=500, cosmin=-0.99, cosmax=0.99, cs; numout* cc; printf("\n====== Calculation of cross section ====\n"); printf(" e^+, e^- annihilation\n"); Pcm=500.; Helicity[0]=0.5; /* helicity : spin projection on direction of motion */ Helicity[1]=-0.5; /* helicities ={ 0.5, -0.5} corresponds to vector state */ printf("Process e,E->2*x at Pcm=%.3E GeV\n",Pcm); cc=newProcess("e%,E%->2*x","eE_2x"); if(cc) { int ntot,l; char * name[4]; procInfo1(cc,&ntot,NULL,NULL); for(l=1;l<=ntot; l++) { int err; double cs; char txt[100]; procInfo2(cc,l,name,NULL); sprintf(txt,"%3s,%3s -> %3s %3s ",name[0],name[1],name[2],name[3]); cs= cs22(cc,l,Pcm,cosmin,cosmax,&err); if(err) printf("%-20.20s Error\n",txt); else if(cs) printf("%-20.20s %.2E [pb]\n",txt,cs); } } } #endif killPlots(); return 0; }
int HBblocks(char * fname) { FILE * f=fopen(fname,"a"); double tb,sb,cb,alpha,sa,ca,ta,samb,camb,dMb,MbHl,MbSM,MbH,MbH3,Q; if(!f) return 1; Q=findValW("Q"); if(slhaDecayExists(pNum("h")) <0) slhaDecayPrint("h", f); if(slhaDecayExists(pNum("H")) <0) slhaDecayPrint("H", f); if(slhaDecayExists(pNum("H3"))<0) slhaDecayPrint("H3",f); if(slhaDecayExists(pNum("t")) <0) slhaDecayPrint("t", f); if(slhaDecayExists(pNum("H+"))<0) slhaDecayPrint("H+",f); tb=findValW("tB"); sb=tb/sqrt(1+tb*tb); cb=1/sqrt(1+tb*tb); alpha=findValW("alpha"); sa=sin(alpha); ca=cos(alpha); ta=sa/ca; samb=sa*cb-ca*sb; camb=ca*cb+sa*sb; dMb=findValW("dMb"); MbSM=findValW("Mb"); MbH= MbSM/(1+dMb)*(1+dMb*ta/tb); MbH3=MbSM/(1+dMb)*(1-dMb/tb/tb); MbHl=MbSM/(1+dMb)*(1-dMb/ta/tb); fprintf(f,"Block HiggsBoundsInputHiggsCouplingsBosons\n"); fprintf(f,"# Effective coupling normalised to SM one and squared\n"); fprintf(f,"# For (*) normalized on Sin(2*W)\n"); fprintf(f," %12.4E 3 25 24 24 # higgs-W-W \n", SQR(samb) ); fprintf(f," %12.4E 3 25 23 23 # higgs-Z-Z \n", SQR(samb) ); fprintf(f," %12.4E 3 25 25 23 # higgs-higgs-Z \n", 0. ); { assignVal("Q",pMass("h")); calcMainFunc(); fprintf(f," %12.4E 3 25 21 21 # higgs-gluon-gluon\n", SQR(findValW("LGGh")/findValW("LGGSM")) ); fprintf(f," %12.4E 3 25 22 22 # higgs-gamma-gamma\n", SQR(findValW("LAAh")/findValW("LAASM")) ); } fprintf(f," %12.4E 3 35 24 24 # higgs-W-W \n", SQR(camb) ); fprintf(f," %12.4E 3 35 23 23 # higgs-Z-Z \n", SQR(camb) ); fprintf(f," %12.4E 3 35 25 23 # higgs-higgs-Z \n", 0. ); fprintf(f," %12.4E 3 35 35 23 # higgs-higgs-Z \n", 0. ); { assignVal("Q",pMass("H")); calcMainFunc(); fprintf(f," %12.4E 3 35 21 21 # higgs-gluon-gluon\n",SQR(findValW("LGGH")/findValW("LGGSM")) ); fprintf(f," %12.4E 3 35 22 22 # higgs-gamma-gamma\n",SQR(findValW("LAAH")/findValW("LAASM")) ); } fprintf(f," %12.4E 3 36 24 24 # higgs-W-W \n", 0. ); fprintf(f," %12.4E 3 36 23 23 # higgs-Z-Z \n", 0. ); { assignVal("Q",pMass("H3")); calcMainFunc(); fprintf(f," %12.4E 3 36 21 21 # higgs-gluon-gluon\n",SQR(findValW("LGGH3")/2/findValW("LGGSM")) ); fprintf(f," %12.4E 3 36 22 22 # higgs-gamma-gamma\n",SQR(findValW("LAAH3")/2/findValW("LAASM")) ); } fprintf(f," %12.4E 3 36 25 23 #*higgs-higgs-Z \n", SQR(camb) ); fprintf(f," %12.4E 3 36 35 23 #*higgs-higgs-Z \n", SQR(samb) ); fprintf(f," %12.4E 3 36 36 23 #* higgs-higgs-Z \n", 0. ); fprintf(f,"Block HiggsBoundsInputHiggsCouplingsFermions\n"); fprintf(f,"# Effective coupling normalised to SM one and squared\n"); fprintf(f," %12.4E %12.4E 3 25 5 5 # higgs-b-b \n" ,SQR((sa/cb)*(MbHl/MbSM)),0.); fprintf(f," %12.4E %12.4E 3 25 6 6 # higgs-top-top \n",SQR(ca/sb) ,0.); fprintf(f," %12.4E %12.4E 3 25 15 15 # higgs-tau-tau \n",SQR(sa/cb) ,0.); fprintf(f," %12.4E %12.4E 3 35 5 5 # higgs-b-b \n" ,SQR((ca/cb)*(MbH/MbSM)) ,0.); fprintf(f," %12.4E %12.4E 3 35 6 6 # higgs-top-top \n",SQR(sa/sb) ,0.); fprintf(f," %12.4E %12.4E 3 35 15 15 # higgs-tau-tau \n",SQR(ca/cb) ,0.); fprintf(f," %12.4E %12.4E 3 36 5 5 # higgs-b-b \n" ,0.,SQR(tb*(MbH3/MbSM))); fprintf(f," %12.4E %12.4E 3 36 6 6 # higgs-top-top \n",0.,SQR(1/tb) ); fprintf(f," %12.4E %12.4E 3 36 15 15 # higgs-tau-tau \n",0.,SQR(tb) ); assignValW("Q",Q); calcMainFunc(); fclose(f); return 0; }