void ComponentSplitterLayout::call(GraphAttributes &GA)
{
	// Only do preparations and call if layout is valid
	if (m_secondaryLayout.valid())
	{
		//first we split the graph into its components
		const Graph& G = GA.constGraph();

		NodeArray<int> componentNumber(G);
		m_numberOfComponents = connectedComponents(G, componentNumber);
		if (m_numberOfComponents == 0) {
			return;
		}

		//std::vector< std::vector<node> > componentArray;
		//componentArray.resize(numComponents);
		//Array<GraphAttributes *> components(numComponents);
		//

		// intialize the array of lists of nodes contained in a CC
		nodesInCC.init(m_numberOfComponents);

		node v;
		forall_nodes(v,G)
			nodesInCC[componentNumber[v]].pushBack(v);

		 // Create copies of the connected components and corresponding
		 // GraphAttributes
		 GraphCopy GC;
		 GC.createEmpty(G);

		 EdgeArray<edge> auxCopy(G);

		 for (int i = 0; i < m_numberOfComponents; i++)
		 {
			 GC.initByNodes(nodesInCC[i],auxCopy);
			 GraphAttributes cGA(GC);
			 //copy information into copy GA
			 forall_nodes(v, GC)
			 {
				cGA.width(v) = GA.width(GC.original(v));
				cGA.height(v) = GA.height(GC.original(v));
				cGA.x(v) = GA.x(GC.original(v));
				cGA.y(v) = GA.y(GC.original(v));
			 }
			 m_secondaryLayout.get().call(cGA);

			 //copy layout information back into GA
			 forall_nodes(v, GC)
			 {
				 node w = GC.original(v);
				 if (w != 0)
					 GA.x(w) = cGA.x(v);
				 GA.y(w) = cGA.y(v);
			 }
		 }
Пример #2
0
void OptimalRanking::doCall(
	const Graph& G,
	NodeArray<int> &rank,
	EdgeArray<bool> &reversed,
	const EdgeArray<int> &length,
	const EdgeArray<int> &costOrig)
{
	MinCostFlowReinelt<int> mcf;

	// construct min-cost flow problem
	GraphCopy GC;
	GC.createEmpty(G);

	// compute connected component of G
	NodeArray<int> component(G);
	int numCC = connectedComponents(G,component);

	// intialize the array of lists of nodes contained in a CC
	Array<List<node> > nodesInCC(numCC);

	for(node v : G.nodes)
		nodesInCC[component[v]].pushBack(v);

	EdgeArray<edge> auxCopy(G);
	rank.init(G);

	for(int i = 0; i < numCC; ++i)
	{
		GC.initByNodes(nodesInCC[i], auxCopy);
		makeLoopFree(GC);

		for(edge e : GC.edges)
			if(reversed[GC.original(e)])
				GC.reverseEdge(e);

		// special cases:
		if(GC.numberOfNodes() == 1) {
			rank[GC.original(GC.firstNode())] = 0;
			continue;
		} else if(GC.numberOfEdges() == 1) {
			edge e = GC.original(GC.firstEdge());
			rank[e->source()] = 0;
			rank[e->target()] = length[e];
			continue;
		}

		EdgeArray<int> lowerBound(GC,0);
		EdgeArray<int> upperBound(GC,mcf.infinity());
		EdgeArray<int> cost(GC);
		NodeArray<int> supply(GC);

		for(edge e : GC.edges)
			cost[e] = -length[GC.original(e)];

		for(node v : GC.nodes) {
			int s = 0;
			edge e;
			forall_adj_edges(e,v) {
				if(v == e->source())
					s += costOrig[GC.original(e)];
				else
					s -= costOrig[GC.original(e)];
			}
			supply[v] = s;
		}

		OGDF_ASSERT(isAcyclic(GC) == true);

		// find min-cost flow
		EdgeArray<int> flow(GC);
		NodeArray<int> dual(GC);
#ifdef OGDF_DEBUG
		bool feasible =
#endif
			mcf.call(GC, lowerBound, upperBound, cost, supply, flow, dual);
		OGDF_ASSERT(feasible);

		for(node v : GC.nodes)
			rank[GC.original(v)] = dual[v];
	}
}
Пример #3
0
void ComponentSplitterLayout::call(GraphAttributes &GA)
{
	// Only do preparations and call if layout is valid
	if (m_secondaryLayout.valid())
	{
		//first we split the graph into its components
		const Graph& G = GA.constGraph();

		NodeArray<int> componentNumber(G);
		int numberOfComponents = connectedComponents(G, componentNumber);
		if (numberOfComponents == 0) {
			return;
		}

		// intialize the array of lists of nodes contained in a CC
		Array<List<node> > nodesInCC(numberOfComponents);

		for(node v : G.nodes)
			nodesInCC[componentNumber[v]].pushBack(v);

		// Create copies of the connected components and corresponding
		// GraphAttributes
		GraphCopy GC;
		GC.createEmpty(G);

		EdgeArray<edge> auxCopy(G);

		for (int i = 0; i < numberOfComponents; i++)
		{
			GC.initByNodes(nodesInCC[i],auxCopy);
			GraphAttributes cGA(GC, GA.attributes());
			//copy information into copy GA
			for(node v : GC.nodes)
			{
				cGA.width(v) = GA.width(GC.original(v));
				cGA.height(v) = GA.height(GC.original(v));
				cGA.x(v) = GA.x(GC.original(v));
				cGA.y(v) = GA.y(GC.original(v));
			}
			// copy information on edges
			if (GA.attributes() & GraphAttributes::edgeDoubleWeight) {
				for (edge e : GC.edges) {
					cGA.doubleWeight(e) = GA.doubleWeight(GC.original(e));
				}
			}
			m_secondaryLayout.get().call(cGA);

			//copy layout information back into GA
			for(node v : GC.nodes)
			{
				node w = GC.original(v);
				if (w != nullptr)
				{
					GA.x(w) = cGA.x(v);
					GA.y(w) = cGA.y(v);
					if (GA.attributes() & GraphAttributes::threeD) {
						GA.z(w) = cGA.z(v);
					}
				}
			}
		}

		// rotate component drawings and call the packer
		reassembleDrawings(GA, nodesInCC);

	}//if valid
}
Пример #4
0
void SpringEmbedderFR::call(GraphAttributes &AG)
{
	const Graph &G = AG.constGraph();
	if(G.empty())
		return;

	// all edges straight-line
	AG.clearAllBends();

	GraphCopy GC;
	GC.createEmpty(G);

	// compute connected component of G
	NodeArray<int> component(G);
	int numCC = connectedComponents(G,component);

	// intialize the array of lists of nodes contained in a CC
	Array<List<node> > nodesInCC(numCC);

	node v;
	forall_nodes(v,G)
		nodesInCC[component[v]].pushBack(v);

	EdgeArray<edge> auxCopy(G);
	Array<DPoint> boundingBox(numCC);

	int i;
	for(i = 0; i < numCC; ++i)
	{
		GC.initByNodes(nodesInCC[i],auxCopy);

		GraphCopyAttributes AGC(GC,AG);
		node vCopy;
		forall_nodes(vCopy, GC) {
			node vOrig = GC.original(vCopy);
			AGC.x(vCopy) = AG.x(vOrig);
			AGC.y(vCopy) = AG.y(vOrig);
		}

		// original
		if (initialize(GC, AGC) == true)
		{
			for(int i = 1; i <= m_iterations; i++)
				mainStep(GC, AGC);

		}
		cleanup();
		// end original

		node vFirst = GC.firstNode();
		double minX = AGC.x(vFirst), maxX = AGC.x(vFirst),
			minY = AGC.y(vFirst), maxY = AGC.y(vFirst);

		forall_nodes(vCopy,GC) {
			node v = GC.original(vCopy);
			AG.x(v) = AGC.x(vCopy);
			AG.y(v) = AGC.y(vCopy);

			if(AG.x(v)-AG.width (v)/2 < minX) minX = AG.x(v)-AG.width(v) /2;
			if(AG.x(v)+AG.width (v)/2 > maxX) maxX = AG.x(v)+AG.width(v) /2;
			if(AG.y(v)-AG.height(v)/2 < minY) minY = AG.y(v)-AG.height(v)/2;
			if(AG.y(v)+AG.height(v)/2 > maxY) maxY = AG.y(v)+AG.height(v)/2;
		}
void GEMLayout::call(GraphAttributes &AG) 
{
	const Graph &G = AG.constGraph();
	if(G.empty())
		return;

	OGDF_ASSERT(m_numberOfRounds >= 0);
	OGDF_ASSERT(DIsGreaterEqual(m_minimalTemperature,0));
	OGDF_ASSERT(DIsGreaterEqual(m_initialTemperature,m_minimalTemperature));
	OGDF_ASSERT(DIsGreaterEqual(m_gravitationalConstant,0));
	OGDF_ASSERT(DIsGreaterEqual(m_desiredLength,0));
	OGDF_ASSERT(DIsGreaterEqual(m_maximalDisturbance,0));
	OGDF_ASSERT(DIsGreaterEqual(m_rotationAngle,0));
	OGDF_ASSERT(DIsLessEqual(m_rotationAngle,pi / 2));
	OGDF_ASSERT(DIsGreaterEqual(m_oscillationAngle,0));
	OGDF_ASSERT(DIsLessEqual(m_oscillationAngle,pi / 2));
	OGDF_ASSERT(DIsGreaterEqual(m_rotationSensitivity,0));
	OGDF_ASSERT(DIsLessEqual(m_rotationSensitivity,1));
	OGDF_ASSERT(DIsGreaterEqual(m_oscillationSensitivity,0));
	OGDF_ASSERT(DIsLessEqual(m_oscillationSensitivity,1));
	OGDF_ASSERT(m_attractionFormula == 1 || m_attractionFormula == 2);
	
	// all edges straight-line
	AG.clearAllBends();

	GraphCopy GC;
	GC.createEmpty(G);

	// compute connected component of G
	NodeArray<int> component(G);
	int numCC = connectedComponents(G,component);

	// intialize the array of lists of nodes contained in a CC
	Array<List<node> > nodesInCC(numCC);

	node v;
	forall_nodes(v,G)
		nodesInCC[component[v]].pushBack(v);

	EdgeArray<edge> auxCopy(G);
	Array<DPoint> boundingBox(numCC);

	int i;
	for(i = 0; i < numCC; ++i)
	{
		GC.initByNodes(nodesInCC[i],auxCopy);

		GraphCopyAttributes AGC(GC,AG);
		node vCopy;
		forall_nodes(vCopy, GC) {
			node vOrig = GC.original(vCopy);
			AGC.x(vCopy) = AG.x(vOrig);
			AGC.y(vCopy) = AG.y(vOrig);
		}

		SList<node> permutation;
		node v;

		// initialize node data
		m_impulseX.init(GC,0);
		m_impulseY.init(GC,0);
		m_skewGauge.init(GC,0);
		m_localTemperature.init(GC,m_initialTemperature);

		// initialize other data
		m_globalTemperature = m_initialTemperature;
		m_barycenterX = 0;
		m_barycenterY = 0;
		forall_nodes(v,GC) {
			m_barycenterX += weight(v) * AGC.x(v);
			m_barycenterY += weight(v) * AGC.y(v);
		}
Пример #6
0
void SpringEmbedderFRExact::call(GraphAttributes &AG)
{
	const Graph &G = AG.constGraph();
	if(G.empty())
		return;

	// all edges straight-line
	AG.clearAllBends();

	ArrayGraph component(AG);
	component.m_useNodeWeight = m_useNodeWeight;

	EdgeArray<edge> auxCopy(G);
	Array<DPoint> boundingBox(component.numberOfCCs());

	int i;
	for(i = 0; i < component.numberOfCCs(); ++i)
	{
		component.initCC(i);

		if (component.numberOfNodes() >= 2)
		{
			initialize(component);

#ifdef OGDF_SSE3_EXTENSIONS
			if(System::cpuSupports(cpufSSE3))
				mainStep_sse3(component);
			else
#endif
				mainStep(component);
		}

		double minX, maxX, minY, maxY;
		minX = maxX = component.m_x[0];
		minY = maxY = component.m_y[0];

		for(int vCopy = 0; vCopy < component.numberOfNodes(); ++vCopy) {
			node v = component.original(vCopy);
			AG.x(v) = component.m_x[vCopy];
			AG.y(v) = component.m_y[vCopy];

			if(AG.x(v)-AG.width (v)/2 < minX) minX = AG.x(v)-AG.width(v) /2;
			if(AG.x(v)+AG.width (v)/2 > maxX) maxX = AG.x(v)+AG.width(v) /2;
			if(AG.y(v)-AG.height(v)/2 < minY) minY = AG.y(v)-AG.height(v)/2;
			if(AG.y(v)+AG.height(v)/2 > maxY) maxY = AG.y(v)+AG.height(v)/2;
		}

		minX -= m_minDistCC;
		minY -= m_minDistCC;

		for(int vCopy = 0; vCopy < component.numberOfNodes(); ++vCopy) {
			node v = component.original(vCopy);
			AG.x(v) -= minX;
			AG.y(v) -= minY;
		}

		boundingBox[i] = DPoint(maxX - minX, maxY - minY);
	}

	Array<DPoint> offset(component.numberOfCCs());
	TileToRowsCCPacker packer;
	packer.call(boundingBox,offset,m_pageRatio);

	// The arrangement is given by offset to the origin of the coordinate
	// system. We still have to shift each node and edge by the offset
	// of its connected component.

	for(i = 0; i < component.numberOfCCs(); ++i)
	{
		const SList<node> &nodes = component.nodesInCC(i);

		const double dx = offset[i].m_x;
		const double dy = offset[i].m_y;

		// iterate over all nodes in ith CC
		for(node v : nodes)
		{
			AG.x(v) += dx;
			AG.y(v) += dy;
		}
	}
}
Пример #7
0
void GEMLayout::call(GraphAttributes &AG)
{
	const Graph &G = AG.constGraph();
	if(G.empty())
		return;

	// all edges straight-line
	AG.clearAllBends();

	GraphCopy GC;
	GC.createEmpty(G);

	// compute connected component of G
	NodeArray<int> component(G);
	int numCC = connectedComponents(G,component);

	// intialize the array of lists of nodes contained in a CC
	Array<List<node> > nodesInCC(numCC);

	for(node v : G.nodes)
		nodesInCC[component[v]].pushBack(v);

	EdgeArray<edge> auxCopy(G);
	Array<DPoint> boundingBox(numCC);

	int i;
	for(i = 0; i < numCC; ++i)
	{
		GC.initByNodes(nodesInCC[i],auxCopy);

		GraphCopyAttributes AGC(GC,AG);
		for(node vCopy : GC.nodes) {
			node vOrig = GC.original(vCopy);
			AGC.x(vCopy) = AG.x(vOrig);
			AGC.y(vCopy) = AG.y(vOrig);
		}

		SList<node> permutation;

		// initialize node data
		m_impulseX.init(GC,0);
		m_impulseY.init(GC,0);
		m_skewGauge.init(GC,0);
		m_localTemperature.init(GC,m_initialTemperature);

		// initialize other data
		m_globalTemperature = m_initialTemperature;
		m_barycenterX = 0;
		m_barycenterY = 0;
		for(node v : GC.nodes) {
			m_barycenterX += weight(v) * AGC.x(v);
			m_barycenterY += weight(v) * AGC.y(v);
		}
		m_cos = cos(m_oscillationAngle / 2.0);
		m_sin = sin(Math::pi / 2 + m_rotationAngle / 2.0);

		// main loop
		int counter = m_numberOfRounds;
		while(OGDF_GEOM_ET.greater(m_globalTemperature,m_minimalTemperature) && counter--) {

			// choose nodes by random permutations
			if(permutation.empty()) {
				for(node v : GC.nodes)
					permutation.pushBack(v);
				permutation.permute(m_rng);
			}
			node v = permutation.popFrontRet();

			// compute the impulse of node v
			computeImpulse(GC,AGC,v);

			// update node v
			updateNode(GC,AGC,v);

		}

		node vFirst = GC.firstNode();
		double minX = AGC.x(vFirst), maxX = AGC.x(vFirst),
			minY = AGC.y(vFirst), maxY = AGC.y(vFirst);

		for(node vCopy : GC.nodes) {
			node v = GC.original(vCopy);
			AG.x(v) = AGC.x(vCopy);
			AG.y(v) = AGC.y(vCopy);

			if(AG.x(v)-AG.width (v)/2 < minX) minX = AG.x(v)-AG.width(v) /2;
			if(AG.x(v)+AG.width (v)/2 > maxX) maxX = AG.x(v)+AG.width(v) /2;
			if(AG.y(v)-AG.height(v)/2 < minY) minY = AG.y(v)-AG.height(v)/2;
			if(AG.y(v)+AG.height(v)/2 > maxY) maxY = AG.y(v)+AG.height(v)/2;
		}

		minX -= m_minDistCC;
		minY -= m_minDistCC;

		for(node vCopy : GC.nodes) {
			node v = GC.original(vCopy);
			AG.x(v) -= minX;
			AG.y(v) -= minY;
		}

		boundingBox[i] = DPoint(maxX - minX, maxY - minY);
	}

	Array<DPoint> offset(numCC);
	TileToRowsCCPacker packer;
	packer.call(boundingBox,offset,m_pageRatio);

	// The arrangement is given by offset to the origin of the coordinate
	// system. We still have to shift each node and edge by the offset
	// of its connected component.

	for(i = 0; i < numCC; ++i)
	{
		const List<node> &nodes = nodesInCC[i];

		const double dx = offset[i].m_x;
		const double dy = offset[i].m_y;

		// iterate over all nodes in ith CC
		ListConstIterator<node> it;
		for(node v : nodes)
		{
			AG.x(v) += dx;
			AG.y(v) += dy;
		}
	}


	// free node data
	m_impulseX.init();
	m_impulseY.init();
	m_skewGauge.init();
	m_localTemperature.init();
}