Пример #1
0
bool AdaptiveSizePolicy::print_adaptive_size_policy_on(outputStream* st) const {

  //  Should only be used with adaptive size policy turned on.
  // Otherwise, there may be variables that are undefined.
  if (!UseAdaptiveSizePolicy) return false;

  // Print goal for which action is needed.
  char* action = NULL;
  bool change_for_pause = false;
  if ((change_old_gen_for_maj_pauses() ==
         decrease_old_gen_for_maj_pauses_true) ||
      (change_young_gen_for_min_pauses() ==
         decrease_young_gen_for_min_pauses_true)) {
    action = (char*) " *** pause time goal ***";
    change_for_pause = true;
  } else if ((change_old_gen_for_throughput() ==
               increase_old_gen_for_throughput_true) ||
            (change_young_gen_for_throughput() ==
               increase_young_gen_for_througput_true)) {
    action = (char*) " *** throughput goal ***";
  } else if (decrease_for_footprint()) {
    action = (char*) " *** reduced footprint ***";
  } else {
    // No actions were taken.  This can legitimately be the
    // situation if not enough data has been gathered to make
    // decisions.
    return false;
  }

  // Pauses
  // Currently the size of the old gen is only adjusted to
  // change the major pause times.
  char* young_gen_action = NULL;
  char* tenured_gen_action = NULL;

  char* shrink_msg = (char*) "(attempted to shrink)";
  char* grow_msg = (char*) "(attempted to grow)";
  char* no_change_msg = (char*) "(no change)";
  if (change_young_gen_for_min_pauses() ==
      decrease_young_gen_for_min_pauses_true) {
    young_gen_action = shrink_msg;
  } else if (change_for_pause) {
    young_gen_action = no_change_msg;
  }

  if (change_old_gen_for_maj_pauses() == decrease_old_gen_for_maj_pauses_true) {
    tenured_gen_action = shrink_msg;
  } else if (change_for_pause) {
    tenured_gen_action = no_change_msg;
  }

  // Throughput
  if (change_old_gen_for_throughput() == increase_old_gen_for_throughput_true) {
    assert(change_young_gen_for_throughput() ==
           increase_young_gen_for_througput_true,
           "Both generations should be growing");
    young_gen_action = grow_msg;
    tenured_gen_action = grow_msg;
  } else if (change_young_gen_for_throughput() ==
             increase_young_gen_for_througput_true) {
    // Only the young generation may grow at start up (before
    // enough full collections have been done to grow the old generation).
    young_gen_action = grow_msg;
    tenured_gen_action = no_change_msg;
  }

  // Minimum footprint
  if (decrease_for_footprint() != 0) {
    young_gen_action = shrink_msg;
    tenured_gen_action = shrink_msg;
  }

  st->print_cr("    UseAdaptiveSizePolicy actions to meet %s", action);
  st->print_cr("                       GC overhead (%%)");
  st->print_cr("    Young generation:     %7.2f\t  %s",
    100.0 * avg_minor_gc_cost()->average(),
    young_gen_action);
  st->print_cr("    Tenured generation:   %7.2f\t  %s",
    100.0 * avg_major_gc_cost()->average(),
    tenured_gen_action);
  return true;
}
void PSAdaptiveSizePolicy::major_collection_end(size_t amount_live,
  GCCause::Cause gc_cause) {
  // Update the pause time.
  _major_timer.stop();

  if (gc_cause != GCCause::_java_lang_system_gc ||
      UseAdaptiveSizePolicyWithSystemGC) {
    double major_pause_in_seconds = _major_timer.seconds();
    double major_pause_in_ms = major_pause_in_seconds * MILLIUNITS;

    // Sample for performance counter
    _avg_major_pause->sample(major_pause_in_seconds);

    // Cost of collection (unit-less)
    double collection_cost = 0.0;
    if ((_latest_major_mutator_interval_seconds > 0.0) &&
        (major_pause_in_seconds > 0.0)) {
      double interval_in_seconds =
        _latest_major_mutator_interval_seconds + major_pause_in_seconds;
      collection_cost =
        major_pause_in_seconds / interval_in_seconds;
      avg_major_gc_cost()->sample(collection_cost);

      // Sample for performance counter
      _avg_major_interval->sample(interval_in_seconds);
    }

    // Calculate variables used to estimate pause time vs. gen sizes
    double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
    double promo_size_in_mbytes = ((double)_promo_size)/((double)M);
    _major_pause_old_estimator->update(promo_size_in_mbytes,
      major_pause_in_ms);
    _major_pause_young_estimator->update(eden_size_in_mbytes,
      major_pause_in_ms);

    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print("psAdaptiveSizePolicy::major_collection_end: "
        "major gc cost: %f  average: %f", collection_cost,
        avg_major_gc_cost()->average());
      gclog_or_tty->print_cr("  major pause: %f major period %f",
        major_pause_in_ms,
        _latest_major_mutator_interval_seconds * MILLIUNITS);
    }

    // Calculate variable used to estimate collection cost vs. gen sizes
    assert(collection_cost >= 0.0, "Expected to be non-negative");
    _major_collection_estimator->update(promo_size_in_mbytes,
        collection_cost);
  }

  // Update the amount live at the end of a full GC
  _live_at_last_full_gc = amount_live;

  // The policy does not have enough data until at least some major collections
  // have been done.
  if (_avg_major_pause->count() >= AdaptiveSizePolicyReadyThreshold) {
    _old_gen_policy_is_ready = true;
  }

  // Interval times use this timer to measure the interval that
  // the mutator runs.  Reset after the GC pause has been measured.
  _major_timer.reset();
  _major_timer.start();
}
void PSAdaptiveSizePolicy::compute_old_gen_free_space(
                                           size_t old_live,
                                           size_t cur_eden,
                                           size_t max_old_gen_size,
                                           bool   is_full_gc) {

  // Update statistics
  // Time statistics are updated as we go, update footprint stats here
  if (is_full_gc) {
    // old_live is only accurate after a full gc
    avg_old_live()->sample(old_live);
  }

  // This code used to return if the policy was not ready , i.e.,
  // policy_is_ready() returning false.  The intent was that
  // decisions below needed major collection times and so could
  // not be made before two major collections.  A consequence was
  // adjustments to the young generation were not done until after
  // two major collections even if the minor collections times
  // exceeded the requested goals.  Now let the young generation
  // adjust for the minor collection times.  Major collection times
  // will be zero for the first collection and will naturally be
  // ignored.  Tenured generation adjustments are only made at the
  // full collections so until the second major collection has
  // been reached, no tenured generation adjustments will be made.

  // Until we know better, desired promotion size uses the last calculation
  size_t desired_promo_size = _promo_size;

  // Start eden at the current value.  The desired value that is stored
  // in _eden_size is not bounded by constraints of the heap and can
  // run away.
  //
  // As expected setting desired_eden_size to the current
  // value of desired_eden_size as a starting point
  // caused desired_eden_size to grow way too large and caused
  // an overflow down stream.  It may have improved performance in
  // some case but is dangerous.
  size_t desired_eden_size = cur_eden;

  // Cache some values. There's a bit of work getting these, so
  // we might save a little time.
  const double major_cost = major_gc_cost();
  const double minor_cost = minor_gc_cost();

  // Limits on our growth
  size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average());

  // But don't force a promo size below the current promo size. Otherwise,
  // the promo size will shrink for no good reason.
  promo_limit = MAX2(promo_limit, _promo_size);

  const double gc_cost_limit = GCTimeLimit/100.0;

  // Which way should we go?
  // if pause requirement is not met
  //   adjust size of any generation with average paus exceeding
  //   the pause limit.  Adjust one pause at a time (the larger)
  //   and only make adjustments for the major pause at full collections.
  // else if throughput requirement not met
  //   adjust the size of the generation with larger gc time.  Only
  //   adjust one generation at a time.
  // else
  //   adjust down the total heap size.  Adjust down the larger of the
  //   generations.

  // Add some checks for a threshold for a change.  For example,
  // a change less than the necessary alignment is probably not worth
  // attempting.

  if ((_avg_minor_pause->padded_average() > gc_pause_goal_sec()) ||
      (_avg_major_pause->padded_average() > gc_pause_goal_sec())) {
    //
    // Check pauses
    //
    // Make changes only to affect one of the pauses (the larger)
    // at a time.
    if (is_full_gc) {
      set_decide_at_full_gc(decide_at_full_gc_true);
      adjust_promo_for_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);
    }
  } else if (adjusted_mutator_cost() < _throughput_goal) {
    // This branch used to require that (mutator_cost() > 0.0 in 1.4.2.
    // This sometimes resulted in skipping to the minimize footprint
    // code.  Change this to try and reduce GC time if mutator time is
    // negative for whatever reason.  Or for future consideration,
    // bail out of the code if mutator time is negative.
    //
    // Throughput
    //
    assert(major_cost >= 0.0, "major cost is < 0.0");
    assert(minor_cost >= 0.0, "minor cost is < 0.0");
    // Try to reduce the GC times.
    if (is_full_gc) {
      set_decide_at_full_gc(decide_at_full_gc_true);
      adjust_promo_for_throughput(is_full_gc, &desired_promo_size);
    }
  } else {

    // Be conservative about reducing the footprint.
    //   Do a minimum number of major collections first.
    //   Have reasonable averages for major and minor collections costs.
    if (UseAdaptiveSizePolicyFootprintGoal &&
        young_gen_policy_is_ready() &&
        avg_major_gc_cost()->average() >= 0.0 &&
        avg_minor_gc_cost()->average() >= 0.0) {
      if (is_full_gc) {
        set_decide_at_full_gc(decide_at_full_gc_true);
        size_t desired_sum = desired_eden_size + desired_promo_size;
        desired_promo_size = adjust_promo_for_footprint(desired_promo_size, desired_sum);
      }
    }
  }

  // Note we make the same tests as in the code block below;  the code
  // seems a little easier to read with the printing in another block.
  if (desired_promo_size > promo_limit)  {
    // "free_in_old_gen" was the original value for used for promo_limit
    size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
    log_debug(gc, ergo)(
          "PSAdaptiveSizePolicy::compute_old_gen_free_space limits:"
          " desired_promo_size: " SIZE_FORMAT
          " promo_limit: " SIZE_FORMAT
          " free_in_old_gen: " SIZE_FORMAT
          " max_old_gen_size: " SIZE_FORMAT
          " avg_old_live: " SIZE_FORMAT,
          desired_promo_size, promo_limit, free_in_old_gen,
          max_old_gen_size, (size_t) avg_old_live()->average());
  }
  if (gc_cost() > gc_cost_limit) {
    log_debug(gc, ergo)(
          "PSAdaptiveSizePolicy::compute_old_gen_free_space: gc time limit"
          " gc_cost: %f "
          " GCTimeLimit: " UINTX_FORMAT,
          gc_cost(), GCTimeLimit);
  }

  // Align everything and make a final limit check
  desired_promo_size = align_size_up(desired_promo_size, _space_alignment);
  desired_promo_size = MAX2(desired_promo_size, _space_alignment);

  promo_limit = align_size_down(promo_limit, _space_alignment);

  // And one last limit check, now that we've aligned things.
  desired_promo_size = MIN2(desired_promo_size, promo_limit);

  // Timing stats
  log_debug(gc, ergo)("PSAdaptiveSizePolicy::compute_old_gen_free_space: costs minor_time: %f major_cost: %f  mutator_cost: %f throughput_goal: %f",
             minor_gc_cost(), major_gc_cost(), mutator_cost(), _throughput_goal);

  log_trace(gc, ergo)("Minor_pause: %f major_pause: %f minor_interval: %f major_interval: %f pause_goal: %f",
                      _avg_minor_pause->padded_average(),
                      _avg_major_pause->padded_average(),
                      _avg_minor_interval->average(),
                      _avg_major_interval->average(),
                      gc_pause_goal_sec());

  // Footprint stats
  log_debug(gc, ergo)("Live_space: " SIZE_FORMAT " free_space: " SIZE_FORMAT,
                      live_space(), free_space());

  log_trace(gc, ergo)("Base_footprint: " SIZE_FORMAT " avg_young_live: " SIZE_FORMAT " avg_old_live: " SIZE_FORMAT,
                      (size_t)_avg_base_footprint->average(),
                      (size_t)avg_young_live()->average(),
                      (size_t)avg_old_live()->average());

  log_debug(gc, ergo)("Old promo_size: " SIZE_FORMAT " desired_promo_size: " SIZE_FORMAT,
                      _promo_size, desired_promo_size);

  set_promo_size(desired_promo_size);
}
void PSAdaptiveSizePolicy::compute_generation_free_space(size_t young_live,
                                               size_t eden_live,
                                               size_t old_live,
                                               size_t perm_live,
                                               size_t cur_eden,
                                               size_t max_old_gen_size,
                                               size_t max_eden_size,
                                               bool   is_full_gc,
                                               GCCause::Cause gc_cause) {

  // Update statistics
  // Time statistics are updated as we go, update footprint stats here
  _avg_base_footprint->sample(BaseFootPrintEstimate + perm_live);
  avg_young_live()->sample(young_live);
  avg_eden_live()->sample(eden_live);
  if (is_full_gc) {
    // old_live is only accurate after a full gc
    avg_old_live()->sample(old_live);
  }

  // This code used to return if the policy was not ready , i.e.,
  // policy_is_ready() returning false.  The intent was that
  // decisions below needed major collection times and so could
  // not be made before two major collections.  A consequence was
  // adjustments to the young generation were not done until after
  // two major collections even if the minor collections times
  // exceeded the requested goals.  Now let the young generation
  // adjust for the minor collection times.  Major collection times
  // will be zero for the first collection and will naturally be
  // ignored.  Tenured generation adjustments are only made at the
  // full collections so until the second major collection has
  // been reached, no tenured generation adjustments will be made.

  // Until we know better, desired promotion size uses the last calculation
  size_t desired_promo_size = _promo_size;

  // Start eden at the current value.  The desired value that is stored
  // in _eden_size is not bounded by constraints of the heap and can
  // run away.
  //
  // As expected setting desired_eden_size to the current
  // value of desired_eden_size as a starting point
  // caused desired_eden_size to grow way too large and caused
  // an overflow down stream.  It may have improved performance in
  // some case but is dangerous.
  size_t desired_eden_size = cur_eden;

#ifdef ASSERT
  size_t original_promo_size = desired_promo_size;
  size_t original_eden_size = desired_eden_size;
#endif

  // Cache some values. There's a bit of work getting these, so
  // we might save a little time.
  const double major_cost = major_gc_cost();
  const double minor_cost = minor_gc_cost();

  // Used for diagnostics
  clear_generation_free_space_flags();

  // Limits on our growth
  size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average());

  // This method sets the desired eden size.  That plus the
  // desired survivor space sizes sets the desired young generation
  // size.  This methods does not know what the desired survivor
  // size is but expects that other policy will attempt to make
  // the survivor sizes compatible with the live data in the
  // young generation.  This limit is an estimate of the space left
  // in the young generation after the survivor spaces have been
  // subtracted out.
  size_t eden_limit = max_eden_size;

  // But don't force a promo size below the current promo size. Otherwise,
  // the promo size will shrink for no good reason.
  promo_limit = MAX2(promo_limit, _promo_size);

  const double gc_cost_limit = GCTimeLimit/100.0;

  // Which way should we go?
  // if pause requirement is not met
  //   adjust size of any generation with average paus exceeding
  //   the pause limit.  Adjust one pause at a time (the larger)
  //   and only make adjustments for the major pause at full collections.
  // else if throughput requirement not met
  //   adjust the size of the generation with larger gc time.  Only
  //   adjust one generation at a time.
  // else
  //   adjust down the total heap size.  Adjust down the larger of the
  //   generations.

  // Add some checks for a threshhold for a change.  For example,
  // a change less than the necessary alignment is probably not worth
  // attempting.


  if ((_avg_minor_pause->padded_average() > gc_pause_goal_sec()) ||
      (_avg_major_pause->padded_average() > gc_pause_goal_sec())) {
    //
    // Check pauses
    //
    // Make changes only to affect one of the pauses (the larger)
    // at a time.
    adjust_for_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);

  } else if (_avg_minor_pause->padded_average() > gc_minor_pause_goal_sec()) {
    // Adjust only for the minor pause time goal
    adjust_for_minor_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);

  } else if(adjusted_mutator_cost() < _throughput_goal) {
    // This branch used to require that (mutator_cost() > 0.0 in 1.4.2.
    // This sometimes resulted in skipping to the minimize footprint
    // code.  Change this to try and reduce GC time if mutator time is
    // negative for whatever reason.  Or for future consideration,
    // bail out of the code if mutator time is negative.
    //
    // Throughput
    //
    assert(major_cost >= 0.0, "major cost is < 0.0");
    assert(minor_cost >= 0.0, "minor cost is < 0.0");
    // Try to reduce the GC times.
    adjust_for_throughput(is_full_gc, &desired_promo_size, &desired_eden_size);

  } else {

    // Be conservative about reducing the footprint.
    //   Do a minimum number of major collections first.
    //   Have reasonable averages for major and minor collections costs.
    if (UseAdaptiveSizePolicyFootprintGoal &&
        young_gen_policy_is_ready() &&
        avg_major_gc_cost()->average() >= 0.0 &&
        avg_minor_gc_cost()->average() >= 0.0) {
      size_t desired_sum = desired_eden_size + desired_promo_size;
      desired_eden_size = adjust_eden_for_footprint(desired_eden_size,
                                                    desired_sum);
      if (is_full_gc) {
        set_decide_at_full_gc(decide_at_full_gc_true);
        desired_promo_size = adjust_promo_for_footprint(desired_promo_size,
                                                        desired_sum);
      }
    }
  }

  // Note we make the same tests as in the code block below;  the code
  // seems a little easier to read with the printing in another block.
  if (PrintAdaptiveSizePolicy) {
    if (desired_promo_size > promo_limit)  {
      // "free_in_old_gen" was the original value for used for promo_limit
      size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
      gclog_or_tty->print_cr(
            "PSAdaptiveSizePolicy::compute_generation_free_space limits:"
            " desired_promo_size: " SIZE_FORMAT
            " promo_limit: " SIZE_FORMAT
            " free_in_old_gen: " SIZE_FORMAT
            " max_old_gen_size: " SIZE_FORMAT
            " avg_old_live: " SIZE_FORMAT,
            desired_promo_size, promo_limit, free_in_old_gen,
            max_old_gen_size, (size_t) avg_old_live()->average());
    }
    if (desired_eden_size > eden_limit) {
      gclog_or_tty->print_cr(
            "AdaptiveSizePolicy::compute_generation_free_space limits:"
            " desired_eden_size: " SIZE_FORMAT
            " old_eden_size: " SIZE_FORMAT
            " eden_limit: " SIZE_FORMAT
            " cur_eden: " SIZE_FORMAT
            " max_eden_size: " SIZE_FORMAT
            " avg_young_live: " SIZE_FORMAT,
            desired_eden_size, _eden_size, eden_limit, cur_eden,
            max_eden_size, (size_t)avg_young_live()->average());
    }
    if (gc_cost() > gc_cost_limit) {
      gclog_or_tty->print_cr(
            "AdaptiveSizePolicy::compute_generation_free_space: gc time limit"
            " gc_cost: %f "
            " GCTimeLimit: %d",
            gc_cost(), GCTimeLimit);
    }
  }

  // Align everything and make a final limit check
  const size_t alignment = _intra_generation_alignment;
  desired_eden_size  = align_size_up(desired_eden_size, alignment);
  desired_eden_size  = MAX2(desired_eden_size, alignment);
  desired_promo_size = align_size_up(desired_promo_size, alignment);
  desired_promo_size = MAX2(desired_promo_size, alignment);

  eden_limit  = align_size_down(eden_limit, alignment);
  promo_limit = align_size_down(promo_limit, alignment);

  // Is too much time being spent in GC?
  //   Is the heap trying to grow beyond it's limits?

  const size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
  if (desired_promo_size > free_in_old_gen && desired_eden_size > eden_limit) {

    // eden_limit is the upper limit on the size of eden based on
    // the maximum size of the young generation and the sizes
    // of the survivor space.
    // The question being asked is whether the gc costs are high
    // and the space being recovered by a collection is low.
    // free_in_young_gen is the free space in the young generation
    // after a collection and promo_live is the free space in the old
    // generation after a collection.
    //
    // Use the minimum of the current value of the live in the
    // young gen or the average of the live in the young gen.
    // If the current value drops quickly, that should be taken
    // into account (i.e., don't trigger if the amount of free
    // space has suddenly jumped up).  If the current is much
    // higher than the average, use the average since it represents
    // the longer term behavor.
    const size_t live_in_eden = MIN2(eden_live, (size_t) avg_eden_live()->average());
    const size_t free_in_eden = eden_limit > live_in_eden ?
      eden_limit - live_in_eden : 0;
    const size_t total_free_limit = free_in_old_gen + free_in_eden;
    const size_t total_mem = max_old_gen_size + max_eden_size;
    const double mem_free_limit = total_mem * (GCHeapFreeLimit/100.0);
    if (PrintAdaptiveSizePolicy && (Verbose ||
        (total_free_limit < (size_t) mem_free_limit))) {
      gclog_or_tty->print_cr(
            "PSAdaptiveSizePolicy::compute_generation_free_space limits:"
            " promo_limit: " SIZE_FORMAT
            " eden_limit: " SIZE_FORMAT
            " total_free_limit: " SIZE_FORMAT
            " max_old_gen_size: " SIZE_FORMAT
            " max_eden_size: " SIZE_FORMAT
            " mem_free_limit: " SIZE_FORMAT,
            promo_limit, eden_limit, total_free_limit,
            max_old_gen_size, max_eden_size,
            (size_t) mem_free_limit);
    }

    if (is_full_gc) {
      if (gc_cost() > gc_cost_limit &&
        total_free_limit < (size_t) mem_free_limit) {
        // Collections, on average, are taking too much time, and
        //      gc_cost() > gc_cost_limit
        // we have too little space available after a full gc.
        //      total_free_limit < mem_free_limit
        // where
        //   total_free_limit is the free space available in
        //     both generations
        //   total_mem is the total space available for allocation
        //     in both generations (survivor spaces are not included
        //     just as they are not included in eden_limit).
        //   mem_free_limit is a fraction of total_mem judged to be an
        //     acceptable amount that is still unused.
        // The heap can ask for the value of this variable when deciding
        // whether to thrown an OutOfMemory error.
        // Note that the gc time limit test only works for the collections
        // of the young gen + tenured gen and not for collections of the
        // permanent gen.  That is because the calculation of the space
        // freed by the collection is the free space in the young gen +
        // tenured gen.
        // Ignore explicit GC's. Ignoring explicit GC's at this level
        // is the equivalent of the GC did not happen as far as the
        // overhead calculation is concerted (i.e., the flag is not set
        // and the count is not affected).  Also the average will not
        // have been updated unless UseAdaptiveSizePolicyWithSystemGC is on.
        if (!GCCause::is_user_requested_gc(gc_cause) &&
            !GCCause::is_serviceability_requested_gc(gc_cause)) {
          inc_gc_time_limit_count();
          if (UseGCOverheadLimit &&
              (gc_time_limit_count() > AdaptiveSizePolicyGCTimeLimitThreshold)){
            // All conditions have been met for throwing an out-of-memory
            _gc_time_limit_exceeded = true;
            // Avoid consecutive OOM due to the gc time limit by resetting
            // the counter.
            reset_gc_time_limit_count();
          }
          _print_gc_time_limit_would_be_exceeded = true;
        }
      } else {
        // Did not exceed overhead limits
        reset_gc_time_limit_count();
      }
    }
  }


  // And one last limit check, now that we've aligned things.
  if (desired_eden_size > eden_limit) {
    // If the policy says to get a larger eden but
    // is hitting the limit, don't decrease eden.
    // This can lead to a general drifting down of the
    // eden size.  Let the tenuring calculation push more
    // into the old gen.
    desired_eden_size = MAX2(eden_limit, cur_eden);
  }
  desired_promo_size = MIN2(desired_promo_size, promo_limit);


  if (PrintAdaptiveSizePolicy) {
    // Timing stats
    gclog_or_tty->print(
               "PSAdaptiveSizePolicy::compute_generation_free_space: costs"
               " minor_time: %f"
               " major_cost: %f"
               " mutator_cost: %f"
               " throughput_goal: %f",
               minor_gc_cost(), major_gc_cost(), mutator_cost(),
               _throughput_goal);

    // We give more details if Verbose is set
    if (Verbose) {
      gclog_or_tty->print( " minor_pause: %f"
                  " major_pause: %f"
                  " minor_interval: %f"
                  " major_interval: %f"
                  " pause_goal: %f",
                  _avg_minor_pause->padded_average(),
                  _avg_major_pause->padded_average(),
                  _avg_minor_interval->average(),
                  _avg_major_interval->average(),
                  gc_pause_goal_sec());
    }

    // Footprint stats
    gclog_or_tty->print( " live_space: " SIZE_FORMAT
                " free_space: " SIZE_FORMAT,
                live_space(), free_space());
    // More detail
    if (Verbose) {
      gclog_or_tty->print( " base_footprint: " SIZE_FORMAT
                  " avg_young_live: " SIZE_FORMAT
                  " avg_old_live: " SIZE_FORMAT,
                  (size_t)_avg_base_footprint->average(),
                  (size_t)avg_young_live()->average(),
                  (size_t)avg_old_live()->average());
    }

    // And finally, our old and new sizes.
    gclog_or_tty->print(" old_promo_size: " SIZE_FORMAT
               " old_eden_size: " SIZE_FORMAT
               " desired_promo_size: " SIZE_FORMAT
               " desired_eden_size: " SIZE_FORMAT,
               _promo_size, _eden_size,
               desired_promo_size, desired_eden_size);
    gclog_or_tty->cr();
  }

  decay_supplemental_growth(is_full_gc);

  set_promo_size(desired_promo_size);
  set_eden_size(desired_eden_size);
};