/* finds the desired result, given y, the primes to be killed, the denominators, the full set of initial primes, and the density of relative primes */ extern BigNum find_M(BigNum * guess, BigNum * y, struct BIGNUM_ARRAY_TYPE left_to_kill, struct BIGNUM_ARRAY_TYPE denom, struct BIGNUM_ARRAY_TYPE initial_primes, BigRat *magic) { BigNum temp, temp2, current_mu; #if 0 Mu(¤t_mu, guess, left_to_kill, denom); temp = y - current_mu; temp2 = b_abs(temp); while (b_cmp(temp2, LINEAR_SEARCH_LIMIT) > 0) { temp2 = guess_mu_inverse(&temp, magic); (*guess) = (*guess) + temp2; Mu(¤t_mu, guess, left_to_kill, denom); temp = y - current_mu; temp2 = b_abs(temp); } temp = b_clear(); temp2 = b_clear(); #else *guess = "11"; current_mu = "1"; #endif return(linear_find(y, ¤t_mu, guess, initial_primes)); }
/* This function merges two arrays */ extern struct BIGNUM_ARRAY_TYPE join(struct BIGNUM_ARRAY_TYPE first, struct BIGNUM_ARRAY_TYPE second) { struct BIGNUM_ARRAY_TYPE result; long count1 = 0; long count2 = 0; BigNum absfirst, abssecond; result.size = first.size + second.size; // result.list = static_cast<BigNum *>(malloc(result.size * sizeof(BigNum))); result.list = new BigNum[result.size]; if ((count1 < first.size) && (count2 < second.size)) { absfirst = b_abs(first.list[count1]); abssecond = b_abs(second.list[count2]); } while ((count1 < first.size) && (count2 < second.size)) { if (b_cmp(absfirst, abssecond) > 0) { result.list[count1+count2] = second.list[count2]; ++count2; if (count2 < second.size) abssecond = b_abs(second.list[count2]); } else { result.list[count1+count2] = first.list[count1]; ++count1; if (count1 < first.size) absfirst = b_abs(first.list[count1]); } } absfirst.b_clear(); abssecond.b_clear(); for (;count1<first.size;count1++) result.list[count1+count2] = first.list[count1]; for (;count2<second.size;count2++) result.list[count1+count2] = second.list[count2]; return(result); }
/* This function multiplies and reduces an array */ extern struct BIGNUM_ARRAY_TYPE mult_reduce(BigNum * number, struct BIGNUM_ARRAY_TYPE set, BigNum * limit) { struct BIGNUM_ARRAY_TYPE result; long count, count2; BigNum plussed/*, temp*/; #if 0 number = b_neg(number); /* multiply by -number, except with 1 */ temp = b_abs(number); #endif // result.list = static_cast<BigNum *>(malloc(set.size * sizeof(BigNum))); result.list = new BigNum[set.size]; count2 = 0; if (set.size > 0) { result.list[count2] = "0"; for (count=0;count<set.size;count++) { /*if(mpz_cmp_ui(set.list[count],1U) != 0)*/ result.list[count2] = set.list[count] * (*number); /*else result.list[count2]) = set.list[count] * temp; */ plussed = b_abs(result.list[count2]); if (b_cmp(plussed, *limit) < 0) { ++count2; if (count2 < set.size) result.list[count2] = "0"; } } } result.size = count2; plussed.b_clear(); /* temp.b_clear(); */ return(result); }
void AGC_stepImpl(const emlrtStack *sp, comm_AGC *obj, const creal_T x[1408], creal_T y[1408]) { real_T g; real_T K; real_T dv1[1408]; real_T dv2[1408]; real_T dv3[99]; real_T logAbsX2[1408]; int32_T p; emlrtStack st; st.prev = sp; st.tls = sp->tls; g = obj->Gain; K = obj->pCastedStepSize; b_abs(x, dv1); st.site = &kb_emlrtRSI; power(&st, dv1, dv2); filter(dv2, obj->FilterState, logAbsX2, dv3); for (p = 0; p < 99; p++) { obj->FilterState[p] = dv3[p]; } st.site = &lb_emlrtRSI; b_log(&st, logAbsX2); for (p = 0; p < 1408; p++) { y[p].re = g; y[p].im = 0.0; g = muDoubleScalarMin(g + K * (0.0 - (logAbsX2[p] + 2.0 * g)), 3.4538776394910684); } b_exp(y); for (p = 0; p < 1408; p++) { K = y[p].re; y[p].re = x[p].re * y[p].re - x[p].im * y[p].im; y[p].im = x[p].re * y[p].im + x[p].im * K; } obj->Gain = g; }
/* Function Definitions */ real_T signalPower(const emxArray_creal_T *input) { real_T out; emxArray_real_T *a; emxArray_real_T *b; int32_T i2; int32_T i; const mxArray *y; static const int32_T iv11[2] = { 1, 45 }; const mxArray *m1; char_T cv17[45]; static const char_T cv18[45] = { 'C', 'o', 'd', 'e', 'r', ':', 't', 'o', 'o', 'l', 'b', 'o', 'x', ':', 'm', 't', 'i', 'm', 'e', 's', '_', 'n', 'o', 'D', 'y', 'n', 'a', 'm', 'i', 'c', 'S', 'c', 'a', 'l', 'a', 'r', 'E', 'x', 'p', 'a', 'n', 's', 'i', 'o', 'n' }; const mxArray *b_y; static const int32_T iv12[2] = { 1, 21 }; char_T cv19[21]; static const char_T cv20[21] = { 'C', 'o', 'd', 'e', 'r', ':', 'M', 'A', 'T', 'L', 'A', 'B', ':', 'i', 'n', 'n', 'e', 'r', 'd', 'i', 'm' }; real_T c_y; ptrdiff_t n_t; ptrdiff_t incx_t; ptrdiff_t incy_t; double * xix0_t; double * yiy0_t; emlrtHeapReferenceStackEnterFcnR2012b(emlrtRootTLSGlobal); b_emxInit_real_T(&a, 2, &f_emlrtRTEI, TRUE); emxInit_real_T(&b, 1, &f_emlrtRTEI, TRUE); /* out=input'*input/sentBitsSize; */ /* out=abs(out); */ emlrtPushRtStackR2012b(&l_emlrtRSI, emlrtRootTLSGlobal); b_abs(input, b); i2 = a->size[0] * a->size[1]; a->size[0] = 1; emxEnsureCapacity((emxArray__common *)a, i2, (int32_T)sizeof(real_T), &f_emlrtRTEI); i = b->size[0]; i2 = a->size[0] * a->size[1]; a->size[1] = i; emxEnsureCapacity((emxArray__common *)a, i2, (int32_T)sizeof(real_T), &f_emlrtRTEI); i = b->size[0]; for (i2 = 0; i2 < i; i2++) { a->data[i2] = b->data[i2]; } b_abs(input, b); emlrtPushRtStackR2012b(&n_emlrtRSI, emlrtRootTLSGlobal); if (!(a->size[1] == b->size[0])) { if ((a->size[1] == 1) || (b->size[0] == 1)) { emlrtPushRtStackR2012b(&p_emlrtRSI, emlrtRootTLSGlobal); emlrt_synchGlobalsToML(); y = NULL; m1 = mxCreateCharArray(2, iv11); for (i = 0; i < 45; i++) { cv17[i] = cv18[i]; } emlrtInitCharArrayR2013a(emlrtRootTLSGlobal, 45, m1, cv17); emlrtAssign(&y, m1); error(message(y, &i_emlrtMCI), &j_emlrtMCI); emlrt_synchGlobalsFromML(); emlrtPopRtStackR2012b(&p_emlrtRSI, emlrtRootTLSGlobal); } else { emlrtPushRtStackR2012b(&o_emlrtRSI, emlrtRootTLSGlobal); emlrt_synchGlobalsToML(); b_y = NULL; m1 = mxCreateCharArray(2, iv12); for (i = 0; i < 21; i++) { cv19[i] = cv20[i]; } emlrtInitCharArrayR2013a(emlrtRootTLSGlobal, 21, m1, cv19); emlrtAssign(&b_y, m1); error(message(b_y, &k_emlrtMCI), &l_emlrtMCI); emlrt_synchGlobalsFromML(); emlrtPopRtStackR2012b(&o_emlrtRSI, emlrtRootTLSGlobal); } } emlrtPopRtStackR2012b(&n_emlrtRSI, emlrtRootTLSGlobal); if ((a->size[1] == 1) || (b->size[0] == 1)) { c_y = 0.0; for (i2 = 0; i2 < a->size[1]; i2++) { c_y += a->data[a->size[0] * i2] * b->data[i2]; } } else { emlrtPushRtStackR2012b(&m_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&q_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&r_emlrtRSI, emlrtRootTLSGlobal); if (a->size[1] < 1) { c_y = 0.0; } else { emlrtPushRtStackR2012b(&t_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&y_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&eb_emlrtRSI, emlrtRootTLSGlobal); emlrt_checkEscapedGlobals(); n_t = (ptrdiff_t)(a->size[1]); emlrtPopRtStackR2012b(&eb_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&y_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&ab_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&eb_emlrtRSI, emlrtRootTLSGlobal); emlrt_checkEscapedGlobals(); incx_t = (ptrdiff_t)(1); emlrtPopRtStackR2012b(&eb_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&ab_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&bb_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&eb_emlrtRSI, emlrtRootTLSGlobal); emlrt_checkEscapedGlobals(); incy_t = (ptrdiff_t)(1); emlrtPopRtStackR2012b(&eb_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&bb_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&cb_emlrtRSI, emlrtRootTLSGlobal); emlrt_checkEscapedGlobals(); xix0_t = (double *)(&a->data[0]); emlrtPopRtStackR2012b(&cb_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&db_emlrtRSI, emlrtRootTLSGlobal); emlrt_checkEscapedGlobals(); yiy0_t = (double *)(&b->data[0]); emlrtPopRtStackR2012b(&db_emlrtRSI, emlrtRootTLSGlobal); emlrt_checkEscapedGlobals(); c_y = ddot(&n_t, xix0_t, &incx_t, yiy0_t, &incy_t); emlrtPopRtStackR2012b(&t_emlrtRSI, emlrtRootTLSGlobal); } emlrtPopRtStackR2012b(&r_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&q_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&m_emlrtRSI, emlrtRootTLSGlobal); } emxFree_real_T(&b); emxFree_real_T(&a); out = c_y / (real_T)input->size[0]; emlrtPopRtStackR2012b(&l_emlrtRSI, emlrtRootTLSGlobal); emlrtHeapReferenceStackLeaveFcnR2012b(emlrtRootTLSGlobal); return out; }
/* Function Definitions */ void features_bta(const emxArray_real_T *tap, double ft[2]) { int i12; emxArray_real_T *t; int loop_ub; double tapdt; emxArray_real_T *tapx; emxArray_real_T *dx; emxArray_boolean_T *i; emxArray_int32_T *r12; double tapiqr; /* Computes basic tapping test features. */ /* Inputs: */ /* tap - tapping data vector: tap(:,1) - time points, */ /* tap(:,2:3) - X,Y touch screen coordinates */ /* */ /* (CC BY-SA 3.0) Max Little, 2014 */ /* Output feature vector */ for (i12 = 0; i12 < 2; i12++) { ft[i12] = rtNaN; } /* Ignore zero-length inputs */ if (tap->size[0] == 0) { } else { b_emxInit_real_T(&t, 1); /* Calculate relative time */ loop_ub = tap->size[0]; tapdt = tap->data[0]; i12 = t->size[0]; t->size[0] = loop_ub; emxEnsureCapacity((emxArray__common *)t, i12, (int)sizeof(double)); for (i12 = 0; i12 < loop_ub; i12++) { t->data[i12] = tap->data[i12] - tapdt; } b_emxInit_real_T(&tapx, 1); /* X,Y offset */ loop_ub = tap->size[0]; i12 = tapx->size[0]; tapx->size[0] = loop_ub; emxEnsureCapacity((emxArray__common *)tapx, i12, (int)sizeof(double)); for (i12 = 0; i12 < loop_ub; i12++) { tapx->data[i12] = tap->data[i12 + tap->size[0]]; } tapdt = mean(tapx); i12 = tapx->size[0]; emxEnsureCapacity((emxArray__common *)tapx, i12, (int)sizeof(double)); loop_ub = tapx->size[0]; for (i12 = 0; i12 < loop_ub; i12++) { tapx->data[i12] -= tapdt; } b_emxInit_real_T(&dx, 1); emxInit_boolean_T(&i, 1); /* Find left/right finger 'depress' events */ diff(tapx, dx); b_abs(dx, tapx); i12 = i->size[0]; i->size[0] = tapx->size[0]; emxEnsureCapacity((emxArray__common *)i, i12, (int)sizeof(boolean_T)); loop_ub = tapx->size[0]; for (i12 = 0; i12 < loop_ub; i12++) { i->data[i12] = (tapx->data[i12] > 20.0); } emxInit_int32_T(&r12, 1); eml_li_find(i, r12); i12 = dx->size[0]; dx->size[0] = r12->size[0]; emxEnsureCapacity((emxArray__common *)dx, i12, (int)sizeof(double)); loop_ub = r12->size[0]; emxFree_boolean_T(&i); for (i12 = 0; i12 < loop_ub; i12++) { dx->data[i12] = t->data[r12->data[i12] - 1]; } emxFree_int32_T(&r12); emxFree_real_T(&t); /* Find depress event intervals */ diff(dx, tapx); /* Median and spread of tapping rate */ emxFree_real_T(&dx); if (tapx->size[0] == 0) { tapdt = rtNaN; } else { tapdt = vectormedian(tapx); } tapiqr = iqr(tapx); /* Output tapping test feature vector */ ft[0] = tapdt; ft[1] = tapiqr; emxFree_real_T(&tapx); } }
/* * fft_bandpower_calculate * data: the signal of 1 dimension vector * Fs: the frequency provide * band: the band provided, should have upper and lower bound * Arguments : const double data[256] * double Fs * double band[2] * double *totalpower * double *pband * Return Type : void */ void fft_bandpower_calculate(const double data[256], double Fs, double band[2], double *totalpower, double *pband) { creal_T A[256]; double y; double f[129]; int i; creal_T b_A[256]; creal_T c_A[129]; double c_power[129]; boolean_T bv0[129]; boolean_T bv1[129]; double dv0[129]; unsigned char tmp_data[129]; int trueCount; int partialTrueCount; double power_data[129]; int power_size[2]; int tmp_size[2]; double b_tmp_data[129]; /* get of the data */ fft(data, A); y = Fs / 2.0; linspace(f); for (i = 0; i < 129; i++) { f[i] *= y; } for (i = 0; i < 256; i++) { if (A[i].im == 0.0) { b_A[i].re = A[i].re / 256.0; b_A[i].im = 0.0; } else if (A[i].re == 0.0) { b_A[i].re = 0.0; b_A[i].im = A[i].im / 256.0; } else { b_A[i].re = A[i].re / 256.0; b_A[i].im = A[i].im / 256.0; } } memcpy(&c_A[0], &b_A[0], 129U * sizeof(creal_T)); b_abs(c_A, c_power); for (i = 0; i < 129; i++) { c_power[i] *= 2.0; } /* see if band power is in side the frequency range */ if (band[1] > f[128]) { band[1] = f[128]; } if (band[0] < f[0]) { /* if the band lower bound is less than f(1) */ band[0] = f[0]; } for (i = 0; i < 129; i++) { bv0[i] = (f[i] >= band[0]); bv1[i] = (f[i] <= band[1]); } power(c_power, dv0); *totalpower = sum(dv0); trueCount = 0; for (i = 0; i < 129; i++) { if (bv0[i] && bv1[i]) { trueCount++; } } partialTrueCount = 0; for (i = 0; i < 129; i++) { if (bv0[i] && bv1[i]) { tmp_data[partialTrueCount] = (unsigned char)(i + 1); partialTrueCount++; } } power_size[0] = 1; power_size[1] = trueCount; for (i = 0; i < trueCount; i++) { power_data[i] = c_power[tmp_data[i] - 1]; } b_power(power_data, power_size, b_tmp_data, tmp_size); *pband = b_sum(b_tmp_data, tmp_size); }
// // % Erased all parts not wanted for codegeneration /Martin %% // Arguments : emxArray_real_T *s // emxArray_boolean_T *outliers // emxArray_boolean_T *outliers2 // Return Type : void // void locateOutliers(emxArray_real_T *s, emxArray_boolean_T *outliers, emxArray_boolean_T *outliers2) { int ia; int ic; emxArray_real_T *b_y1; int orderForDim; int iyLead; double work_data_idx_0; int m; double tmp1; double tmp2; emxArray_real_T *SigmaMat; emxArray_int32_T *r0; emxArray_int32_T *r1; emxArray_real_T *a; unsigned int s_idx_0; emxArray_real_T *C; int br; double mu; emxArray_real_T *b_s; /* locateOutliers: locates artifacts/outliers from data series */ /* */ /* Inputs: s = array containg data series */ /* method = artifact removal method to use. */ /* methods: 'percent' = percentage filter: locates data > x percent diff than previous data point. */ /* 'sd' = standard deviation filter: locates data > x stdev away from mean. */ /* 'above' = Threshold filter: locates data > threshold value */ /* 'below' = Threshold filter: locates data < threshold value */ /* 'median' = median filter. Outliers are located. */ /* Outputs: outliers = logical array of whether s is artifact/outlier or not */ /* eg. - [0 0 0 1 0], 1=artifact, 0=normal */ /* */ /* Examples: */ /* Locate outliers with 20% percentage filter: */ /* outliers = locateOutlers(s,'percent',0.2) */ /* Locate outliers that are above a threshold of 0.5: */ /* outliers = locateOutlers(s,'thresh','above',0.5) */ /* Locate outliers with median filter: */ /* outliers = locateOutlers(s,'median',4,5) */ /* */ /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */ /* Copyright (C) 2010, John T. Ramshur, [email protected] */ /* */ /* This file is part of HRVAS */ /* */ /* HRVAS is free software: you can redistribute it and/or modify */ /* it under the terms of the GNU General Public License as published by */ /* the Free Software Foundation, either version 3 of the License, or */ /* (at your option) any later version. */ /* */ /* HRVAS is distributed in the hope that it will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU General Public License for more details. */ /* */ /* You should have received a copy of the GNU General Public License */ /* along with Foobar. If not, see <http://www.gnu.org/licenses/>. */ /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */ ia = outliers->size[0]; outliers->size[0] = s->size[0]; emxEnsureCapacity((emxArray__common *)outliers, ia, (int)sizeof(boolean_T)); ic = s->size[0]; for (ia = 0; ia < ic; ia++) { outliers->data[ia] = false; } /* preallocate */ if (1 > s->size[0] - 1) { ic = 0; } else { ic = s->size[0] - 1; } emxInit_real_T(&b_y1, 1); if (s->size[0] == 0) { ia = b_y1->size[0]; b_y1->size[0] = 0; emxEnsureCapacity((emxArray__common *)b_y1, ia, (int)sizeof(double)); } else { if (s->size[0] - 1 <= 1) { orderForDim = s->size[0] - 1; } else { orderForDim = 1; } if (orderForDim < 1) { ia = b_y1->size[0]; b_y1->size[0] = 0; emxEnsureCapacity((emxArray__common *)b_y1, ia, (int)sizeof(double)); } else { orderForDim = s->size[0] - 1; ia = b_y1->size[0]; b_y1->size[0] = orderForDim; emxEnsureCapacity((emxArray__common *)b_y1, ia, (int)sizeof(double)); if (!(b_y1->size[0] == 0)) { orderForDim = 1; iyLead = 0; work_data_idx_0 = s->data[0]; for (m = 2; m <= s->size[0]; m++) { tmp1 = s->data[orderForDim]; tmp2 = work_data_idx_0; work_data_idx_0 = tmp1; tmp1 -= tmp2; orderForDim++; b_y1->data[iyLead] = tmp1; iyLead++; } } } } emxInit_real_T(&SigmaMat, 1); b_abs(b_y1, SigmaMat); /* percent chage from previous */ /* find index of values where pChange > perLimit */ orderForDim = s->size[0]; if (2 > orderForDim) { ia = 0; orderForDim = 0; } else { ia = 1; orderForDim = s->size[0]; } emxInit_int32_T(&r0, 2); iyLead = r0->size[0] * r0->size[1]; r0->size[0] = 1; r0->size[1] = orderForDim - ia; emxEnsureCapacity((emxArray__common *)r0, iyLead, (int)sizeof(int)); orderForDim -= ia; for (iyLead = 0; iyLead < orderForDim; iyLead++) { r0->data[r0->size[0] * iyLead] = ia + iyLead; } emxInit_int32_T1(&r1, 1); ia = r1->size[0]; r1->size[0] = ic; emxEnsureCapacity((emxArray__common *)r1, ia, (int)sizeof(int)); for (ia = 0; ia < ic; ia++) { r1->data[ia] = 1 + ia; } ic = r0->size[0] * r0->size[1]; for (ia = 0; ia < ic; ia++) { outliers->data[r0->data[ia]] = (SigmaMat->data[ia] / s->data[r1->data[ia] - 1] > 0.2); } emxFree_int32_T(&r1); emxFree_int32_T(&r0); emxInit_real_T1(&a, 2); /* Reference: */ /* Clifford, G. (2002). "Characterizing Artefact in the Normal */ /* Human 24-Hour RR Time Series to Aid Identification and Artificial */ /* Replication of Circadian Variations in Human Beat to Beat Heart Rate */ /* using a Simple Threshold." */ /* */ /* Aubert, A. E., D. Ramaekers, et al. (1999). "The analysis of heart */ /* rate variability in unrestrained rats. Validation of method and */ /* results." Comput Methods Programs Biomed 60(3): 197-213. */ /* convert to logical array */ /* preallocate */ iyLead = s->size[0]; s_idx_0 = (unsigned int)s->size[0]; ia = a->size[0] * a->size[1]; a->size[0] = (int)s_idx_0; a->size[1] = 2; emxEnsureCapacity((emxArray__common *)a, ia, (int)sizeof(double)); for (orderForDim = 1; orderForDim <= iyLead; orderForDim++) { a->data[orderForDim - 1] = (double)orderForDim / (double)iyLead; a->data[(orderForDim + a->size[0]) - 1] = 1.0; } mldivide(a, s, b_y1); emxInit_real_T(&C, 1); if (b_y1->size[0] == 1) { ia = C->size[0]; C->size[0] = a->size[0]; emxEnsureCapacity((emxArray__common *)C, ia, (int)sizeof(double)); ic = a->size[0]; for (ia = 0; ia < ic; ia++) { C->data[ia] = 0.0; for (iyLead = 0; iyLead < 2; iyLead++) { C->data[ia] += a->data[ia + a->size[0] * iyLead] * b_y1->data[iyLead]; } } } else { s_idx_0 = (unsigned int)a->size[0]; ia = C->size[0]; C->size[0] = (int)s_idx_0; emxEnsureCapacity((emxArray__common *)C, ia, (int)sizeof(double)); m = a->size[0]; orderForDim = C->size[0]; ia = C->size[0]; C->size[0] = orderForDim; emxEnsureCapacity((emxArray__common *)C, ia, (int)sizeof(double)); for (ia = 0; ia < orderForDim; ia++) { C->data[ia] = 0.0; } if (a->size[0] == 0) { } else { orderForDim = 0; while ((m > 0) && (orderForDim <= 0)) { for (ic = 1; ic <= m; ic++) { C->data[ic - 1] = 0.0; } orderForDim = m; } br = 0; orderForDim = 0; while ((m > 0) && (orderForDim <= 0)) { orderForDim = 0; for (iyLead = br; iyLead + 1 <= br + 2; iyLead++) { if (b_y1->data[iyLead] != 0.0) { ia = orderForDim; for (ic = 0; ic + 1 <= m; ic++) { ia++; C->data[ic] += b_y1->data[iyLead] * a->data[ia - 1]; } } orderForDim += m; } br += 2; orderForDim = m; } } } emxFree_real_T(&a); ia = s->size[0]; emxEnsureCapacity((emxArray__common *)s, ia, (int)sizeof(double)); ic = s->size[0]; for (ia = 0; ia < ic; ia++) { s->data[ia] -= C->data[ia]; } emxFree_real_T(&C); mu = mean(s); /* mean */ orderForDim = s->size[0]; if (s->size[0] > 1) { iyLead = s->size[0] - 1; } else { iyLead = s->size[0]; } if (s->size[0] == 0) { tmp2 = 0.0; } else { ia = 0; work_data_idx_0 = s->data[0]; for (ic = 2; ic <= orderForDim; ic++) { ia++; work_data_idx_0 += s->data[ia]; } work_data_idx_0 /= (double)s->size[0]; ia = 0; tmp1 = s->data[0] - work_data_idx_0; tmp2 = tmp1 * tmp1; for (ic = 2; ic <= orderForDim; ic++) { ia++; tmp1 = s->data[ia] - work_data_idx_0; tmp2 += tmp1 * tmp1; } tmp2 /= (double)iyLead; } emxInit_real_T(&b_s, 1); /* standard deviation */ /* Create a matrix of mean values by replicating the mu vector for n rows */ repmat(mu, (double)s->size[0], b_y1); /* Create a matrix of standard deviation values by replicating the sigma vector for n rows */ repmat(std::sqrt(tmp2), (double)s->size[0], SigmaMat); /* Create a matrix of zeros and ones, where ones indicate the location of outliers */ ia = b_s->size[0]; b_s->size[0] = s->size[0]; emxEnsureCapacity((emxArray__common *)b_s, ia, (int)sizeof(double)); ic = s->size[0]; for (ia = 0; ia < ic; ia++) { b_s->data[ia] = s->data[ia] - b_y1->data[ia]; } b_abs(b_s, b_y1); ia = outliers2->size[0]; outliers2->size[0] = b_y1->size[0]; emxEnsureCapacity((emxArray__common *)outliers2, ia, (int)sizeof(boolean_T)); ic = b_y1->size[0]; emxFree_real_T(&b_s); for (ia = 0; ia < ic; ia++) { outliers2->data[ia] = (b_y1->data[ia] > 3.0 * SigmaMat->data[ia]); } emxFree_real_T(&b_y1); emxFree_real_T(&SigmaMat); /* Reference: */ /* Aubert, A. E., D. Ramaekers, et al. (1999). "The analysis of heart */ /* rate variability in unrestrained rats. Validation of method and */ /* results." Comput Methods Programs Biomed 60(3): 197-213. */ /* convert to logical array */ }
void sammon(sammonStackData *SD, const real_T x[1000000], real_T y[2000], real_T *E) { real_T B; int32_T i; real_T dv0[1000]; int32_T b_i; boolean_T exitg1; real_T alpha1; real_T beta1; char_T TRANSB; char_T TRANSA; ptrdiff_t m_t; ptrdiff_t n_t; ptrdiff_t k_t; ptrdiff_t lda_t; ptrdiff_t ldb_t; ptrdiff_t ldc_t; double * alpha1_t; double * Aia0_t; double * Bib0_t; double * beta1_t; double * Cic0_t; real_T g[2000]; real_T y2[2000]; real_T b_y[2000]; real_T c_y[2000]; real_T d_y[2000]; real_T e_y[2000]; real_T b_g[2000]; int32_T j; int32_T b_j; boolean_T exitg2; real_T dv1[1000]; real_T E_new; /* #codgen */ /* */ /* SAMMON - apply Sammon's nonlinear mapping */ /* */ /* Y = SAMMON(X) applies Sammon's nonlinear mapping procedure on */ /* multivariate data X, where each row represents a pattern and each column */ /* represents a feature. On completion, Y contains the corresponding */ /* co-ordinates of each point on the map. By default, a two-dimensional */ /* map is created. Note if X contains any duplicated rows, SAMMON will */ /* fail (ungracefully). */ /* */ /* [Y,E] = SAMMON(X) also returns the value of the cost function in E (i.e. */ /* the stress of the mapping). */ /* */ /* An N-dimensional output map is generated by Y = SAMMON(X,N) . */ /* */ /* A set of optimisation options can also be specified using a third */ /* argument, Y = SAMMON(X,N,OPTS) , where OPTS is a structure with fields: */ /* */ /* MaxIter - maximum number of iterations */ /* TolFun - relative tolerance on objective function */ /* MaxHalves - maximum number of step halvings */ /* Input - {'raw','distance'} if set to 'distance', X is */ /* interpreted as a matrix of pairwise distances. */ /* Display - {'off', 'on', 'iter'} */ /* Initialisation - {'pca', 'random'} */ /* */ /* The default options structure can be retrieved by calling SAMMON with */ /* no parameters. */ /* */ /* References : */ /* */ /* [1] Sammon, John W. Jr., "A Nonlinear Mapping for Data Structure */ /* Analysis", IEEE Transactions on Computers, vol. C-18, no. 5, */ /* pp 401-409, May 1969. */ /* */ /* See also : SAMMON_TEST */ /* */ /* File : sammon.m */ /* */ /* Date : Monday 12th November 2007. */ /* */ /* Author : Gavin C. Cawley and Nicola L. C. Talbot */ /* */ /* Description : Simple vectorised MATLAB implementation of Sammon's non-linear */ /* mapping algorithm [1]. */ /* */ /* References : [1] Sammon, John W. Jr., "A Nonlinear Mapping for Data */ /* Structure Analysis", IEEE Transactions on Computers, */ /* vol. C-18, no. 5, pp 401-409, May 1969. */ /* */ /* History : 10/08/2004 - v1.00 */ /* 11/08/2004 - v1.10 Hessian made positive semidefinite */ /* 13/08/2004 - v1.11 minor optimisation */ /* 12/11/2007 - v1.20 initialisation using the first n principal */ /* components. */ /* */ /* Thanks : Dr Nick Hamilton ([email protected]) for supplying the */ /* code for implementing initialisation using the first n */ /* principal components (introduced in v1.20). */ /* */ /* To do : The current version does not take advantage of the symmetry */ /* of the distance matrix in order to allow for easy */ /* vectorisation. This may not be a good choice for very large */ /* datasets, so perhaps one day I'll get around to doing a MEX */ /* version using the BLAS library etc. for very large datasets. */ /* */ /* Copyright : (c) Dr Gavin C. Cawley, November 2007. */ /* */ /* This program is free software; you can redistribute it and/or modify */ /* it under the terms of the GNU General Public License as published by */ /* the Free Software Foundation; either version 2 of the License, or */ /* (at your option) any later version. */ /* */ /* This program is distributed in the hope that it will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU General Public License for more details. */ /* */ /* You should have received a copy of the GNU General Public License */ /* along with this program; if not, write to the Free Software */ /* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* */ /* use the default options structure */ /* create distance matrix unless given by parameters */ emlrtPushRtStackR2012b(&emlrtRSI, emlrtRootTLSGlobal); euclid(SD, x, x, SD->f2.D); emlrtPopRtStackR2012b(&emlrtRSI, emlrtRootTLSGlobal); /* remaining initialisation */ B = b_sum(SD->f2.D); eye(SD->f2.delta); for (i = 0; i < 1000000; i++) { SD->f2.D[i] += SD->f2.delta[i]; } rdivide(1.0, SD->f2.D, SD->f2.Dinv); emlrtPushRtStackR2012b(&b_emlrtRSI, emlrtRootTLSGlobal); randn(y); emlrtPopRtStackR2012b(&b_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&c_emlrtRSI, emlrtRootTLSGlobal); b_euclid(SD, y, y, SD->f2.d); eye(SD->f2.delta); for (i = 0; i < 1000000; i++) { SD->f2.d[i] += SD->f2.delta[i]; } emlrtPopRtStackR2012b(&c_emlrtRSI, emlrtRootTLSGlobal); rdivide(1.0, SD->f2.d, SD->f2.dinv); for (i = 0; i < 1000000; i++) { SD->f2.b_D[i] = SD->f2.D[i] - SD->f2.d[i]; } power(SD->f2.b_D, SD->f2.delta); for (i = 0; i < 1000000; i++) { SD->f2.d[i] = SD->f2.delta[i] * SD->f2.Dinv[i]; } d_sum(SD->f2.d, dv0); *E = e_sum(dv0); /* get on with it */ b_i = 0; exitg1 = FALSE; while ((exitg1 == FALSE) && (b_i < 500)) { /* compute gradient, Hessian and search direction (note it is actually */ /* 1/4 of the gradient and Hessian, but the step size is just the ratio */ /* of the gradient and the diagonal of the Hessian so it doesn't matter). */ for (i = 0; i < 1000000; i++) { SD->f2.delta[i] = SD->f2.dinv[i] - SD->f2.Dinv[i]; } emlrtPushRtStackR2012b(&d_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&i_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&j_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&k_emlrtRSI, emlrtRootTLSGlobal); alpha1 = 1.0; beta1 = 0.0; TRANSB = 'N'; TRANSA = 'N'; for (i = 0; i < 2000; i++) { SD->f2.y_old[i] = 1.0; SD->f2.deltaone[i] = 0.0; } emlrtPushRtStackR2012b(&l_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); m_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&l_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&m_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); n_t = (ptrdiff_t)(2); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&m_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&n_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); k_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&n_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&o_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); lda_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&o_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&p_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); ldb_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&p_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&q_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); ldc_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&q_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&r_emlrtRSI, emlrtRootTLSGlobal); alpha1_t = (double *)(&alpha1); emlrtPopRtStackR2012b(&r_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&s_emlrtRSI, emlrtRootTLSGlobal); Aia0_t = (double *)(&SD->f2.delta[0]); emlrtPopRtStackR2012b(&s_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&t_emlrtRSI, emlrtRootTLSGlobal); Bib0_t = (double *)(&SD->f2.y_old[0]); emlrtPopRtStackR2012b(&t_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&u_emlrtRSI, emlrtRootTLSGlobal); beta1_t = (double *)(&beta1); emlrtPopRtStackR2012b(&u_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&v_emlrtRSI, emlrtRootTLSGlobal); Cic0_t = (double *)(&SD->f2.deltaone[0]); emlrtPopRtStackR2012b(&v_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&w_emlrtRSI, emlrtRootTLSGlobal); dgemm(&TRANSA, &TRANSB, &m_t, &n_t, &k_t, alpha1_t, Aia0_t, &lda_t, Bib0_t, &ldb_t, beta1_t, Cic0_t, &ldc_t); emlrtPopRtStackR2012b(&w_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&k_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&j_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&i_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&d_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&e_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&i_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&j_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&k_emlrtRSI, emlrtRootTLSGlobal); alpha1 = 1.0; beta1 = 0.0; TRANSB = 'N'; TRANSA = 'N'; memset(&g[0], 0, 2000U * sizeof(real_T)); emlrtPushRtStackR2012b(&l_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); m_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&l_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&m_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); n_t = (ptrdiff_t)(2); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&m_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&n_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); k_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&n_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&o_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); lda_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&o_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&p_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); ldb_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&p_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&q_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); ldc_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&q_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&r_emlrtRSI, emlrtRootTLSGlobal); alpha1_t = (double *)(&alpha1); emlrtPopRtStackR2012b(&r_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&s_emlrtRSI, emlrtRootTLSGlobal); Aia0_t = (double *)(&SD->f2.delta[0]); emlrtPopRtStackR2012b(&s_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&t_emlrtRSI, emlrtRootTLSGlobal); Bib0_t = (double *)(&y[0]); emlrtPopRtStackR2012b(&t_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&u_emlrtRSI, emlrtRootTLSGlobal); beta1_t = (double *)(&beta1); emlrtPopRtStackR2012b(&u_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&v_emlrtRSI, emlrtRootTLSGlobal); Cic0_t = (double *)(&g[0]); emlrtPopRtStackR2012b(&v_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&w_emlrtRSI, emlrtRootTLSGlobal); dgemm(&TRANSA, &TRANSB, &m_t, &n_t, &k_t, alpha1_t, Aia0_t, &lda_t, Bib0_t, &ldb_t, beta1_t, Cic0_t, &ldc_t); emlrtPopRtStackR2012b(&w_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&k_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&j_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&i_emlrtRSI, emlrtRootTLSGlobal); for (i = 0; i < 2000; i++) { g[i] -= y[i] * SD->f2.deltaone[i]; } emlrtPopRtStackR2012b(&e_emlrtRSI, emlrtRootTLSGlobal); c_power(SD->f2.dinv, SD->f2.delta); b_power(y, y2); emlrtPushRtStackR2012b(&f_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&i_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&j_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&k_emlrtRSI, emlrtRootTLSGlobal); alpha1 = 1.0; beta1 = 0.0; TRANSB = 'N'; TRANSA = 'N'; memset(&b_y[0], 0, 2000U * sizeof(real_T)); emlrtPushRtStackR2012b(&l_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); m_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&l_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&m_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); n_t = (ptrdiff_t)(2); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&m_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&n_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); k_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&n_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&o_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); lda_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&o_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&p_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); ldb_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&p_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&q_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); ldc_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&q_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&r_emlrtRSI, emlrtRootTLSGlobal); alpha1_t = (double *)(&alpha1); emlrtPopRtStackR2012b(&r_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&s_emlrtRSI, emlrtRootTLSGlobal); Aia0_t = (double *)(&SD->f2.delta[0]); emlrtPopRtStackR2012b(&s_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&t_emlrtRSI, emlrtRootTLSGlobal); Bib0_t = (double *)(&y2[0]); emlrtPopRtStackR2012b(&t_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&u_emlrtRSI, emlrtRootTLSGlobal); beta1_t = (double *)(&beta1); emlrtPopRtStackR2012b(&u_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&v_emlrtRSI, emlrtRootTLSGlobal); Cic0_t = (double *)(&b_y[0]); emlrtPopRtStackR2012b(&v_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&w_emlrtRSI, emlrtRootTLSGlobal); dgemm(&TRANSA, &TRANSB, &m_t, &n_t, &k_t, alpha1_t, Aia0_t, &lda_t, Bib0_t, &ldb_t, beta1_t, Cic0_t, &ldc_t); emlrtPopRtStackR2012b(&w_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&k_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&j_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&i_emlrtRSI, emlrtRootTLSGlobal); for (i = 0; i < 2000; i++) { c_y[i] = 2.0 * y[i]; } emlrtPushRtStackR2012b(&i_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&j_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&k_emlrtRSI, emlrtRootTLSGlobal); alpha1 = 1.0; beta1 = 0.0; TRANSB = 'N'; TRANSA = 'N'; memset(&d_y[0], 0, 2000U * sizeof(real_T)); emlrtPushRtStackR2012b(&l_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); m_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&l_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&m_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); n_t = (ptrdiff_t)(2); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&m_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&n_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); k_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&n_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&o_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); lda_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&o_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&p_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); ldb_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&p_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&q_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); ldc_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&q_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&r_emlrtRSI, emlrtRootTLSGlobal); alpha1_t = (double *)(&alpha1); emlrtPopRtStackR2012b(&r_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&s_emlrtRSI, emlrtRootTLSGlobal); Aia0_t = (double *)(&SD->f2.delta[0]); emlrtPopRtStackR2012b(&s_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&t_emlrtRSI, emlrtRootTLSGlobal); Bib0_t = (double *)(&y[0]); emlrtPopRtStackR2012b(&t_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&u_emlrtRSI, emlrtRootTLSGlobal); beta1_t = (double *)(&beta1); emlrtPopRtStackR2012b(&u_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&v_emlrtRSI, emlrtRootTLSGlobal); Cic0_t = (double *)(&d_y[0]); emlrtPopRtStackR2012b(&v_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&w_emlrtRSI, emlrtRootTLSGlobal); dgemm(&TRANSA, &TRANSB, &m_t, &n_t, &k_t, alpha1_t, Aia0_t, &lda_t, Bib0_t, &ldb_t, beta1_t, Cic0_t, &ldc_t); emlrtPopRtStackR2012b(&w_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&k_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&j_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&i_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&i_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&j_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&k_emlrtRSI, emlrtRootTLSGlobal); alpha1 = 1.0; beta1 = 0.0; TRANSB = 'N'; TRANSA = 'N'; for (i = 0; i < 2000; i++) { SD->f2.y_old[i] = 1.0; e_y[i] = 0.0; } emlrtPushRtStackR2012b(&l_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); m_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&l_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&m_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); n_t = (ptrdiff_t)(2); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&m_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&n_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); k_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&n_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&o_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); lda_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&o_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&p_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); ldb_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&p_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&q_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); ldc_t = (ptrdiff_t)(1000); emlrtPopRtStackR2012b(&x_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&q_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&r_emlrtRSI, emlrtRootTLSGlobal); alpha1_t = (double *)(&alpha1); emlrtPopRtStackR2012b(&r_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&s_emlrtRSI, emlrtRootTLSGlobal); Aia0_t = (double *)(&SD->f2.delta[0]); emlrtPopRtStackR2012b(&s_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&t_emlrtRSI, emlrtRootTLSGlobal); Bib0_t = (double *)(&SD->f2.y_old[0]); emlrtPopRtStackR2012b(&t_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&u_emlrtRSI, emlrtRootTLSGlobal); beta1_t = (double *)(&beta1); emlrtPopRtStackR2012b(&u_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&v_emlrtRSI, emlrtRootTLSGlobal); Cic0_t = (double *)(&e_y[0]); emlrtPopRtStackR2012b(&v_emlrtRSI, emlrtRootTLSGlobal); emlrtPushRtStackR2012b(&w_emlrtRSI, emlrtRootTLSGlobal); dgemm(&TRANSA, &TRANSB, &m_t, &n_t, &k_t, alpha1_t, Aia0_t, &lda_t, Bib0_t, &ldb_t, beta1_t, Cic0_t, &ldc_t); emlrtPopRtStackR2012b(&w_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&k_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&j_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&i_emlrtRSI, emlrtRootTLSGlobal); emlrtPopRtStackR2012b(&f_emlrtRSI, emlrtRootTLSGlobal); for (i = 0; i < 2000; i++) { SD->f2.y_old[i] = ((b_y[i] - SD->f2.deltaone[i]) - c_y[i] * d_y[i]) + y2[i] * e_y[i]; b_g[i] = -g[i]; } b_abs(SD->f2.y_old, y2); for (i = 0; i < 2000; i++) { SD->f2.deltaone[i] = y2[i]; SD->f2.y_old[i] = y[i]; } b_rdivide(b_g, SD->f2.deltaone, y2); /* use step-halving procedure to ensure progress is made */ j = 1; b_j = 0; exitg2 = FALSE; while ((exitg2 == FALSE) && (b_j < 20)) { j = b_j + 1; for (i = 0; i < 2000; i++) { y[i] = SD->f2.y_old[i] + y2[i]; } emlrtPushRtStackR2012b(&g_emlrtRSI, emlrtRootTLSGlobal); b_euclid(SD, y, y, SD->f2.d); eye(SD->f2.delta); for (i = 0; i < 1000000; i++) { SD->f2.d[i] += SD->f2.delta[i]; } emlrtPopRtStackR2012b(&g_emlrtRSI, emlrtRootTLSGlobal); rdivide(1.0, SD->f2.d, SD->f2.dinv); for (i = 0; i < 1000000; i++) { SD->f2.b_D[i] = SD->f2.D[i] - SD->f2.d[i]; } power(SD->f2.b_D, SD->f2.delta); for (i = 0; i < 1000000; i++) { SD->f2.d[i] = SD->f2.delta[i] * SD->f2.Dinv[i]; } d_sum(SD->f2.d, dv1); E_new = e_sum(dv1); if (E_new < *E) { exitg2 = TRUE; } else { for (i = 0; i < 2000; i++) { y2[i] *= 0.5; } b_j++; emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, emlrtRootTLSGlobal); } } /* bomb out if too many halving steps are required */ if ((j == 20) || (muDoubleScalarAbs((*E - E_new) / *E) < 1.0E-9)) { exitg1 = TRUE; } else { /* evaluate termination criterion */ /* report progress */ *E = E_new; b_i++; emlrtBreakCheckFastR2012b(emlrtBreakCheckR2012bFlagVar, emlrtRootTLSGlobal); } } /* fiddle stress to match the original Sammon paper */ *E *= 0.5 / B; }
/* Function Definitions */ static real_T rectifier(const creal_T x[5120]) { real_T dv6[5120]; b_abs(x, dv6); return mean(dv6); }
void b_Acoeff(const emlrtStack *sp, real_T ksi, real_T j, const emxArray_real_T * x, real_T t, const emxArray_real_T *gridT, emxArray_real_T *vals) { emxArray_real_T *b; emxArray_real_T *r8; int32_T b_x; int32_T i; emxArray_boolean_T *b_t; real_T c_x; emxArray_boolean_T *c_t; emxArray_real_T *z0; emxArray_real_T *d_x; emxArray_real_T *e_x; emxArray_real_T *r9; int32_T b_b[2]; int32_T f_x[2]; emxArray_real_T *g_x; emxArray_real_T *r10; const mxArray *y; static const int32_T iv16[2] = { 1, 45 }; const mxArray *m6; char_T cv18[45]; static const char_T cv19[45] = { 'C', 'o', 'd', 'e', 'r', ':', 't', 'o', 'o', 'l', 'b', 'o', 'x', ':', 'm', 't', 'i', 'm', 'e', 's', '_', 'n', 'o', 'D', 'y', 'n', 'a', 'm', 'i', 'c', 'S', 'c', 'a', 'l', 'a', 'r', 'E', 'x', 'p', 'a', 'n', 's', 'i', 'o', 'n' }; const mxArray *b_y; static const int32_T iv17[2] = { 1, 21 }; char_T cv20[21]; static const char_T cv21[21] = { 'C', 'o', 'd', 'e', 'r', ':', 'M', 'A', 'T', 'L', 'A', 'B', ':', 'i', 'n', 'n', 'e', 'r', 'd', 'i', 'm' }; emxArray_boolean_T *d_t; real_T h_x; emxArray_boolean_T *e_t; emxArray_real_T *i_x; emxArray_real_T *r11; emxArray_real_T *j_x; emxArray_real_T *r12; emxArray_real_T *z1; int32_T b_z0[2]; emxArray_real_T *c_z0; emxArray_real_T *k_x; const mxArray *c_y; static const int32_T iv18[2] = { 1, 45 }; const mxArray *d_y; static const int32_T iv19[2] = { 1, 21 }; emlrtStack st; emlrtStack b_st; emlrtStack c_st; emlrtStack d_st; st.prev = sp; st.tls = sp->tls; b_st.prev = &st; b_st.tls = st.tls; c_st.prev = &b_st; c_st.tls = b_st.tls; d_st.prev = &b_st; d_st.tls = b_st.tls; emlrtHeapReferenceStackEnterFcnR2012b(sp); emxInit_real_T(sp, &b, 2, &bb_emlrtRTEI, true); emxInit_real_T(sp, &r8, 2, &bb_emlrtRTEI, true); /* evaluate the coefficient A at the boundary ksi=0 or ksi=1; */ /* for the index j which describes the time steps timePoints_j, at time t and space */ /* point x */ /* timePoints is a vector describing the time descritized domain */ b_x = gridT->size[1]; i = (int32_T)emlrtIntegerCheckFastR2012b(j, &emlrtDCI, sp); if (t <= gridT->data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &d_emlrtBCI, sp) - 1]) { b_x = vals->size[0] * vals->size[1]; vals->size[0] = 1; vals->size[1] = 1; emxEnsureCapacity(sp, (emxArray__common *)vals, b_x, (int32_T)sizeof(real_T), &bb_emlrtRTEI); vals->data[0] = 0.0; } else { emxInit_boolean_T(sp, &b_t, 2, &bb_emlrtRTEI, true); b_x = b_t->size[0] * b_t->size[1]; b_t->size[0] = 1; b_t->size[1] = 2 + x->size[1]; emxEnsureCapacity(sp, (emxArray__common *)b_t, b_x, (int32_T)sizeof (boolean_T), &bb_emlrtRTEI); b_x = gridT->size[1]; i = (int32_T)j; b_t->data[0] = (t > gridT->data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &e_emlrtBCI, sp) - 1]); b_x = gridT->size[1]; i = (int32_T)((uint32_T)j + 1U); b_t->data[b_t->size[0]] = (t <= gridT-> data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &f_emlrtBCI, sp) - 1]); i = x->size[1]; for (b_x = 0; b_x < i; b_x++) { b_t->data[b_t->size[0] * (b_x + 2)] = (x->data[x->size[0] * b_x] == ksi); } st.site = &pe_emlrtRSI; if (all(&st, b_t)) { b_x = gridT->size[1]; i = (int32_T)j; emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &c_emlrtBCI, sp); c_x = (t - gridT->data[(int32_T)j - 1]) / 3.1415926535897931; st.site = &emlrtRSI; if (c_x < 0.0) { b_st.site = &f_emlrtRSI; eml_error(&b_st); } b_x = vals->size[0] * vals->size[1]; vals->size[0] = 1; vals->size[1] = 1; emxEnsureCapacity(sp, (emxArray__common *)vals, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); vals->data[0] = muDoubleScalarSqrt(c_x); } else { emxInit_boolean_T(sp, &c_t, 2, &bb_emlrtRTEI, true); b_x = c_t->size[0] * c_t->size[1]; c_t->size[0] = 1; c_t->size[1] = 2 + x->size[1]; emxEnsureCapacity(sp, (emxArray__common *)c_t, b_x, (int32_T)sizeof (boolean_T), &bb_emlrtRTEI); b_x = gridT->size[1]; i = (int32_T)j; c_t->data[0] = (t > gridT->data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &g_emlrtBCI, sp) - 1]); b_x = gridT->size[1]; i = (int32_T)((uint32_T)j + 1U); c_t->data[c_t->size[0]] = (t <= gridT-> data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &h_emlrtBCI, sp) - 1]); i = x->size[1]; for (b_x = 0; b_x < i; b_x++) { c_t->data[c_t->size[0] * (b_x + 2)] = (x->data[x->size[0] * b_x] != ksi); } emxInit_real_T(sp, &z0, 2, &cb_emlrtRTEI, true); emxInit_real_T(sp, &d_x, 2, &bb_emlrtRTEI, true); st.site = &qe_emlrtRSI; if (all(&st, c_t)) { st.site = &b_emlrtRSI; b_x = gridT->size[1]; i = (int32_T)j; c_x = t - gridT->data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &m_emlrtBCI, &st) - 1]; if (c_x < 0.0) { b_st.site = &f_emlrtRSI; eml_error(&b_st); } emxInit_real_T(&st, &e_x, 2, &bb_emlrtRTEI, true); b_x = e_x->size[0] * e_x->size[1]; e_x->size[0] = 1; e_x->size[1] = x->size[1]; emxEnsureCapacity(sp, (emxArray__common *)e_x, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = x->size[0] * x->size[1]; for (b_x = 0; b_x < i; b_x++) { e_x->data[b_x] = x->data[b_x] - ksi; } emxInit_real_T(sp, &r9, 2, &bb_emlrtRTEI, true); b_abs(sp, e_x, r9); b_x = r8->size[0] * r8->size[1]; r8->size[0] = 1; r8->size[1] = r9->size[1]; emxEnsureCapacity(sp, (emxArray__common *)r8, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = r9->size[0] * r9->size[1]; emxFree_real_T(&e_x); for (b_x = 0; b_x < i; b_x++) { r8->data[b_x] = r9->data[b_x]; } emxFree_real_T(&r9); rdivide(sp, r8, 2.0 * muDoubleScalarSqrt(c_x), z0); st.site = &re_emlrtRSI; mpower(&st, z0, d_x); b_x = d_x->size[0] * d_x->size[1]; d_x->size[0] = 1; emxEnsureCapacity(sp, (emxArray__common *)d_x, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = d_x->size[0]; b_x = d_x->size[1]; i *= b_x; for (b_x = 0; b_x < i; b_x++) { d_x->data[b_x] = -d_x->data[b_x]; } b_x = b->size[0] * b->size[1]; b->size[0] = 1; b->size[1] = d_x->size[1]; emxEnsureCapacity(sp, (emxArray__common *)b, b_x, (int32_T)sizeof(real_T), &bb_emlrtRTEI); i = d_x->size[0] * d_x->size[1]; for (b_x = 0; b_x < i; b_x++) { b->data[b_x] = d_x->data[b_x]; } for (i = 0; i < d_x->size[1]; i++) { b->data[i] = muDoubleScalarExp(b->data[i]); } st.site = &re_emlrtRSI; b_mrdivide(&st, b, z0); for (b_x = 0; b_x < 2; b_x++) { i = d_x->size[0] * d_x->size[1]; d_x->size[b_x] = z0->size[b_x]; emxEnsureCapacity(sp, (emxArray__common *)d_x, i, (int32_T)sizeof (real_T), &ab_emlrtRTEI); } for (i = 0; i < z0->size[1]; i++) { d_x->data[i] = scalar_erf(z0->data[i]); } b_x = d_x->size[0] * d_x->size[1]; d_x->size[0] = 1; emxEnsureCapacity(sp, (emxArray__common *)d_x, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = d_x->size[0]; b_x = d_x->size[1]; i *= b_x; for (b_x = 0; b_x < i; b_x++) { d_x->data[b_x] *= 1.7724538509055159; } for (b_x = 0; b_x < 2; b_x++) { b_b[b_x] = b->size[b_x]; } for (b_x = 0; b_x < 2; b_x++) { f_x[b_x] = d_x->size[b_x]; } emxInit_real_T(sp, &g_x, 2, &bb_emlrtRTEI, true); emlrtSizeEqCheck2DFastR2012b(b_b, f_x, &o_emlrtECI, sp); b_x = g_x->size[0] * g_x->size[1]; g_x->size[0] = 1; g_x->size[1] = x->size[1]; emxEnsureCapacity(sp, (emxArray__common *)g_x, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = x->size[0] * x->size[1]; for (b_x = 0; b_x < i; b_x++) { g_x->data[b_x] = x->data[b_x] - ksi; } emxInit_real_T(sp, &r10, 2, &bb_emlrtRTEI, true); b_abs(sp, g_x, r10); b_x = r8->size[0] * r8->size[1]; r8->size[0] = 1; r8->size[1] = r10->size[1]; emxEnsureCapacity(sp, (emxArray__common *)r8, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = r10->size[0] * r10->size[1]; emxFree_real_T(&g_x); for (b_x = 0; b_x < i; b_x++) { r8->data[b_x] = r10->data[b_x]; } emxFree_real_T(&r10); rdivide(sp, r8, 3.5449077018110318, vals); st.site = &re_emlrtRSI; b_x = b->size[0] * b->size[1]; b->size[0] = 1; emxEnsureCapacity(&st, (emxArray__common *)b, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = b->size[0]; b_x = b->size[1]; i *= b_x; for (b_x = 0; b_x < i; b_x++) { b->data[b_x] -= d_x->data[b_x]; } b_st.site = &he_emlrtRSI; if (!(vals->size[1] == 1)) { if ((vals->size[1] == 1) || (b->size[1] == 1)) { y = NULL; m6 = emlrtCreateCharArray(2, iv16); for (i = 0; i < 45; i++) { cv18[i] = cv19[i]; } emlrtInitCharArrayR2013a(&b_st, 45, m6, cv18); emlrtAssign(&y, m6); c_st.site = &fh_emlrtRSI; d_st.site = &vg_emlrtRSI; b_error(&c_st, message(&d_st, y, &j_emlrtMCI), &k_emlrtMCI); } else { b_y = NULL; m6 = emlrtCreateCharArray(2, iv17); for (i = 0; i < 21; i++) { cv20[i] = cv21[i]; } emlrtInitCharArrayR2013a(&b_st, 21, m6, cv20); emlrtAssign(&b_y, m6); c_st.site = &gh_emlrtRSI; d_st.site = &wg_emlrtRSI; b_error(&c_st, message(&d_st, b_y, &l_emlrtMCI), &m_emlrtMCI); } } c_x = vals->data[0]; b_x = vals->size[0] * vals->size[1]; vals->size[0] = 1; vals->size[1] = b->size[1]; emxEnsureCapacity(&st, (emxArray__common *)vals, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = b->size[1]; for (b_x = 0; b_x < i; b_x++) { vals->data[vals->size[0] * b_x] = c_x * b->data[b->size[0] * b_x]; } } else { emxInit_boolean_T(sp, &d_t, 2, &bb_emlrtRTEI, true); b_x = d_t->size[0] * d_t->size[1]; d_t->size[0] = 1; d_t->size[1] = 1 + x->size[1]; emxEnsureCapacity(sp, (emxArray__common *)d_t, b_x, (int32_T)sizeof (boolean_T), &bb_emlrtRTEI); b_x = gridT->size[1]; i = (int32_T)((uint32_T)j + 1U); d_t->data[0] = (t > gridT->data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &i_emlrtBCI, sp) - 1]); i = x->size[1]; for (b_x = 0; b_x < i; b_x++) { d_t->data[d_t->size[0] * (b_x + 1)] = (x->data[x->size[0] * b_x] == ksi); } st.site = &se_emlrtRSI; if (all(&st, d_t)) { b_x = gridT->size[1]; i = (int32_T)j; emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &b_emlrtBCI, sp); c_x = (t - gridT->data[(int32_T)j - 1]) / 3.1415926535897931; b_x = gridT->size[1]; i = (int32_T)(j + 1.0); emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &emlrtBCI, sp); h_x = (t - gridT->data[(int32_T)(j + 1.0) - 1]) / 3.1415926535897931; st.site = &c_emlrtRSI; if (c_x < 0.0) { b_st.site = &f_emlrtRSI; eml_error(&b_st); } st.site = &c_emlrtRSI; if (h_x < 0.0) { b_st.site = &f_emlrtRSI; eml_error(&b_st); } b_x = vals->size[0] * vals->size[1]; vals->size[0] = 1; vals->size[1] = 1; emxEnsureCapacity(sp, (emxArray__common *)vals, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); vals->data[0] = muDoubleScalarSqrt(c_x) - muDoubleScalarSqrt(h_x); } else { emxInit_boolean_T(sp, &e_t, 2, &bb_emlrtRTEI, true); b_x = e_t->size[0] * e_t->size[1]; e_t->size[0] = 1; e_t->size[1] = 1 + x->size[1]; emxEnsureCapacity(sp, (emxArray__common *)e_t, b_x, (int32_T)sizeof (boolean_T), &bb_emlrtRTEI); b_x = gridT->size[1]; i = (int32_T)((uint32_T)j + 1U); e_t->data[0] = (t > gridT->data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &j_emlrtBCI, sp) - 1]); i = x->size[1]; for (b_x = 0; b_x < i; b_x++) { e_t->data[e_t->size[0] * (b_x + 1)] = (x->data[x->size[0] * b_x] != ksi); } st.site = &te_emlrtRSI; if (all(&st, e_t)) { st.site = &d_emlrtRSI; b_x = gridT->size[1]; i = (int32_T)j; c_x = t - gridT->data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &k_emlrtBCI, &st) - 1]; if (c_x < 0.0) { b_st.site = &f_emlrtRSI; eml_error(&b_st); } emxInit_real_T(&st, &i_x, 2, &bb_emlrtRTEI, true); b_x = i_x->size[0] * i_x->size[1]; i_x->size[0] = 1; i_x->size[1] = x->size[1]; emxEnsureCapacity(sp, (emxArray__common *)i_x, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = x->size[0] * x->size[1]; for (b_x = 0; b_x < i; b_x++) { i_x->data[b_x] = x->data[b_x] - ksi; } emxInit_real_T(sp, &r11, 2, &bb_emlrtRTEI, true); b_abs(sp, i_x, r11); b_x = r8->size[0] * r8->size[1]; r8->size[0] = 1; r8->size[1] = r11->size[1]; emxEnsureCapacity(sp, (emxArray__common *)r8, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = r11->size[0] * r11->size[1]; emxFree_real_T(&i_x); for (b_x = 0; b_x < i; b_x++) { r8->data[b_x] = r11->data[b_x]; } emxFree_real_T(&r11); rdivide(sp, r8, 2.0 * muDoubleScalarSqrt(c_x), z0); st.site = &e_emlrtRSI; b_x = gridT->size[1]; i = (int32_T)((uint32_T)j + 1U); c_x = t - gridT->data[emlrtDynamicBoundsCheckFastR2012b(i, 1, b_x, &l_emlrtBCI, &st) - 1]; if (c_x < 0.0) { b_st.site = &f_emlrtRSI; eml_error(&b_st); } emxInit_real_T(&st, &j_x, 2, &bb_emlrtRTEI, true); b_x = j_x->size[0] * j_x->size[1]; j_x->size[0] = 1; j_x->size[1] = x->size[1]; emxEnsureCapacity(sp, (emxArray__common *)j_x, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = x->size[0] * x->size[1]; for (b_x = 0; b_x < i; b_x++) { j_x->data[b_x] = x->data[b_x] - ksi; } emxInit_real_T(sp, &r12, 2, &bb_emlrtRTEI, true); b_abs(sp, j_x, r12); b_x = r8->size[0] * r8->size[1]; r8->size[0] = 1; r8->size[1] = r12->size[1]; emxEnsureCapacity(sp, (emxArray__common *)r8, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = r12->size[0] * r12->size[1]; emxFree_real_T(&j_x); for (b_x = 0; b_x < i; b_x++) { r8->data[b_x] = r12->data[b_x]; } emxFree_real_T(&r12); emxInit_real_T(sp, &z1, 2, &db_emlrtRTEI, true); rdivide(sp, r8, 2.0 * muDoubleScalarSqrt(c_x), z1); st.site = &ue_emlrtRSI; mpower(&st, z0, d_x); b_x = d_x->size[0] * d_x->size[1]; d_x->size[0] = 1; emxEnsureCapacity(sp, (emxArray__common *)d_x, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = d_x->size[0]; b_x = d_x->size[1]; i *= b_x; for (b_x = 0; b_x < i; b_x++) { d_x->data[b_x] = -d_x->data[b_x]; } b_x = b->size[0] * b->size[1]; b->size[0] = 1; b->size[1] = d_x->size[1]; emxEnsureCapacity(sp, (emxArray__common *)b, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = d_x->size[0] * d_x->size[1]; for (b_x = 0; b_x < i; b_x++) { b->data[b_x] = d_x->data[b_x]; } for (i = 0; i < d_x->size[1]; i++) { b->data[i] = muDoubleScalarExp(b->data[i]); } st.site = &ue_emlrtRSI; b_mrdivide(&st, b, z0); st.site = &ue_emlrtRSI; mpower(&st, z1, d_x); b_x = d_x->size[0] * d_x->size[1]; d_x->size[0] = 1; emxEnsureCapacity(sp, (emxArray__common *)d_x, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = d_x->size[0]; b_x = d_x->size[1]; i *= b_x; for (b_x = 0; b_x < i; b_x++) { d_x->data[b_x] = -d_x->data[b_x]; } b_x = r8->size[0] * r8->size[1]; r8->size[0] = 1; r8->size[1] = d_x->size[1]; emxEnsureCapacity(sp, (emxArray__common *)r8, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = d_x->size[0] * d_x->size[1]; for (b_x = 0; b_x < i; b_x++) { r8->data[b_x] = d_x->data[b_x]; } for (i = 0; i < d_x->size[1]; i++) { r8->data[i] = muDoubleScalarExp(r8->data[i]); } st.site = &ue_emlrtRSI; b_mrdivide(&st, r8, z1); for (b_x = 0; b_x < 2; b_x++) { b_b[b_x] = b->size[b_x]; } for (b_x = 0; b_x < 2; b_x++) { b_z0[b_x] = r8->size[b_x]; } emxInit_real_T(sp, &c_z0, 2, &bb_emlrtRTEI, true); emlrtSizeEqCheck2DFastR2012b(b_b, b_z0, &m_emlrtECI, sp); b_x = c_z0->size[0] * c_z0->size[1]; c_z0->size[0] = 1; c_z0->size[1] = z0->size[1]; emxEnsureCapacity(sp, (emxArray__common *)c_z0, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = z0->size[0] * z0->size[1]; for (b_x = 0; b_x < i; b_x++) { c_z0->data[b_x] = z0->data[b_x]; } b_erf(sp, c_z0, z0); b_erf(sp, z1, d_x); emxFree_real_T(&c_z0); emxFree_real_T(&z1); for (b_x = 0; b_x < 2; b_x++) { b_z0[b_x] = z0->size[b_x]; } for (b_x = 0; b_x < 2; b_x++) { f_x[b_x] = d_x->size[b_x]; } emlrtSizeEqCheck2DFastR2012b(b_z0, f_x, &n_emlrtECI, sp); b_x = z0->size[0] * z0->size[1]; z0->size[0] = 1; emxEnsureCapacity(sp, (emxArray__common *)z0, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = z0->size[0]; b_x = z0->size[1]; i *= b_x; for (b_x = 0; b_x < i; b_x++) { z0->data[b_x] = 1.7724538509055159 * (z0->data[b_x] - d_x-> data[b_x]); } for (b_x = 0; b_x < 2; b_x++) { b_b[b_x] = b->size[b_x]; } for (b_x = 0; b_x < 2; b_x++) { b_z0[b_x] = z0->size[b_x]; } emxInit_real_T(sp, &k_x, 2, &bb_emlrtRTEI, true); emlrtSizeEqCheck2DFastR2012b(b_b, b_z0, &m_emlrtECI, sp); b_x = k_x->size[0] * k_x->size[1]; k_x->size[0] = 1; k_x->size[1] = x->size[1]; emxEnsureCapacity(sp, (emxArray__common *)k_x, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = x->size[0] * x->size[1]; for (b_x = 0; b_x < i; b_x++) { k_x->data[b_x] = x->data[b_x] - ksi; } b_abs(sp, k_x, d_x); rdivide(sp, d_x, 3.5449077018110318, vals); st.site = &ue_emlrtRSI; b_x = b->size[0] * b->size[1]; b->size[0] = 1; emxEnsureCapacity(&st, (emxArray__common *)b, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); i = b->size[0]; b_x = b->size[1]; i *= b_x; emxFree_real_T(&k_x); for (b_x = 0; b_x < i; b_x++) { b->data[b_x] = (b->data[b_x] - r8->data[b_x]) + z0->data[b_x]; } b_st.site = &he_emlrtRSI; if (!(vals->size[1] == 1)) { if ((vals->size[1] == 1) || (b->size[1] == 1)) { c_y = NULL; m6 = emlrtCreateCharArray(2, iv18); for (i = 0; i < 45; i++) { cv18[i] = cv19[i]; } emlrtInitCharArrayR2013a(&b_st, 45, m6, cv18); emlrtAssign(&c_y, m6); c_st.site = &fh_emlrtRSI; d_st.site = &vg_emlrtRSI; b_error(&c_st, message(&d_st, c_y, &j_emlrtMCI), &k_emlrtMCI); } else { d_y = NULL; m6 = emlrtCreateCharArray(2, iv19); for (i = 0; i < 21; i++) { cv20[i] = cv21[i]; } emlrtInitCharArrayR2013a(&b_st, 21, m6, cv20); emlrtAssign(&d_y, m6); c_st.site = &gh_emlrtRSI; d_st.site = &wg_emlrtRSI; b_error(&c_st, message(&d_st, d_y, &l_emlrtMCI), &m_emlrtMCI); } } c_x = vals->data[0]; b_x = vals->size[0] * vals->size[1]; vals->size[0] = 1; vals->size[1] = b->size[1]; emxEnsureCapacity(&st, (emxArray__common *)vals, b_x, (int32_T) sizeof(real_T), &bb_emlrtRTEI); i = b->size[1]; for (b_x = 0; b_x < i; b_x++) { vals->data[vals->size[0] * b_x] = c_x * b->data[b->size[0] * b_x]; } } else { b_x = vals->size[0] * vals->size[1]; vals->size[0] = 1; vals->size[1] = 1; emxEnsureCapacity(sp, (emxArray__common *)vals, b_x, (int32_T)sizeof (real_T), &bb_emlrtRTEI); vals->data[0] = 0.0; } emxFree_boolean_T(&e_t); } emxFree_boolean_T(&d_t); } emxFree_boolean_T(&c_t); emxFree_real_T(&d_x); emxFree_real_T(&z0); } emxFree_boolean_T(&b_t); } emxFree_real_T(&r8); emxFree_real_T(&b); emlrtHeapReferenceStackLeaveFcnR2012b(sp); }
void a_melcepst(const real_T s[512], real_T fs, int32_T nc, emxArray_real_T *c) { real_T b_s[512]; int32_T i; static const real_T dv0[512] = { 0.080000000000000016, 0.080034772851092173, 0.080139086147189731, 0.080312924117550422, 0.0805562604802531, 0.08086905844617126, 0.081251270724534919, 0.0817028395300804, 0.082223696591786744, 0.082813763163197218, 0.083472950034324755, 0.084201157545139238, 0.084998275600634943, 0.085864183687475115, 0.086798750892212118, 0.0878018359210796, 0.0888732871213544, 0.0900129425042841, 0.091220629769577732, 0.092496166331455187, 0.093839359346251483, 0.095250005741572386, 0.09672789224699585, 0.09827279542631584, 0.099884481711322914, 0.10156270743711604, 0.10330721887894206, 0.10511775229055487, 0.10699403394409035, 0.10893578017145067, 0.11094269740719032, 0.11301448223289995, 0.11515082142307836, 0.11735139199248851, 0.11961586124498802, 0.12194388682382867, 0.12433511676341558, 0.12678918954252011, 0.12930573413893637, 0.1318843700855753, 0.13452470752798562, 0.13722634728329447, 0.13998888090055894, 0.1428118907225176, 0.14569494994873494, 0.14863762270012759, 0.1516394640848634, 0.15470002026562302, 0.15781882852821355, 0.16099541735152506, 0.16422930647881784, 0.16752000699033076, 0.17086702137719906, 0.17426984361667108, 0.177727959248612, 0.181240845453283, 0.18480797113038444, 0.18842879697935122, 0.19210277558088723, 0.19582935147972808, 0.19960796126861807, 0.20343803367348967, 0.20731898963983236, 0.211250242420238, 0.21523119766310839, 0.2192612535025138, 0.2233398006491864, 0.22746622248263659, 0.23163989514437766, 0.23586018763224437, 0.24012646189579223, 0.24443807293276187, 0.24879436888659412, 0.25319469114498255, 0.25763837443944609, 0.26212474694590859, 0.26665313038626953, 0.27122284013095055, 0.27583318530240147, 0.28048346887955239, 0.28517298780319289, 0.2899010330822655, 0.29466688990105527, 0.29946983772726005, 0.30430915042092521, 0.30918409634422606, 0.31409393847208128, 0.31903793450358153, 0.32401533697421447, 0.32902539336887182, 0.33406734623561868, 0.33914043330021065, 0.34424388758133867, 0.34937693750658638, 0.35453880702908114, 0.35972871574482179, 0.36494587901066489, 0.3701895080629527, 0.37545881013676219, 0.38075298858576168, 0.38607124300265128, 0.39141276934017522, 0.39677676003268147, 0.40216240411821519, 0.40756888736112512, 0.41299539237516436, 0.41844109874706864, 0.42390518316059117, 0.4293868195209769, 0.43488517907985663, 0.44039943056054276, 0.44592874028370622, 0.45147227229341824, 0.45702918848353491, 0.46259864872440754, 0.46817981098989864, 0.47377183148468471, 0.47937386477182686, 0.48498506390058893, 0.490604580534485, 0.49623156507953636, 0.50186516681271842, 0.50750453401057793, 0.51314881407800261, 0.51879715367712187, 0.524448698856319, 0.53010259517933778, 0.53575798785446094, 0.54141402186374354, 0.5470698420922796, 0.55272459345748381, 0.55837742103836852, 0.5640274702047956, 0.56967388674668551, 0.57531581700316159, 0.58095240799161241, 0.58658280753665026, 0.59220616439894935, 0.59782162840394082, 0.60342835057034794, 0.60902548323854022, 0.61461218019868813, 0.62018759681869828, 0.62575089017190988, 0.63130121916453474, 0.63683774466281806, 0.64235962961990467, 0.64786603920238861, 0.65335614091652849, 0.65882910473410994, 0.66428410321793319, 0.6697203116469117, 0.67513690814075755, 0.68053307378423888, 0.68590799275098879, 0.69126085242684687, 0.69659084353271583, 0.70189716024691284, 0.70717900032699887, 0.7124355652310671, 0.717666060238471, 0.72286969456997574, 0.72804568150731275, 0.73319323851212115, 0.73831158734425673, 0.74339995417945037, 0.74845756972630173, 0.75348366934258248, 0.75847749315084323, 0.76343828615329357, 0.7683652983459498, 0.77325778483202323, 0.77811500593454008, 0.78293622730816892, 0.78772072005024552, 0.7924677608109707, 0.79717663190277332, 0.80184662140881269, 0.80647702329061177, 0.81106713749480042, 0.8156162700589541, 0.82012373321651044, 0.82458884550075162, 0.82901093184783137, 0.83338932369883667, 0.83772335910086348, 0.84201238280709623, 0.84625574637587087, 0.85045280826871128, 0.8546029339473209, 0.85870549596951617, 0.86275987408408694, 0.86676545532457061, 0.8707216341019236, 0.87462781229607822, 0.87848339934637087, 0.88228781234082576, 0.88604047610428438, 0.88974082328536275, 0.89338829444222823, 0.89698233812717909, 0.90052241097001584, 0.90400797776019148, 0.90743851152772792, 0.91081349362288644, 0.91413241379458121, 0.91739477026752081, 0.92060006981807141, 0.92374782784882448, 0.92683756846186127, 0.9298688245307023, 0.93284113777093092, 0.93575405880947859, 0.938607147252565, 0.94139997175227874, 0.94413211007179187, 0.94680314914919594, 0.94941268515995136, 0.95196032357793992, 0.95444567923511281, 0.95686837637972111, 0.9592280487331255, 0.96152433954517225, 0.96375690164812866, 0.965925397509171, 0.96802949928141335, 0.970068888853475, 0.97204325789757351, 0.97395230791614062, 0.97579575028695, 0.97757330630675354, 0.97928470723341743, 0.98092969432655219, 0.98250801888663064, 0.98401944229258809, 0.98546373603789827, 0.98684068176512052, 0.98815007129891252, 0.98939170667750365, 0.99056540018262351, 0.99167097436788332, 0.99270826208560237, 0.99367710651207919, 0.99457736117130091, 0.99540888995708832, 0.9961715671536735, 0.99686527745470577, 0.99748991598068559, 0.99804538829481926, 0.9985316104172981, 0.99894850883799369, 0.99929602052757294, 0.99957409294702582, 0.99978268405560977, 0.99992176231720475, 0.99999130670508207, 0.99999130670508207, 0.99992176231720475, 0.99978268405560977, 0.99957409294702582, 0.99929602052757294, 0.99894850883799369, 0.9985316104172981, 0.99804538829481926, 0.99748991598068559, 0.99686527745470577, 0.9961715671536735, 0.99540888995708832, 0.99457736117130091, 0.99367710651207919, 0.99270826208560237, 0.99167097436788332, 0.99056540018262351, 0.98939170667750365, 0.98815007129891264, 0.98684068176512052, 0.98546373603789827, 0.9840194422925882, 0.98250801888663064, 0.98092969432655219, 0.97928470723341743, 0.97757330630675365, 0.97579575028695009, 0.97395230791614062, 0.97204325789757351, 0.970068888853475, 0.96802949928141335, 0.96592539750917106, 0.96375690164812866, 0.96152433954517225, 0.9592280487331255, 0.95686837637972122, 0.95444567923511281, 0.95196032357794014, 0.94941268515995125, 0.94680314914919594, 0.94413211007179187, 0.94139997175227885, 0.938607147252565, 0.93575405880947871, 0.93284113777093114, 0.92986882453070241, 0.92683756846186127, 0.92374782784882448, 0.92060006981807163, 0.91739477026752092, 0.91413241379458121, 0.91081349362288655, 0.90743851152772792, 0.90400797776019148, 0.900522410970016, 0.89698233812717909, 0.89338829444222834, 0.88974082328536275, 0.8860404761042846, 0.88228781234082587, 0.878483399346371, 0.87462781229607822, 0.87072163410192371, 0.86676545532457072, 0.86275987408408716, 0.85870549596951617, 0.854602933947321, 0.85045280826871128, 0.84625574637587087, 0.84201238280709623, 0.83772335910086393, 0.83338932369883678, 0.82901093184783159, 0.82458884550075162, 0.82012373321651089, 0.81561627005895421, 0.81106713749480042, 0.80647702329061177, 0.80184662140881269, 0.79717663190277355, 0.79246776081097081, 0.78772072005024563, 0.78293622730816925, 0.7781150059345403, 0.77325778483202334, 0.76836529834594991, 0.7634382861532939, 0.75847749315084312, 0.7534836693425826, 0.7484575697263014, 0.74339995417945093, 0.73831158734425684, 0.73319323851212148, 0.72804568150731264, 0.72286969456997607, 0.717666060238471, 0.71243556523106721, 0.70717900032699887, 0.701897160246913, 0.696590843532716, 0.69126085242684687, 0.68590799275098913, 0.680533073784239, 0.67513690814075789, 0.66972031164691181, 0.66428410321793374, 0.65882910473411, 0.65335614091652838, 0.6478660392023885, 0.64235962961990478, 0.63683774466281828, 0.63130121916453463, 0.62575089017190988, 0.62018759681869828, 0.61461218019868846, 0.60902548323854022, 0.603428350570348, 0.597821628403941, 0.59220616439894924, 0.58658280753665026, 0.58095240799161219, 0.57531581700316192, 0.56967388674668551, 0.56402747020479571, 0.55837742103836829, 0.55272459345748415, 0.54706984209227971, 0.54141402186374377, 0.53575798785446127, 0.53010259517933778, 0.52444869885631917, 0.51879715367712176, 0.51314881407800306, 0.50750453401057793, 0.50186516681271853, 0.49623156507953631, 0.49060458053448541, 0.48498506390058904, 0.47937386477182709, 0.47377183148468466, 0.46817981098989869, 0.46259864872440776, 0.45702918848353485, 0.45147227229341824, 0.44592874028370633, 0.440399430560543, 0.43488517907985663, 0.429386819520977, 0.42390518316059139, 0.41844109874706892, 0.41299539237516436, 0.40756888736112484, 0.40216240411821547, 0.39677676003268147, 0.39141276934017533, 0.3860712430026515, 0.3807529885857619, 0.3754588101367623, 0.37018950806295287, 0.36494587901066522, 0.35972871574482168, 0.35453880702908119, 0.34937693750658616, 0.34424388758133895, 0.33914043330021071, 0.33406734623561879, 0.3290253933688716, 0.32401533697421481, 0.31903793450358164, 0.31409393847208145, 0.30918409634422594, 0.30430915042092521, 0.29946983772726016, 0.29466688990105516, 0.2899010330822655, 0.285172987803193, 0.28048346887955261, 0.27583318530240147, 0.2712228401309506, 0.2666531303862697, 0.26212474694590882, 0.25763837443944609, 0.25319469114498266, 0.24879436888659429, 0.24443807293276176, 0.24012646189579229, 0.23586018763224448, 0.23163989514437777, 0.22746622248263659, 0.22333980064918652, 0.21926125350251396, 0.21523119766310861, 0.21125024242023804, 0.20731898963983225, 0.20343803367348989, 0.19960796126861807, 0.19582935147972819, 0.19210277558088712, 0.18842879697935144, 0.1848079711303845, 0.18124084545328312, 0.17772795924861196, 0.17426984361667136, 0.17086702137719911, 0.16752000699033065, 0.16422930647881784, 0.16099541735152512, 0.15781882852821361, 0.15470002026562296, 0.15163946408486367, 0.14863762270012765, 0.14569494994873505, 0.1428118907225176, 0.13998888090055922, 0.13722634728329458, 0.13452470752798557, 0.1318843700855753, 0.12930573413893648, 0.12678918954252016, 0.12433511676341558, 0.12194388682382873, 0.11961586124498813, 0.11735139199248862, 0.11515082142307836, 0.1130144822329, 0.11094269740719043, 0.10893578017145061, 0.10699403394409041, 0.10511775229055476, 0.10330721887894218, 0.10156270743711604, 0.09988448171132297, 0.09827279542631584, 0.0967278922469959, 0.095250005741572386, 0.093839359346251427, 0.092496166331455243, 0.091220629769577788, 0.0900129425042841, 0.088873287121354339, 0.087801835921079707, 0.086798750892212118, 0.085864183687475171, 0.084998275600634943, 0.084201157545139349, 0.083472950034324811, 0.082813763163197218, 0.082223696591786744, 0.081702839530080451, 0.081251270724534919, 0.08086905844617126, 0.0805562604802531, 0.080312924117550422, 0.080139086147189731, 0.080034772851092173, 0.080000000000000016 }; emxArray_creal_T *f; emxArray_real_T *m; int32_T ia; int32_T a; int32_T i0; int32_T i1; int32_T br; emxArray_creal_T *pw; int32_T b_f[2]; int32_T c_f[2]; int32_T ar; emxArray_creal_T d_f; emxArray_creal_T e_f; real_T b_a; real_T b; real_T f_re; real_T f_im; creal_T ath; boolean_T exitg1; creal_T b_pw; emxArray_creal_T *f_f; int32_T g_f[2]; emxArray_real_T *b_b; emxArray_real_T *y; int32_T c_k; uint32_T unnamed_idx_0; int32_T b_m; int32_T ic; int64_T i2; emxArray_int32_T *r0; emxArray_int32_T *idx; emxArray_boolean_T *c_b; emxArray_real_T *b_c; emxArray_real_T *c_c; /* MELCEPST Calculate the mel cepstrum of a signal C=(S,FS,W,NC,P,N,INC,FL,FH) */ /* */ /* */ /* Simple use: c=melcepst(s,fs) % calculate mel cepstrum with 12 coefs, 256 sample frames */ /* c=melcepst(s,fs,'e0dD') % include log energy, 0th cepstral coef, delta and delta-delta coefs */ /* */ /* Inputs: */ /* s speech signal */ /* fs sample rate in Hz (default 11025) */ /* nc number of cepstral coefficients excluding 0'th coefficient (default 12) */ /* n length of frame in samples (default power of 2 < (0.03*fs)) */ /* p number of filters in filterbank (default: floor(3*log(fs)) = approx 2.1 per ocatave) */ /* inc frame increment (default n/2) */ /* fl low end of the lowest filter as a fraction of fs (default = 0) */ /* fh high end of highest filter as a fraction of fs (default = 0.5) */ /* */ /* w any sensible combination of the following: */ /* */ /* 'R' rectangular window in time domain */ /* 'N' Hanning window in time domain */ /* 'M' Hamming window in time domain (default) */ /* */ /* 't' triangular shaped filters in mel domain (default) */ /* 'n' hanning shaped filters in mel domain */ /* 'm' hamming shaped filters in mel domain */ /* */ /* 'p' filters act in the power domain */ /* 'a' filters act in the absolute magnitude domain (default) */ /* */ /* '0' include 0'th order cepstral coefficient */ /* 'E' include log energy */ /* 'd' include delta coefficients (dc/dt) */ /* 'D' include delta-delta coefficients (d^2c/dt^2) */ /* */ /* 'z' highest and lowest filters taper down to zero (default) */ /* 'y' lowest filter remains at 1 down to 0 frequency and */ /* highest filter remains at 1 up to nyquist freqency */ /* */ /* If 'ty' or 'ny' is specified, the total power in the fft is preserved. */ /* */ /* Outputs: c mel cepstrum output: one frame per row. Log energy, if requested, is the */ /* first element of each row followed by the delta and then the delta-delta */ /* coefficients. */ /* */ /* BUGS: (1) should have power limit as 1e-16 rather than 1e-6 (or possibly a better way of choosing this) */ /* and put into VOICEBOX */ /* (2) get rdct to change the data length (properly) instead of doing it explicitly (wrongly) */ /* Copyright (C) Mike Brookes 1997 */ /* Version: $Id: melcepst.m,v 1.8 2011/09/02 16:24:14 dmb Exp $ */ /* */ /* VOICEBOX is a MATLAB toolbox for speech processing. */ /* Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html */ /* */ /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */ /* This program is free software; you can redistribute it and/or modify */ /* it under the terms of the GNU General Public License as published by */ /* the Free Software Foundation; either version 2 of the License, or */ /* (at your option) any later version. */ /* */ /* This program is distributed in the hope that it will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU General Public License for more details. */ /* */ /* You can obtain a copy of the GNU General Public License from */ /* http://www.gnu.org/copyleft/gpl.html or by writing to */ /* Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA. */ /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */ /* floor(3*log(fs)); */ /* 256; %20 / 1000 * fs; % 10 ms window */ /* nc = 20; */ /* z=a_enframe(s,a_hamming(n),inc); */ /* HAMMING.M */ /* */ /* COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA */ /* http://nuhag.eu/ */ /* Permission is granted to modify and re-distribute this */ /* code in any manner as long as this notice is preserved. */ /* All standard disclaimers apply. */ /* */ /* HAMMING.M - returns the N-point Hamming window. */ /* */ /* Input : n = number */ /* */ /* Output : w = vector */ /* */ /* Usage : w = hamming (n) */ /* */ /* Comments : allows also the call: hamming(xx), taking only format from signal xx */ /* */ /* See also : HAMMING2 */ /* modification of original MATLAB (3.5) file */ /* HGFei, 1990 */ /* z=enframe(s,hamming(n),inc); */ for (i = 0; i < 512; i++) { b_s[i] = s[i] * dv0[i]; } emxInit_creal_T(&f, 1); emxInit_real_T(&m, 2); a_rfft(b_s, f); a_melbankm(m, &a, &ia); /* [m,a,b]=melbankm(p,n,fs,fl,fh, 'M'); */ if (a > ia) { i0 = 0; i1 = 0; } else { i0 = a - 1; i1 = ia; } if (a > ia) { br = 0; } else { br = a - 1; } emxInit_creal_T(&pw, 1); b_f[0] = f->size[0]; b_f[1] = 1; c_f[0] = f->size[0]; c_f[1] = 1; i = pw->size[0]; pw->size[0] = i1 - i0; emxEnsureCapacity((emxArray__common *)pw, i, (int32_T)sizeof(creal_T)); ar = (i1 - i0) - 1; for (i1 = 0; i1 <= ar; i1++) { d_f = *f; d_f.size = (int32_T *)&b_f; d_f.numDimensions = 1; e_f = *f; e_f.size = (int32_T *)&c_f; e_f.numDimensions = 1; b_a = e_f.data[br + i1].re; b = -e_f.data[br + i1].im; f_re = d_f.data[i0 + i1].re; f_im = d_f.data[i0 + i1].im; pw->data[i1].re = f_re * b_a - f_im * b; pw->data[i1].im = f_re * b + f_im * b_a; } i = 1; br = pw->size[0]; ath = pw->data[0]; if (br > 1) { if (rtIsNaN(pw->data[0].re) || rtIsNaN(pw->data[0].im)) { ar = 1; exitg1 = 0U; while ((exitg1 == 0U) && (ar + 1 <= br)) { i = ar + 1; if (!(rtIsNaN(pw->data[ar].re) || rtIsNaN(pw->data[ar].im))) { ath = pw->data[ar]; exitg1 = 1U; } else { ar++; } } } if (i < br) { while (i + 1 <= br) { b_pw = pw->data[i]; if (eml_relop(b_pw, ath, TRUE)) { ath = pw->data[i]; } i++; } } } ath.re *= 1.0E-20; ath.im *= 1.0E-20; b_sqrt(&ath); if (a > ia) { i0 = 0; ia = 0; } else { i0 = a - 1; } emxInit_creal_T(&f_f, 1); g_f[0] = f->size[0]; g_f[1] = 1; i1 = f_f->size[0]; f_f->size[0] = ia - i0; emxEnsureCapacity((emxArray__common *)f_f, i1, (int32_T)sizeof(creal_T)); ar = (ia - i0) - 1; for (i1 = 0; i1 <= ar; i1++) { d_f = *f; d_f.size = (int32_T *)&g_f; d_f.numDimensions = 1; f_f->data[i1] = d_f.data[i0 + i1]; } b_emxInit_real_T(&b_b, 1); b_abs(f_f, b_b); emxFree_creal_T(&f_f); b_emxInit_real_T(&y, 1); if ((m->size[1] == 1) || (b_b->size[0] == 1)) { i0 = y->size[0]; y->size[0] = m->size[0]; emxEnsureCapacity((emxArray__common *)y, i0, (int32_T)sizeof(real_T)); ar = m->size[0] - 1; for (i0 = 0; i0 <= ar; i0++) { y->data[i0] = 0.0; i = b_b->size[0] - 1; for (i1 = 0; i1 <= i; i1++) { y->data[i0] += m->data[i0 + m->size[0] * i1] * b_b->data[i1]; } } } else { c_k = m->size[1]; unnamed_idx_0 = (uint32_T)m->size[0]; i0 = y->size[0]; y->size[0] = (int32_T)unnamed_idx_0; emxEnsureCapacity((emxArray__common *)y, i0, (int32_T)sizeof(real_T)); b_m = m->size[0]; i = y->size[0]; i0 = y->size[0]; y->size[0] = i; emxEnsureCapacity((emxArray__common *)y, i0, (int32_T)sizeof(real_T)); ar = i - 1; for (i0 = 0; i0 <= ar; i0++) { y->data[i0] = 0.0; } if (b_m == 0) { } else { for (i = 0; i <= 0; i += b_m) { i0 = i + b_m; for (ic = i; ic + 1 <= i0; ic++) { y->data[ic] = 0.0; } } br = 0; for (i = 0; i <= 0; i += b_m) { ar = 0; i0 = br + c_k; for (a = br; a + 1 <= i0; a++) { if (b_b->data[a] != 0.0) { ia = ar; i1 = i + b_m; for (ic = i; ic + 1 <= i1; ic++) { ia++; y->data[ic] += b_b->data[a] * m->data[ia - 1]; } } ar += b_m; } br += c_k; } } } emxFree_real_T(&m); unnamed_idx_0 = (uint32_T)y->size[0]; i0 = f->size[0]; f->size[0] = (int32_T)unnamed_idx_0; emxEnsureCapacity((emxArray__common *)f, i0, (int32_T)sizeof(creal_T)); i0 = f->size[0]; for (c_k = 0; c_k + 1 <= i0; c_k++) { if (b_eml_relop(y->data[c_k], ath, TRUE) || rtIsNaN(y->data[c_k])) { b_a = ath.re; b = ath.im; } else { b_a = y->data[c_k]; b = 0.0; } f->data[c_k].re = b_a; f->data[c_k].im = b; } emxFree_real_T(&y); i0 = pw->size[0]; pw->size[0] = f->size[0]; emxEnsureCapacity((emxArray__common *)pw, i0, (int32_T)sizeof(creal_T)); ar = f->size[0] - 1; for (i0 = 0; i0 <= ar; i0++) { pw->data[i0] = f->data[i0]; } for (c_k = 0; c_k <= f->size[0] - 1; c_k++) { ath = pw->data[c_k]; if ((pw->data[c_k].im == 0.0) && rtIsNaN(pw->data[c_k].re)) { } else if ((fabs(pw->data[c_k].re) > 8.9884656743115785E+307) || (fabs (pw->data[c_k].im) > 8.9884656743115785E+307)) { b_a = fabs(pw->data[c_k].re / 2.0); b = fabs(pw->data[c_k].im / 2.0); if (b_a < b) { b_a /= b; b *= sqrt(b_a * b_a + 1.0); } else if (b_a > b) { b /= b_a; b = sqrt(b * b + 1.0) * b_a; } else if (rtIsNaN(b)) { } else { b = b_a * 1.4142135623730951; } ath.re = log(b) + 0.69314718055994529; ath.im = rt_atan2d_snf(pw->data[c_k].im, pw->data[c_k].re); } else { b_a = fabs(pw->data[c_k].re); b = fabs(pw->data[c_k].im); if (b_a < b) { b_a /= b; b *= sqrt(b_a * b_a + 1.0); } else if (b_a > b) { b /= b_a; b = sqrt(b * b + 1.0) * b_a; } else if (rtIsNaN(b)) { } else { b = b_a * 1.4142135623730951; } ath.re = log(b); ath.im = rt_atan2d_snf(pw->data[c_k].im, pw->data[c_k].re); } pw->data[c_k] = ath; } emxFree_creal_T(&f); a_rdct(pw, b_b); i0 = c->size[0] * c->size[1]; c->size[0] = 1; emxEnsureCapacity((emxArray__common *)c, i0, (int32_T)sizeof(real_T)); i = b_b->size[0]; i0 = c->size[0] * c->size[1]; c->size[1] = i; emxEnsureCapacity((emxArray__common *)c, i0, (int32_T)sizeof(real_T)); emxFree_creal_T(&pw); ar = b_b->size[0] - 1; for (i0 = 0; i0 <= ar; i0++) { c->data[i0] = b_b->data[i0]; } emxFree_real_T(&b_b); i2 = (int64_T)nc + 1L; if (i2 > 2147483647L) { i2 = 2147483647L; } else { if (i2 < -2147483648L) { i2 = -2147483648L; } } nc = (int32_T)i2; if (32 > nc) { b_emxInit_int32_T(&r0, 1); i0 = c->size[1]; i1 = r0->size[0]; r0->size[0] = i0 - nc; emxEnsureCapacity((emxArray__common *)r0, i1, (int32_T)sizeof(int32_T)); ar = (i0 - nc) - 1; for (i0 = 0; i0 <= ar; i0++) { r0->data[i0] = (nc + i0) + 1; } emxInit_int32_T(&idx, 2); i0 = idx->size[0] * idx->size[1]; idx->size[0] = 1; emxEnsureCapacity((emxArray__common *)idx, i0, (int32_T)sizeof(int32_T)); i = r0->size[0]; i0 = idx->size[0] * idx->size[1]; idx->size[1] = i; emxEnsureCapacity((emxArray__common *)idx, i0, (int32_T)sizeof(int32_T)); ar = r0->size[0] - 1; for (i0 = 0; i0 <= ar; i0++) { idx->data[i0] = r0->data[i0]; } emxFree_int32_T(&r0); if (idx->size[1] == 1) { i = c->size[1] - 1; for (ar = idx->data[0]; ar <= i; ar++) { c->data[c->size[0] * (ar - 1)] = c->data[c->size[0] * ar]; } } else { emxInit_boolean_T(&c_b, 2); i0 = c_b->size[0] * c_b->size[1]; c_b->size[0] = 1; emxEnsureCapacity((emxArray__common *)c_b, i0, (int32_T)sizeof(boolean_T)); i = c->size[1]; i0 = c_b->size[0] * c_b->size[1]; c_b->size[1] = i; emxEnsureCapacity((emxArray__common *)c_b, i0, (int32_T)sizeof(boolean_T)); ar = c->size[1] - 1; for (i0 = 0; i0 <= ar; i0++) { c_b->data[i0] = FALSE; } for (c_k = 1; c_k <= idx->size[1]; c_k++) { c_b->data[idx->data[c_k - 1] - 1] = TRUE; } i = 0; for (c_k = 1; c_k <= c_b->size[1]; c_k++) { ia = c_b->data[c_k - 1]; i += ia; } i = c->size[1] - i; br = c_b->size[1]; ar = 0; i0 = c->size[1]; for (c_k = 1; c_k <= i0; c_k++) { if ((c_k > br) || (!c_b->data[c_k - 1])) { c->data[c->size[0] * ar] = c->data[c->size[0] * (c_k - 1)]; ar++; } } emxFree_boolean_T(&c_b); } emxFree_int32_T(&idx); if (1 > i) { i = 0; } emxInit_real_T(&b_c, 2); i0 = b_c->size[0] * b_c->size[1]; b_c->size[0] = 1; b_c->size[1] = i; emxEnsureCapacity((emxArray__common *)b_c, i0, (int32_T)sizeof(real_T)); ar = i - 1; for (i0 = 0; i0 <= ar; i0++) { b_c->data[b_c->size[0] * i0] = c->data[c->size[0] * i0]; } i0 = c->size[0] * c->size[1]; c->size[0] = 1; c->size[1] = b_c->size[1]; emxEnsureCapacity((emxArray__common *)c, i0, (int32_T)sizeof(real_T)); ar = b_c->size[1] - 1; for (i0 = 0; i0 <= ar; i0++) { c->data[c->size[0] * i0] = b_c->data[b_c->size[0] * i0]; } emxFree_real_T(&b_c); } else { if (32 < nc) { emxInit_real_T(&b_c, 2); i = nc - 32; i0 = b_c->size[0] * b_c->size[1]; b_c->size[0] = 1; b_c->size[1] = c->size[1] + i; emxEnsureCapacity((emxArray__common *)b_c, i0, (int32_T)sizeof(real_T)); ar = c->size[1] - 1; for (i0 = 0; i0 <= ar; i0++) { b_c->data[b_c->size[0] * i0] = c->data[c->size[0] * i0]; } ar = i - 1; for (i0 = 0; i0 <= ar; i0++) { b_c->data[b_c->size[0] * (i0 + c->size[1])] = 0.0; } i0 = c->size[0] * c->size[1]; c->size[0] = 1; c->size[1] = b_c->size[1]; emxEnsureCapacity((emxArray__common *)c, i0, (int32_T)sizeof(real_T)); ar = b_c->size[1] - 1; for (i0 = 0; i0 <= ar; i0++) { c->data[c->size[0] * i0] = b_c->data[b_c->size[0] * i0]; } emxFree_real_T(&b_c); } } i = c->size[1] - 1; for (ar = 1; ar <= i; ar++) { c->data[c->size[0] * (ar - 1)] = c->data[c->size[0] * ar]; } if (1 > i) { i = 0; } emxInit_real_T(&c_c, 2); i0 = c_c->size[0] * c_c->size[1]; c_c->size[0] = 1; c_c->size[1] = i; emxEnsureCapacity((emxArray__common *)c_c, i0, (int32_T)sizeof(real_T)); ar = i - 1; for (i0 = 0; i0 <= ar; i0++) { c_c->data[c_c->size[0] * i0] = c->data[c->size[0] * i0]; } i0 = c->size[0] * c->size[1]; c->size[0] = 1; c->size[1] = c_c->size[1]; emxEnsureCapacity((emxArray__common *)c, i0, (int32_T)sizeof(real_T)); ar = c_c->size[1] - 1; for (i0 = 0; i0 <= ar; i0++) { c->data[c->size[0] * i0] = c_c->data[c_c->size[0] * i0]; } emxFree_real_T(&c_c); }