float train_network_datum(network net) { #ifdef GPU if(gpu_index >= 0) return train_network_datum_gpu(net); #endif *net.seen += net.batch; net.train = 1; forward_network(net); backward_network(net); float error = *net.cost; if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net); return error; }
float train_network_datum(network net, float *x, float *y) { #ifdef GPU if(gpu_index >= 0) return train_network_datum_gpu(net, x, y); #endif network_state state; state.input = x; state.truth = y; state.train = 1; forward_network(net, state); backward_network(net, state); float error = get_network_cost(net); if((net.seen/net.batch)%net.subdivisions == 0) update_network(net); return error; }
void reconstruct_picture(network net, float *features, image recon, image update, float rate, float momentum, float lambda, int smooth_size, int iters) { int iter = 0; for (iter = 0; iter < iters; ++iter) { image delta = make_image(recon.w, recon.h, recon.c); NETWORK_STATE(state); #ifdef GPU state.input = cuda_make_array(recon.data, recon.w*recon.h*recon.c); state.delta = cuda_make_array(delta.data, delta.w*delta.h*delta.c); state.truth = cuda_make_array(features, get_network_output_size(net)); forward_network_gpu(net, state); backward_network_gpu(net, state); cuda_pull_array(state.delta, delta.data, delta.w*delta.h*delta.c); cuda_free(state.input); cuda_free(state.delta); cuda_free(state.truth); #else state.input = recon.data; state.delta = delta.data; state.truth = features; forward_network(net, state); backward_network(net, state); #endif fltadd(update.data, delta.data, recon.w * recon.h * recon.c); smooth(recon, update, lambda, smooth_size); fltaddmul(recon.data, update.data, recon.w * recon.h * recon.c, rate); scal_cpu(recon.w*recon.h*recon.c, momentum, update.data, 1); //float mag = mag_array(recon.data, recon.w*recon.h*recon.c); //scal_cpu(recon.w*recon.h*recon.c, 600/mag, recon.data, 1); constrain_image(recon); free_image(delta); } }
float train_network_batch(network net, data d, int n) { int i,j; network_state state; state.train = 1; float sum = 0; int batch = 2; for(i = 0; i < n; ++i){ for(j = 0; j < batch; ++j){ int index = rand()%d.X.rows; state.input = d.X.vals[index]; state.truth = d.y.vals[index]; forward_network(net, state); backward_network(net, state); sum += get_network_cost(net); } update_network(net); } return (float)sum/(n*batch); }
void reconstruct_picture(network net, float *features, image recon, image update, float rate, float momentum, float lambda, int smooth_size) { scale_image(recon, 2); translate_image(recon, -1); image delta = make_image(recon.w, recon.h, recon.c); network_state state = {0}; #ifdef GPU state.input = cuda_make_array(recon.data, recon.w*recon.h*recon.c); state.delta = cuda_make_array(delta.data, delta.w*delta.h*delta.c); state.truth = cuda_make_array(features, get_network_output_size(net)); forward_network_gpu(net, state); backward_network_gpu(net, state); cuda_pull_array(state.delta, delta.data, delta.w*delta.h*delta.c); cuda_free(state.input); cuda_free(state.delta); cuda_free(state.truth); #else state.input = recon.data; state.delta = delta.data; state.truth = features; forward_network(net, state); backward_network(net, state); #endif axpy_cpu(recon.w*recon.h*recon.c, 1, delta.data, 1, update.data, 1); smooth(recon, update, lambda, smooth_size); axpy_cpu(recon.w*recon.h*recon.c, rate, update.data, 1, recon.data, 1); scal_cpu(recon.w*recon.h*recon.c, momentum, update.data, 1); translate_image(recon, 1); scale_image(recon, .5); constrain_image(recon); free_image(delta); }
void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm) { //scale_image(orig, 2); //translate_image(orig, -1); net->n = max_layer + 1; int dx = rand()%16 - 8; int dy = rand()%16 - 8; int flip = rand()%2; image crop = crop_image(orig, dx, dy, orig.w, orig.h); image im = resize_image(crop, (int)(orig.w * scale), (int)(orig.h * scale)); if(flip) flip_image(im); resize_network(net, im.w, im.h); layer_t last = net->layers[net->n-1]; //net->layers[net->n - 1].activation = LINEAR; image delta = make_image(im.w, im.h, im.c); NETWORK_STATE(state); #ifdef GPU state.input = cuda_make_array(im.data, im.w*im.h*im.c); state.delta = cuda_make_array(im.data, im.w*im.h*im.c); forward_network_gpu(*net, state); copy_ongpu(last.outputs, last.output_gpu, 1, last.delta_gpu, 1); cuda_pull_array(last.delta_gpu, last.delta, last.outputs); calculate_loss(last.delta, last.delta, last.outputs, thresh); cuda_push_array(last.delta_gpu, last.delta, last.outputs); backward_network_gpu(*net, state); cuda_pull_array(state.delta, delta.data, im.w*im.h*im.c); cuda_free(state.input); cuda_free(state.delta); #else state.input = im.data; state.delta = delta.data; forward_network(*net, state); fltcpy(last.delta, last.output, last.outputs); calculate_loss(last.output, last.delta, last.outputs, thresh); backward_network(*net, state); #endif if(flip) flip_image(delta); //normalize_array(delta.data, delta.w*delta.h*delta.c); image resized = resize_image(delta, orig.w, orig.h); image out = crop_image(resized, -dx, -dy, orig.w, orig.h); /* image g = grayscale_image(out); free_image(out); out = g; */ //rate = rate / abs_mean(out.data, out.w*out.h*out.c); if(norm) normalize_array(out.data, out.w*out.h*out.c); fltaddmul(orig.data, out.data, orig.w * orig.h * orig.c, rate); /* normalize_array(orig.data, orig.w*orig.h*orig.c); scale_image(orig, sqrt(var)); translate_image(orig, mean); */ //translate_image(orig, 1); //scale_image(orig, .5); //normalize_image(orig); constrain_image(orig); free_image(crop); free_image(im); free_image(delta); free_image(resized); free_image(out); }
void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display, char *train_images, int maxbatch) { #ifdef GPU char *backup_directory = "/home/kunle12/backup/"; srand(time(0)); char *base = basecfg(cfg); char *abase = basecfg(acfg); printf("%s\n", base); network *gnet = load_network(cfg, weight, clear); network *anet = load_network(acfg, aweight, clear); //float orig_rate = anet->learning_rate; int i, j, k; layer imlayer = {0}; for (i = 0; i < gnet->n; ++i) { if (gnet->layers[i].out_c == 3) { imlayer = gnet->layers[i]; break; } } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", gnet->learning_rate, gnet->momentum, gnet->decay); int imgs = gnet->batch*gnet->subdivisions; i = *gnet->seen/imgs; data train, buffer; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args= get_base_args(anet); args.paths = paths; args.n = imgs; args.m = plist->size; args.d = &buffer; args.type = CLASSIFICATION_DATA; args.threads=16; args.classes = 1; char *ls[2] = {"imagenet", "zzzzzzzz"}; args.labels = ls; pthread_t load_thread = load_data_in_thread(args); clock_t time; gnet->train = 1; anet->train = 1; int x_size = gnet->inputs*gnet->batch; int y_size = gnet->truths*gnet->batch; float *imerror = cuda_make_array(0, y_size); //int ay_size = anet->truths*anet->batch; float aloss_avg = -1; //data generated = copy_data(train); if (maxbatch == 0) maxbatch = gnet->max_batches; while (get_current_batch(gnet) < maxbatch) { i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; //translate_data_rows(train, -.5); //scale_data_rows(train, 2); load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); data gen = copy_data(train); for (j = 0; j < imgs; ++j) { train.y.vals[j][0] = 1; gen.y.vals[j][0] = 0; } time=clock(); for(j = 0; j < gnet->subdivisions; ++j){ get_next_batch(train, gnet->batch, j*gnet->batch, gnet->truth, 0); int z; for(z = 0; z < x_size; ++z){ gnet->input[z] = rand_normal(); } for(z = 0; z < gnet->batch; ++z){ float mag = mag_array(gnet->input + z*gnet->inputs, gnet->inputs); scale_array(gnet->input + z*gnet->inputs, gnet->inputs, 1./mag); } /* for(z = 0; z < 100; ++z){ printf("%f, ", gnet->input[z]); } printf("\n"); printf("input: %f %f\n", mean_array(gnet->input, x_size), variance_array(gnet->input, x_size)); */ //cuda_push_array(gnet->input_gpu, gnet->input, x_size); //cuda_push_array(gnet->truth_gpu, gnet->truth, y_size); *gnet->seen += gnet->batch; forward_network(gnet); fill_gpu(imlayer.outputs*imlayer.batch, 0, imerror, 1); fill_cpu(anet->truths*anet->batch, 1, anet->truth, 1); copy_cpu(anet->inputs*anet->batch, imlayer.output, 1, anet->input, 1); anet->delta_gpu = imerror; forward_network(anet); backward_network(anet); //float genaloss = *anet->cost / anet->batch; //printf("%f\n", genaloss); scal_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1); scal_gpu(imlayer.outputs*imlayer.batch, 0, gnet->layers[gnet->n-1].delta_gpu, 1); //printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs*imlayer.batch)); //printf("features %f\n", cuda_mag_array(gnet->layers[gnet->n-1].delta_gpu, imlayer.outputs*imlayer.batch)); axpy_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, gnet->layers[gnet->n-1].delta_gpu, 1); backward_network(gnet); /* for(k = 0; k < gnet->n; ++k){ layer l = gnet->layers[k]; cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch); printf("%d: %f %f\n", k, mean_array(l.output, l.outputs*l.batch), variance_array(l.output, l.outputs*l.batch)); } */ for(k = 0; k < gnet->batch; ++k){ int index = j*gnet->batch + k; copy_cpu(gnet->outputs, gnet->output + k*gnet->outputs, 1, gen.X.vals[index], 1); } } harmless_update_network_gpu(anet); data merge = concat_data(train, gen); //randomize_data(merge); float aloss = train_network(anet, merge); //translate_image(im, 1); //scale_image(im, .5); //translate_image(im2, 1); //scale_image(im2, .5); #ifdef OPENCV if(display){ image im = float_to_image(anet->w, anet->h, anet->c, gen.X.vals[0]); image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]); show_image(im, "gen", 1); show_image(im2, "train", 1); save_image(im, "gen"); save_image(im2, "train"); } #endif /* if(aloss < .1){ anet->learning_rate = 0; } else if (aloss > .3){ anet->learning_rate = orig_rate; } */ update_network_gpu(gnet); free_data(merge); free_data(train); free_data(gen); if (aloss_avg < 0) aloss_avg = aloss; aloss_avg = aloss_avg*.9 + aloss*.1; printf("%d: adv: %f | adv_avg: %f, %f rate, %lf seconds, %d images\n", i, aloss, aloss_avg, get_current_rate(gnet), sec(clock()-time), i*imgs); if(i%10000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(gnet, buff); sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i); save_weights(anet, buff); } if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(gnet, buff); sprintf(buff, "%s/%s.backup", backup_directory, abase); save_weights(anet, buff); } } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(gnet, buff); #endif free_network(gnet); free_network(anet); }
void train_prog(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display, char *train_images, int maxbatch) { #ifdef GPU char *backup_directory = "/home/kunle12/backup/"; srand(time(0)); char *base = basecfg(cfg); char *abase = basecfg(acfg); printf("%s\n", base); network *gnet = load_network(cfg, weight, clear); network *anet = load_network(acfg, aweight, clear); int i, j, k; layer imlayer = gnet->layers[gnet->n-1]; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", gnet->learning_rate, gnet->momentum, gnet->decay); int imgs = gnet->batch*gnet->subdivisions; i = *gnet->seen/imgs; data train, buffer; list *plist = get_paths(train_images); char **paths = (char **)list_to_array(plist); load_args args= get_base_args(anet); args.paths = paths; args.n = imgs; args.m = plist->size; args.d = &buffer; args.type = CLASSIFICATION_DATA; args.threads=16; args.classes = 1; char *ls[2] = {"imagenet", "zzzzzzzz"}; args.labels = ls; pthread_t load_thread = load_data_in_thread(args); clock_t time; gnet->train = 1; anet->train = 1; int x_size = gnet->inputs*gnet->batch; int y_size = gnet->truths*gnet->batch; float *imerror = cuda_make_array(0, y_size); float aloss_avg = -1; if (maxbatch == 0) maxbatch = gnet->max_batches; while (get_current_batch(gnet) < maxbatch) { { int cb = get_current_batch(gnet); float alpha = (float) cb / (maxbatch/2); if(alpha > 1) alpha = 1; float beta = 1 - alpha; printf("%f %f\n", alpha, beta); set_network_alpha_beta(gnet, alpha, beta); set_network_alpha_beta(anet, beta, alpha); } i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); data gen = copy_data(train); for (j = 0; j < imgs; ++j) { train.y.vals[j][0] = 1; gen.y.vals[j][0] = 0; } time=clock(); for (j = 0; j < gnet->subdivisions; ++j) { get_next_batch(train, gnet->batch, j*gnet->batch, gnet->truth, 0); int z; for(z = 0; z < x_size; ++z){ gnet->input[z] = rand_normal(); } /* for(z = 0; z < gnet->batch; ++z){ float mag = mag_array(gnet->input + z*gnet->inputs, gnet->inputs); scale_array(gnet->input + z*gnet->inputs, gnet->inputs, 1./mag); } */ *gnet->seen += gnet->batch; forward_network(gnet); fill_gpu(imlayer.outputs*imlayer.batch, 0, imerror, 1); fill_cpu(anet->truths*anet->batch, 1, anet->truth, 1); copy_cpu(anet->inputs*anet->batch, imlayer.output, 1, anet->input, 1); anet->delta_gpu = imerror; forward_network(anet); backward_network(anet); //float genaloss = *anet->cost / anet->batch; scal_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1); scal_gpu(imlayer.outputs*imlayer.batch, 0, gnet->layers[gnet->n-1].delta_gpu, 1); axpy_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, gnet->layers[gnet->n-1].delta_gpu, 1); backward_network(gnet); for(k = 0; k < gnet->batch; ++k){ int index = j*gnet->batch + k; copy_cpu(gnet->outputs, gnet->output + k*gnet->outputs, 1, gen.X.vals[index], 1); } } harmless_update_network_gpu(anet); data merge = concat_data(train, gen); float aloss = train_network(anet, merge); #ifdef OPENCV if(display){ image im = float_to_image(anet->w, anet->h, anet->c, gen.X.vals[0]); image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]); show_image(im, "gen", 1); show_image(im2, "train", 1); save_image(im, "gen"); save_image(im2, "train"); } #endif update_network_gpu(gnet); free_data(merge); free_data(train); free_data(gen); if (aloss_avg < 0) aloss_avg = aloss; aloss_avg = aloss_avg*.9 + aloss*.1; printf("%d: adv: %f | adv_avg: %f, %f rate, %lf seconds, %d images\n", i, aloss, aloss_avg, get_current_rate(gnet), sec(clock()-time), i*imgs); if(i%10000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(gnet, buff); sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i); save_weights(anet, buff); } if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(gnet, buff); sprintf(buff, "%s/%s.backup", backup_directory, abase); save_weights(anet, buff); } } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(gnet, buff); #endif free_network( gnet ); free_network( anet ); }