boost::shared_ptr<FdmStepConditionComposite> 
    FdmStepConditionComposite::vanillaComposite(
                 const DividendSchedule& cashFlow,
                 const boost::shared_ptr<Exercise>& exercise,
                 const boost::shared_ptr<FdmMesher>& mesher,
                 const boost::shared_ptr<FdmInnerValueCalculator>& calculator,
                 const Date& refDate,
                 const DayCounter& dayCounter) {
        
        std::list<std::vector<Time> > stoppingTimes;
        std::list<boost::shared_ptr<StepCondition<Array> > > stepConditions;

        if(!cashFlow.empty()) {
            boost::shared_ptr<FdmDividendHandler> dividendCondition(
                new FdmDividendHandler(cashFlow, mesher,
                                       refDate, dayCounter, 0));
            stepConditions.push_back(dividendCondition);
            stoppingTimes.push_back(dividendCondition->dividendTimes());
        }

        QL_REQUIRE(   exercise->type() == Exercise::American
                   || exercise->type() == Exercise::European
                   || exercise->type() == Exercise::Bermudan,
                   "exercise type is not supported");
        if (exercise->type() == Exercise::American) {
            stepConditions.push_back(boost::shared_ptr<StepCondition<Array> >(
                          new FdmAmericanStepCondition(mesher,calculator)));
        }
        else if (exercise->type() == Exercise::Bermudan) {
            boost::shared_ptr<FdmBermudanStepCondition> bermudanCondition(
                new FdmBermudanStepCondition(exercise->dates(),
                                             refDate, dayCounter,
                                             mesher, calculator));
            stepConditions.push_back(bermudanCondition);
            stoppingTimes.push_back(bermudanCondition->exerciseTimes());
        }
        
        return boost::shared_ptr<FdmStepConditionComposite>(
            new FdmStepConditionComposite(stoppingTimes, stepConditions));

    }
    void FdBlackScholesVanillaEngine::calculate() const {

        // 1. Layout
        std::vector<Size> dim;
        dim.push_back(xGrid_);
        const boost::shared_ptr<FdmLinearOpLayout> layout(
                                              new FdmLinearOpLayout(dim));

        const boost::shared_ptr<StrikedTypePayoff> payoff =
            boost::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);

        // 2. Mesher
        const Time maturity = process_->time(arguments_.exercise->lastDate());
        const boost::shared_ptr<Fdm1dMesher> equityMesher(
            new FdmBlackScholesMesher(
                    xGrid_, process_, maturity, payoff->strike(), 
                    Null<Real>(), Null<Real>(), 0.0001, 1.5, 
                    std::pair<Real, Real>(payoff->strike(), 0.1)));
        
        std::vector<boost::shared_ptr<Fdm1dMesher> > meshers;
        meshers.push_back(equityMesher);
        boost::shared_ptr<FdmMesher> mesher (
                                     new FdmMesherComposite(layout, meshers));
        

        // 3. Calculator
        boost::shared_ptr<FdmInnerValueCalculator> calculator(
                                      new FdmLogInnerValue(payoff, mesher, 0));

        // 4. Step conditions
        std::list<boost::shared_ptr<StepCondition<Array> > > stepConditions;
        std::list<std::vector<Time> > stoppingTimes;

        // 4.1 Step condition if discrete dividends
        if(!arguments_.cashFlow.empty()) {
            boost::shared_ptr<FdmDividendHandler> dividendCondition(
                new FdmDividendHandler(arguments_.cashFlow, mesher,
                                       process_->riskFreeRate()->referenceDate(),
                                       process_->riskFreeRate()->dayCounter(),
                                       0));
            stepConditions.push_back(dividendCondition);
            stoppingTimes.push_back(dividendCondition->dividendTimes());
        }

        // 4.2 Step condition if american or bermudan exercise
        QL_REQUIRE(   arguments_.exercise->type() == Exercise::American
                   || arguments_.exercise->type() == Exercise::European
                   || arguments_.exercise->type() == Exercise::Bermudan,
                   "exercise type is not supported");
        if (arguments_.exercise->type() == Exercise::American) {
            stepConditions.push_back(boost::shared_ptr<StepCondition<Array> >(
                            new FdmAmericanStepCondition(mesher,calculator)));
        }
        else if (arguments_.exercise->type() == Exercise::Bermudan) {
            boost::shared_ptr<FdmBermudanStepCondition> bermudanCondition(
                new FdmBermudanStepCondition(
                                    arguments_.exercise->dates(),
                                    process_->riskFreeRate()->referenceDate(),
                                    process_->riskFreeRate()->dayCounter(),
                                    mesher, calculator));
            stepConditions.push_back(bermudanCondition);
            stoppingTimes.push_back(bermudanCondition->exerciseTimes());
        }

        boost::shared_ptr<FdmStepConditionComposite> conditions(
                new FdmStepConditionComposite(stoppingTimes, stepConditions));

        // 5. Boundary conditions
        std::vector<boost::shared_ptr<FdmDirichletBoundary> > boundaries;

        // 6. Solver
        boost::shared_ptr<FdmBlackScholesSolver> solver(
                new FdmBlackScholesSolver(
                             Handle<GeneralizedBlackScholesProcess>(process_),
                             mesher, boundaries, conditions, calculator,
                             payoff->strike(), maturity, tGrid_, 
                             dampingSteps_, schemeDesc_, 
                             localVol_, illegalLocalVolOverwrite_));

        const Real spot = process_->x0();
        results_.value = solver->valueAt(spot);
        results_.delta = solver->deltaAt(spot);
        results_.gamma = solver->gammaAt(spot);
        results_.theta = solver->thetaAt(spot);
    }
    void Fd2dBlackScholesVanillaEngine::calculate() const {
        // 1. Layout
        std::vector<Size> dim;
        dim.push_back(xGrid_);
        dim.push_back(yGrid_);
        const boost::shared_ptr<FdmLinearOpLayout> layout(
                                              new FdmLinearOpLayout(dim));

        const boost::shared_ptr<BasketPayoff> payoff =
            boost::dynamic_pointer_cast<BasketPayoff>(arguments_.payoff);

        // 2. Mesher
        const Time maturity = p1_->time(arguments_.exercise->lastDate());
        const boost::shared_ptr<Fdm1dMesher> em1(
            new FdmBlackScholesMesher(
                    xGrid_, p1_, maturity, p1_->x0(), 
                    Null<Real>(), Null<Real>(), 0.0001, 1.5, 
                    std::pair<Real, Real>(p1_->x0(), 0.1)));

        const boost::shared_ptr<Fdm1dMesher> em2(
            new FdmBlackScholesMesher(
                    xGrid_, p2_, maturity, p2_->x0(), 
                    Null<Real>(), Null<Real>(), 0.0001, 1.5, 
                    std::pair<Real, Real>(p2_->x0(), 0.1)));

        std::vector<boost::shared_ptr<Fdm1dMesher> > meshers;
        meshers.push_back(em1);
        meshers.push_back(em2);
        boost::shared_ptr<FdmMesher> mesher (
                                     new FdmMesherComposite(layout, meshers));

        // 3. Calculator
        boost::shared_ptr<FdmInnerValueCalculator> calculator(
                                new FdmLogBasketInnerValue(payoff, mesher));

        // 4. Step conditions
        std::list<boost::shared_ptr<StepCondition<Array> > > stepConditions;
        std::list<std::vector<Time> > stoppingTimes;

        // 4.2 Step condition if american or bermudan exercise
        QL_REQUIRE(   arguments_.exercise->type() == Exercise::American
                   || arguments_.exercise->type() == Exercise::European
                   || arguments_.exercise->type() == Exercise::Bermudan,
                   "exercise type is not supported");
        if (arguments_.exercise->type() == Exercise::American) {
            stepConditions.push_back(boost::shared_ptr<StepCondition<Array> >(
                            new FdmAmericanStepCondition(mesher,calculator)));
        }
        else if (arguments_.exercise->type() == Exercise::Bermudan) {
            boost::shared_ptr<FdmBermudanStepCondition> bermudanCondition(
                new FdmBermudanStepCondition(
                                    arguments_.exercise->dates(),
                                    p1_->riskFreeRate()->referenceDate(),
                                    p1_->riskFreeRate()->dayCounter(),
                                    mesher, calculator));
            stepConditions.push_back(bermudanCondition);
            stoppingTimes.push_back(bermudanCondition->exerciseTimes());
        }

        boost::shared_ptr<FdmStepConditionComposite> conditions(
                new FdmStepConditionComposite(stoppingTimes, stepConditions));

        // 5. Boundary conditions
        std::vector<boost::shared_ptr<FdmDirichletBoundary> > boundaries;

        // 6. Solver
        boost::shared_ptr<Fdm2dBlackScholesSolver> solver(
                new Fdm2dBlackScholesSolver(
                             Handle<GeneralizedBlackScholesProcess>(p1_),
                             Handle<GeneralizedBlackScholesProcess>(p2_),
                             correlation_,
                             mesher, boundaries, conditions, calculator,
                             maturity, tGrid_, dampingSteps_,
                             schemeDesc_));

        const Real x = p1_->x0();
        const Real y = p2_->x0();

        results_.value = solver->valueAt(x, y);
        results_.theta = solver->thetaAt(x, y);
    }