Пример #1
0
void RSAKey::PublicBlob( CString &out ) const
{
	int elen, mlen, bloblen;
	int i;
	unsigned char *blob, *p;

	elen = (bignum_bitcount(this->exponent) + 8) / 8;
	mlen = (bignum_bitcount(this->modulus) + 8) / 8;

	/*
	 * string "ssh-rsa", mpint exp, mpint mod. Total 19+elen+mlen.
	 * (three length fields, 12+7=19).
	 */
	bloblen = 19 + elen + mlen;
	blob = new unsigned char[bloblen];
	p = blob;
	PUT_32BIT(p, 7);
	p += 4;
	memcpy(p, "ssh-rsa", 7);
	p += 7;
	PUT_32BIT(p, elen);
	p += 4;
	for (i = elen; i--;)
		*p++ = bignum_byte(this->exponent, i);
	PUT_32BIT(p, mlen);
	p += 4;
	for (i = mlen; i--;)
		*p++ = bignum_byte(this->modulus, i);
	ASSERT(p == blob + bloblen);

	out = CString( (const char *) blob, bloblen );
}
Пример #2
0
static unsigned char *rsa2_public_blob(void *key, int *len)
{
    struct RSAKey *rsa = (struct RSAKey *) key;
    int elen, mlen, bloblen;
    int i;
    unsigned char *blob, *p;

    elen = (bignum_bitcount(rsa->exponent) + 8) / 8;
    mlen = (bignum_bitcount(rsa->modulus) + 8) / 8;

    /*
     * string "ssh-rsa", mpint exp, mpint mod. Total 19+elen+mlen.
     * (three length fields, 12+7=19).
     */
    bloblen = 19 + elen + mlen;
    blob = snewn(bloblen, unsigned char);
    p = blob;
    PUT_32BIT(p, 7);
    p += 4;
    memcpy(p, "ssh-rsa", 7);
    p += 7;
    PUT_32BIT(p, elen);
    p += 4;
    for (i = elen; i--;)
	*p++ = bignum_byte(rsa->exponent, i);
    PUT_32BIT(p, mlen);
    p += 4;
    for (i = mlen; i--;)
	*p++ = bignum_byte(rsa->modulus, i);
    assert(p == blob + bloblen);
    *len = bloblen;
    return blob;
}
Пример #3
0
void rsastr_fmt(char *str, struct RSAKey *key)
{
    Bignum md, ex;
    int len = 0, i, nibbles;
    static const char hex[] = "0123456789abcdef";

    md = key->modulus;
    ex = key->exponent;

    len += sprintf(str + len, "0x");

    nibbles = (3 + bignum_bitcount(ex)) / 4;
    if (nibbles < 1)
	nibbles = 1;
    for (i = nibbles; i--;)
	str[len++] = hex[(bignum_byte(ex, i / 2) >> (4 * (i % 2))) & 0xF];

    len += sprintf(str + len, ",0x");

    nibbles = (3 + bignum_bitcount(md)) / 4;
    if (nibbles < 1)
	nibbles = 1;
    for (i = nibbles; i--;)
	str[len++] = hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF];

    str[len] = '\0';
}
Пример #4
0
int RSAKey::StrLen() const
{
	Bignum md, ex;
	int mdlen, exlen;

	md = this->modulus;
	ex = this->exponent;
	mdlen = (bignum_bitcount(md) + 15) / 16;
	exlen = (bignum_bitcount(ex) + 15) / 16;
	return 4 * (mdlen + exlen) + 20;
}
Пример #5
0
int rsastr_len(struct RSAKey *key)
{
    Bignum md, ex;
    int mdlen, exlen;

    md = key->modulus;
    ex = key->exponent;
    mdlen = (bignum_bitcount(md) + 15) / 16;
    exlen = (bignum_bitcount(ex) + 15) / 16;
    return 4 * (mdlen + exlen) + 20;
}
static char *dss_fingerprint(void *key)
{
    struct dss_key *dss = (struct dss_key *) key;
    struct MD5Context md5c;
    unsigned char digest[16], lenbuf[4];
    char buffer[16 * 3 + 40];
    size_t pos;
    int numlen, i;

    MD5Init(&md5c);
    MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-dss", 11);

#define ADD_BIGNUM(bignum) \
    numlen = (bignum_bitcount(bignum)+8)/8; \
    PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \
    for (i = numlen; i-- ;) { \
        unsigned char c = bignum_byte(bignum, i); \
        MD5Update(&md5c, &c, 1); \
    }
    ADD_BIGNUM(dss->p);
    ADD_BIGNUM(dss->q);
    ADD_BIGNUM(dss->g);
    ADD_BIGNUM(dss->y);
#undef ADD_BIGNUM

    MD5Final(digest, &md5c);

    pos = szprintf(buffer, sizeof(buffer), "ssh-dss %d ", bignum_bitcount(dss->p));
    for (i = 0; i < 16; i++)
	pos += szprintf(buffer + pos, sizeof(buffer) - pos, "%s%02x", i ? ":" : "",
		digest[i]);
    return dupstr(buffer);
}
Пример #7
0
/*
 * Generate a fingerprint string for the key. Compatible with the
 * OpenSSH fingerprint code.
 */
void rsa_fingerprint(char *str, int len, struct RSAKey *key)
{
    struct MD5Context md5c;
    unsigned char digest[16];
    char buffer[16 * 3 + 40];
    int numlen, slen, i;

    MD5Init(&md5c);
    numlen = ssh1_bignum_length(key->modulus) - 2;
    for (i = numlen; i--;) {
	unsigned char c = bignum_byte(key->modulus, i);
	MD5Update(&md5c, &c, 1);
    }
    numlen = ssh1_bignum_length(key->exponent) - 2;
    for (i = numlen; i--;) {
	unsigned char c = bignum_byte(key->exponent, i);
	MD5Update(&md5c, &c, 1);
    }
    MD5Final(digest, &md5c);

    sprintf(buffer, "%d ", bignum_bitcount(key->modulus));
    for (i = 0; i < 16; i++)
	sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
		digest[i]);
    strncpy(str, buffer, len);
    str[len - 1] = '\0';
    slen = strlen(str);
    if (key->comment && slen < len - 1) {
	str[slen] = ' ';
	strncpy(str + slen + 1, key->comment, len - slen - 1);
	str[len - 1] = '\0';
    }
}
Пример #8
0
void RSAKey::Sign( const CString &data, CString &out ) const
{
	Bignum in;
	{
		unsigned char hash[20];
		SHA_Simple(data.data(), data.size(), hash);

		int nbytes = (bignum_bitcount(this->modulus) - 1) / 8;
		unsigned char *bytes = new unsigned char[nbytes];

		memset( bytes, 0xFF, nbytes );
		bytes[0] = 1;
		memcpy( bytes + nbytes - 20, hash, 20 );

		in = bignum_from_bytes(bytes, nbytes);
		delete [] bytes;
	}

	Bignum outnum = rsa_privkey_op(in, this);
	delete [] in;

	int siglen;
	unsigned char *bytes = bignum_to_bytes( outnum, &siglen );
	delete [] outnum;

	out = CString( (const char *) bytes, siglen );
	delete [] bytes;
}
Пример #9
0
static char *rsa2_fingerprint(void *key)
{
    struct RSAKey *rsa = (struct RSAKey *) key;
    struct MD5Context md5c;
    unsigned char digest[16], lenbuf[4];
    char buffer[16 * 3 + 40];
    char *ret;
    int numlen, i;

    MD5Init(&md5c);
    MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-rsa", 11);

#define ADD_BIGNUM(bignum) \
    numlen = (bignum_bitcount(bignum)+8)/8; \
    PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \
    for (i = numlen; i-- ;) { \
        unsigned char c = bignum_byte(bignum, i); \
        MD5Update(&md5c, &c, 1); \
    }
    ADD_BIGNUM(rsa->exponent);
    ADD_BIGNUM(rsa->modulus);
#undef ADD_BIGNUM

    MD5Final(digest, &md5c);

    sprintf(buffer, "ssh-rsa %d ", bignum_bitcount(rsa->modulus));
    for (i = 0; i < 16; i++)
	sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
		digest[i]);
    ret = snewn(strlen(buffer) + 1, char);
    if (ret)
	strcpy(ret, buffer);
    return ret;
}
Пример #10
0
/*
 * DH stage 1: invent a number x between 1 and q, and compute e =
 * g^x mod p. Return e.
 * 
 * If `nbits' is greater than zero, it is used as an upper limit
 * for the number of bits in x. This is safe provided that (a) you
 * use twice as many bits in x as the number of bits you expect to
 * use in your session key, and (b) the DH group is a safe prime
 * (which SSH demands that it must be).
 * 
 * P. C. van Oorschot, M. J. Wiener
 * "On Diffie-Hellman Key Agreement with Short Exponents".
 * Advances in Cryptology: Proceedings of Eurocrypt '96
 * Springer-Verlag, May 1996.
 */
Bignum dh_create_e(void *handle, int nbits)
{
    struct dh_ctx *ctx = (struct dh_ctx *)handle;
    int i;

    int nbytes;
    unsigned char *buf;

    nbytes = (bignum_bitcount(ctx->qmask) + 7) / 8;
    buf = snewn(nbytes, unsigned char);

    do {
	/*
	 * Create a potential x, by ANDing a string of random bytes
	 * with qmask.
	 */
	if (ctx->x)
	    freebn(ctx->x);
	if (nbits == 0 || nbits > bignum_bitcount(ctx->qmask)) {
	    for (i = 0; i < nbytes; i++)
		buf[i] = bignum_byte(ctx->qmask, i) & random_byte();
	    ctx->x = bignum_from_bytes(buf, nbytes);
	} else {
	    int b, nb;
	    ctx->x = bn_power_2(nbits);
	    b = nb = 0;
	    for (i = 0; i < nbits; i++) {
		if (nb == 0) {
		    nb = 8;
		    b = random_byte();
		}
		bignum_set_bit(ctx->x, i, b & 1);
		b >>= 1;
		nb--;
	    }
	}
    } while (bignum_cmp(ctx->x, One) <= 0 || bignum_cmp(ctx->x, ctx->q) >= 0);

    sfree(buf);

    /*
     * Done. Now compute e = g^x mod p.
     */
    ctx->e = modpow(ctx->g, ctx->x, ctx->p);

    return ctx->e;
}
Пример #11
0
/* static struct RSAKey *rsa2_openssh_createkey(unsigned char **blob, int *len)
{
	const char **b = (const char **) blob;
	struct RSAKey *rsa = new RSAKey;

	rsa->comment = NULL;
	rsa->modulus = getmp(b, len);
	rsa->exponent = getmp(b, len);
	rsa->private_exponent = getmp(b, len);
	rsa->iqmp = getmp(b, len);
	rsa->p = getmp(b, len);
	rsa->q = getmp(b, len);

	if (!rsa->modulus || !rsa->exponent || !rsa->private_exponent ||
			!rsa->iqmp || !rsa->p || !rsa->q)
	{
		delete rsa;
		return NULL;
	}

	return rsa;
}

static int rsa2_openssh_fmtkey( struct RSAKey *rsa, unsigned char *blob, int len )
{
	int bloblen =
		ssh2_bignum_length(rsa->modulus) +
		ssh2_bignum_length(rsa->exponent) +
		ssh2_bignum_length(rsa->private_exponent) +
		ssh2_bignum_length(rsa->iqmp) +
		ssh2_bignum_length(rsa->p) + ssh2_bignum_length(rsa->q);

	if (bloblen > len)
		return bloblen;

	bloblen = 0;
#define ENC(x) \
	PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \
		for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);
	int i;
	ENC(rsa->modulus);
	ENC(rsa->exponent);
	ENC(rsa->private_exponent);
	ENC(rsa->iqmp);
	ENC(rsa->p);
	ENC(rsa->q);

	return bloblen;
}
*/
int rsa2_pubkey_bits( const CString &blob )
{
	RSAKey rsa;
	if( !rsa.LoadFromPublicBlob( blob ) )
		return 0;

	return bignum_bitcount(rsa.modulus);
}
Пример #12
0
static unsigned char *dss_public_blob(void *key, int *len)
{
    struct dss_key *dss = (struct dss_key *) key;
    int plen, qlen, glen, ylen, bloblen;
    int i;
    unsigned char *blob, *p;

    plen = (bignum_bitcount(dss->p) + 8) / 8;
    qlen = (bignum_bitcount(dss->q) + 8) / 8;
    glen = (bignum_bitcount(dss->g) + 8) / 8;
    ylen = (bignum_bitcount(dss->y) + 8) / 8;

    /*
     * string "ssh-dss", mpint p, mpint q, mpint g, mpint y. Total
     * 27 + sum of lengths. (five length fields, 20+7=27).
     */
    bloblen = 27 + plen + qlen + glen + ylen;
    blob = snewn(bloblen, unsigned char);
    p = blob;
    PUT_32BIT(p, 7);
    p += 4;
    memcpy(p, "ssh-dss", 7);
    p += 7;
    PUT_32BIT(p, plen);
    p += 4;
    for (i = plen; i--;)
	*p++ = bignum_byte(dss->p, i);
    PUT_32BIT(p, qlen);
    p += 4;
    for (i = qlen; i--;)
	*p++ = bignum_byte(dss->q, i);
    PUT_32BIT(p, glen);
    p += 4;
    for (i = glen; i--;)
	*p++ = bignum_byte(dss->g, i);
    PUT_32BIT(p, ylen);
    p += 4;
    for (i = ylen; i--;)
	*p++ = bignum_byte(dss->y, i);
    assert(p == blob + bloblen);
    *len = bloblen;
    return blob;
}
Пример #13
0
static char *dss_fmtkey(void *key)
{
    dss_key *dss = ( dss_key *) key;
    char *p;
    int len, i, pos, nibbles;
    static const char hex[] = "0123456789abcdef";
    
	if (!dss->p)
		return NULL;

    len = 8 + 4 + 1;		       /* 4 x "0x", punctuation, \0 */
    len += 4 * (bignum_bitcount(dss->p) + 15) / 16;
    len += 4 * (bignum_bitcount(dss->q) + 15) / 16;
    len += 4 * (bignum_bitcount(dss->g) + 15) / 16;
    len += 4 * (bignum_bitcount(dss->y) + 15) / 16;
    
	p = snewn(len, char); 
	
	if (!p) return NULL;

    pos = 0;
    pos += sprintf(p + pos, "0x");
    nibbles = (3 + bignum_bitcount(dss->p)) / 4;
    if (nibbles < 1)
	nibbles = 1;
    for (i = nibbles; i--;)
	p[pos++] =
	    hex[(bignum_byte(dss->p, i / 2) >> (4 * (i % 2))) & 0xF];
    pos += sprintf(p + pos, ",0x");
    nibbles = (3 + bignum_bitcount(dss->q)) / 4;
    if (nibbles < 1)
	nibbles = 1;
    for (i = nibbles; i--;)
	p[pos++] =
	    hex[(bignum_byte(dss->q, i / 2) >> (4 * (i % 2))) & 0xF];
    pos += sprintf(p + pos, ",0x");
    nibbles = (3 + bignum_bitcount(dss->g)) / 4;
    if (nibbles < 1)
	nibbles = 1;
    for (i = nibbles; i--;)
	p[pos++] =
	    hex[(bignum_byte(dss->g, i / 2) >> (4 * (i % 2))) & 0xF];
    pos += sprintf(p + pos, ",0x");
    nibbles = (3 + bignum_bitcount(dss->y)) / 4;
    if (nibbles < 1)
	nibbles = 1;
    for (i = nibbles; i--;)
	p[pos++] =
	    hex[(bignum_byte(dss->y, i / 2) >> (4 * (i % 2))) & 0xF];
    p[pos] = '\0';

    return p;
}
Пример #14
0
static unsigned char *rsa2_sign(void *key, char *data, int datalen,
				int *siglen)
{
    struct RSAKey *rsa = (struct RSAKey *) key;
    unsigned char *bytes;
    int nbytes;
    unsigned char hash[20];
    Bignum in, out;
    int i, j;

    SHA_Simple(data, datalen, hash);

    nbytes = (bignum_bitcount(rsa->modulus) - 1) / 8;
    assert(1 <= nbytes - 20 - ASN1_LEN);
    bytes = snewn(nbytes, unsigned char);

    bytes[0] = 1;
    for (i = 1; i < nbytes - 20 - ASN1_LEN; i++)
	bytes[i] = 0xFF;
    for (i = nbytes - 20 - ASN1_LEN, j = 0; i < nbytes - 20; i++, j++)
	bytes[i] = asn1_weird_stuff[j];
    for (i = nbytes - 20, j = 0; i < nbytes; i++, j++)
	bytes[i] = hash[j];

    in = bignum_from_bytes(bytes, nbytes);
    sfree(bytes);

    out = rsa_privkey_op(in, rsa);
    freebn(in);

    nbytes = (bignum_bitcount(out) + 7) / 8;
    bytes = snewn(4 + 7 + 4 + nbytes, unsigned char);
    PUT_32BIT(bytes, 7);
    memcpy(bytes + 4, "ssh-rsa", 7);
    PUT_32BIT(bytes + 4 + 7, nbytes);
    for (i = 0; i < nbytes; i++)
	bytes[4 + 7 + 4 + i] = bignum_byte(out, nbytes - 1 - i);
    freebn(out);

    *siglen = 4 + 7 + 4 + nbytes;
    return bytes;
}
Пример #15
0
static int rsa2_pubkey_bits(void *blob, int len)
{
    struct RSAKey *rsa;
    int ret;

    rsa = rsa2_newkey((char *) blob, len);
    ret = bignum_bitcount(rsa->modulus);
    rsa2_freekey(rsa);

    return ret;
}
Пример #16
0
static int dss_pubkey_bits(void *blob, int len)
{
    struct dss_key *dss;
    int ret;

    dss = dss_newkey((char *) blob, len);
    ret = bignum_bitcount(dss->p);
    dss_freekey(dss);

    return ret;
}
Пример #17
0
static void sha512_mpint(SHA512_State * s, Bignum b)
{
    unsigned char lenbuf[4];
    int len;
    len = (bignum_bitcount(b) + 8) / 8;
    PUT_32BIT(lenbuf, len);
    SHA512_Bytes(s, lenbuf, 4);
    while (len-- > 0) {
	lenbuf[0] = bignum_byte(b, len);
	SHA512_Bytes(s, lenbuf, 1);
    }
    memset(lenbuf, 0, sizeof(lenbuf));
}
Пример #18
0
static unsigned char *rsa2_private_blob(void *key, int *len)
{
    struct RSAKey *rsa = (struct RSAKey *) key;
    int dlen, plen, qlen, ulen, bloblen;
    int i;
    unsigned char *blob, *p;

    dlen = (bignum_bitcount(rsa->private_exponent) + 8) / 8;
    plen = (bignum_bitcount(rsa->p) + 8) / 8;
    qlen = (bignum_bitcount(rsa->q) + 8) / 8;
    ulen = (bignum_bitcount(rsa->iqmp) + 8) / 8;

    /*
     * mpint private_exp, mpint p, mpint q, mpint iqmp. Total 16 +
     * sum of lengths.
     */
    bloblen = 16 + dlen + plen + qlen + ulen;
    blob = snewn(bloblen, unsigned char);
    p = blob;
    PUT_32BIT(p, dlen);
    p += 4;
    for (i = dlen; i--;)
	*p++ = bignum_byte(rsa->private_exponent, i);
    PUT_32BIT(p, plen);
    p += 4;
    for (i = plen; i--;)
	*p++ = bignum_byte(rsa->p, i);
    PUT_32BIT(p, qlen);
    p += 4;
    for (i = qlen; i--;)
	*p++ = bignum_byte(rsa->q, i);
    PUT_32BIT(p, ulen);
    p += 4;
    for (i = ulen; i--;)
	*p++ = bignum_byte(rsa->iqmp, i);
    assert(p == blob + bloblen);
    *len = bloblen;
    return blob;
}
Пример #19
0
void RSAKey::StrFmt( char *str ) const
{
	int len = 0, i, nibbles;
	static const char hex[] = "0123456789abcdef";

	len += sprintf(str + len, "0x");

	nibbles = (3 + bignum_bitcount(this->exponent)) / 4;
	if (nibbles < 1)
		nibbles = 1;
	for (i = nibbles; i--;)
		str[len++] = hex[(bignum_byte(this->exponent, i / 2) >> (4 * (i % 2))) & 0xF];

	len += sprintf(str + len, ",0x");

	nibbles = (3 + bignum_bitcount(this->modulus)) / 4;
	if (nibbles < 1)
		nibbles = 1;
	for (i = nibbles; i--;)
		str[len++] = hex[(bignum_byte(this->modulus, i / 2) >> (4 * (i % 2))) & 0xF];

	str[len] = '\0';
}
Пример #20
0
int makekey(unsigned char *data, int len, struct RSAKey *result,
	    unsigned char **keystr, int order)
{
    unsigned char *p = data;
    int i, n;

    if (len < 4)
	return -1;

    if (result) {
	result->bits = 0;
	for (i = 0; i < 4; i++)
	    result->bits = (result->bits << 8) + *p++;
    } else
	p += 4;

    len -= 4;

    /*
     * order=0 means exponent then modulus (the keys sent by the
     * server). order=1 means modulus then exponent (the keys
     * stored in a keyfile).
     */

    if (order == 0) {
	n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);
	if (n < 0) return -1;
	p += n;
	len -= n;
    }

    n = ssh1_read_bignum(p, len, result ? &result->modulus : NULL);
    if (n < 0 || (result && bignum_bitcount(result->modulus) == 0)) return -1;
    if (result)
	result->bytes = n - 2;
    if (keystr)
	*keystr = p + 2;
    p += n;
    len -= n;

    if (order == 1) {
	n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);
	if (n < 0) return -1;
	p += n;
	len -= n;
    }
    return p - data;
}
Пример #21
0
static void setupbigedit1(HWND hwnd, int id, int idstatic, struct RSAKey *key)
{
    char *buffer;
    char *dec1, *dec2;

    dec1 = bignum_decimal(key->exponent);
    dec2 = bignum_decimal(key->modulus);
    buffer = dupprintf("%d %s %s %s", bignum_bitcount(key->modulus),
		       dec1, dec2, key->comment);
    SetDlgItemText(hwnd, id, buffer);
    SetDlgItemText(hwnd, idstatic,
		   "&Public key for pasting into authorized_keys file:");
    sfree(dec1);
    sfree(dec2);
    sfree(buffer);
}
Пример #22
0
static int rsa2_verifysig(void *key, char *sig, int siglen,
			  char *data, int datalen)
{
    struct RSAKey *rsa = (struct RSAKey *) key;
    Bignum in, out;
    char *p;
    int slen;
    int bytes, i, j, ret;
    unsigned char hash[20];

    getstring(&sig, &siglen, &p, &slen);
    if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
	return 0;
    }
    in = getmp(&sig, &siglen);
    out = modpow(in, rsa->exponent, rsa->modulus);
    freebn(in);

    ret = 1;

    bytes = (bignum_bitcount(rsa->modulus)+7) / 8;
    /* Top (partial) byte should be zero. */
    if (bignum_byte(out, bytes - 1) != 0)
	ret = 0;
    /* First whole byte should be 1. */
    if (bignum_byte(out, bytes - 2) != 1)
	ret = 0;
    /* Most of the rest should be FF. */
    for (i = bytes - 3; i >= 20 + ASN1_LEN; i--) {
	if (bignum_byte(out, i) != 0xFF)
	    ret = 0;
    }
    /* Then we expect to see the asn1_weird_stuff. */
    for (i = 20 + ASN1_LEN - 1, j = 0; i >= 20; i--, j++) {
	if (bignum_byte(out, i) != asn1_weird_stuff[j])
	    ret = 0;
    }
    /* Finally, we expect to see the SHA-1 hash of the signed data. */
    SHA_Simple(data, datalen, hash);
    for (i = 19, j = 0; i >= 0; i--, j++) {
	if (bignum_byte(out, i) != hash[j])
	    ret = 0;
    }
    freebn(out);

    return ret;
}
Пример #23
0
static int save_ssh1_pubkey(char *filename, struct RSAKey *key)
{
    char *dec1, *dec2;
    FILE *fp;

    dec1 = bignum_decimal(key->exponent);
    dec2 = bignum_decimal(key->modulus);
    fp = fopen(filename, "wb");
    if (!fp)
	return 0;
    fprintf(fp, "%d %s %s %s\n",
	    bignum_bitcount(key->modulus), dec1, dec2, key->comment);
    fclose(fp);
    sfree(dec1);
    sfree(dec2);
    return 1;
}
Пример #24
0
/* Public key blob as used by Pageant: exponent before modulus. */
unsigned char *rsa_public_blob(struct RSAKey *key, int *len)
{
    int length, pos;
    unsigned char *ret;

    length = (ssh1_bignum_length(key->modulus) +
	      ssh1_bignum_length(key->exponent) + 4);
    ret = snewn(length, unsigned char);

    PUT_32BIT(ret, bignum_bitcount(key->modulus));
    pos = 4;
    pos += ssh1_write_bignum(ret + pos, key->exponent);
    pos += ssh1_write_bignum(ret + pos, key->modulus);

    *len = length;
    return ret;
}
Пример #25
0
bool RSAKey::Verify( const CString &data, const CString &sig ) const
{
	Bignum in, out;
	int bytes, i, j;
	unsigned char hash[20];

	in = bignum_from_bytes( (const unsigned char *) sig.data(), sig.size() );

	/* Base (in) must be smaller than the modulus. */
	if( bignum_cmp(in, this->modulus) >= 0 )
	{
		freebn(in);
		return false;
	}
	out = modpow(in, this->exponent, this->modulus);
	freebn(in);

	bool ret = true;

	bytes = (bignum_bitcount(this->modulus)+7) / 8;
	/* Top (partial) byte should be zero. */
	if (bignum_byte(out, bytes - 1) != 0)
		ret = 0;
	/* First whole byte should be 1. */
	if (bignum_byte(out, bytes - 2) != 1)
		ret = 0;
	/* Most of the rest should be FF. */
	for (i = bytes - 3; i >= 20; i--) {
		if (bignum_byte(out, i) != 0xFF)
			ret = 0;
	}
	/* Finally, we expect to see the SHA-1 hash of the signed data. */
	SHA_Simple( data.data(), data.size(), hash );
	for (i = 19, j = 0; i >= 0; i--, j++) {
		if (bignum_byte(out, i) != hash[j])
			ret = false;
	}
	freebn(out);

	return ret;
}
Пример #26
0
void RSAKey::PrivateBlob( CString &out ) const
{
	int i;
	unsigned char *blob, *p;

	int elen = (bignum_bitcount(this->exponent) + 8) / 8;
	int mlen = (bignum_bitcount(this->modulus) + 8) / 8;
	int dlen = (bignum_bitcount(this->private_exponent) + 8) / 8;
	int plen = (bignum_bitcount(this->p) + 8) / 8;
	int qlen = (bignum_bitcount(this->q) + 8) / 8;
	int ulen = (bignum_bitcount(this->iqmp) + 8) / 8;

	/*
	 * mpint exp, mpint mod, mpint private_exp, mpint p, mpint q, mpint iqmp. Total 24 +
	 * sum of lengths.
	 */
	int bloblen = 24 + elen + mlen + dlen + plen + qlen + ulen;
	blob = new unsigned char[bloblen];
	p = blob;

	PUT_32BIT(p, elen);
	p += 4;
	for (i = elen; i--;)
		*p++ = bignum_byte(this->exponent, i);
	PUT_32BIT(p, mlen);
	p += 4;
	for (i = mlen; i--;)
		*p++ = bignum_byte(this->modulus, i);
	PUT_32BIT(p, dlen);
	p += 4;
	for (i = dlen; i--;)
		*p++ = bignum_byte(this->private_exponent, i);
	PUT_32BIT(p, plen);
	p += 4;
	for (i = plen; i--;)
		*p++ = bignum_byte(this->p, i);
	PUT_32BIT(p, qlen);
	p += 4;
	for (i = qlen; i--;)
		*p++ = bignum_byte(this->q, i);
	PUT_32BIT(p, ulen);
	p += 4;
	for (i = ulen; i--;)
		*p++ = bignum_byte(this->iqmp, i);
	ASSERT(p == blob + bloblen);

	out = CString( (const char *) blob, bloblen );
}
Пример #27
0
static unsigned char *dss_private_blob(void *key, int *len)
{
    struct dss_key *dss = (struct dss_key *) key;
    int xlen, bloblen;
    int i;
    unsigned char *blob, *p;

    xlen = (bignum_bitcount(dss->x) + 8) / 8;

    /*
     * mpint x, string[20] the SHA of p||q||g. Total 4 + xlen.
     */
    bloblen = 4 + xlen;
    blob = snewn(bloblen, unsigned char);
    p = blob;
    PUT_32BIT(p, xlen);
    p += 4;
    for (i = xlen; i--;)
	*p++ = bignum_byte(dss->x, i);
    assert(p == blob + bloblen);
    *len = bloblen;
    return blob;
}
Пример #28
0
static char *dss_fingerprint(void *key)
{
    struct dss_key *dss = (struct dss_key *) key;
    struct MD5Context md5c;
    unsigned char digest[16], lenbuf[4];
    char buffer[16 * 3 + 40];
    char *ret;
    int numlen, i;

    MD5Init(&md5c);
    MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-dss", 11);

#define ADD_BIGNUM(bignum) \
    numlen = (bignum_bitcount(bignum)+8)/8; \
    PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \
    for (i = numlen; i-- ;) { \
        unsigned char c = bignum_byte(bignum, i); \
        MD5Update(&md5c, &c, 1); \
    }
    ADD_BIGNUM(dss->p);
    ADD_BIGNUM(dss->q);
    ADD_BIGNUM(dss->g);
    ADD_BIGNUM(dss->y);
#undef ADD_BIGNUM

    MD5Final(digest, &md5c);

    snprintf(buffer, 16 * 3 + 40, "ssh-dss %d ", bignum_bitcount(dss->p));
    for (i = 0; i < 16; i++)
	snprintf(buffer + strlen(buffer), 16 * 3 + 40 - strlen(buffer), "%s%02x", i ? ":" : "",
		digest[i]);
    ret = snewn(strlen(buffer) + 1, char);
    if (ret)
	strcpy(ret, buffer);
    return ret;
}
Пример #29
0
/*
 * Save an RSA key file. Return nonzero on success.
 */
int saversakey(const Filename *filename, struct RSAKey *key, char *passphrase)
{
    unsigned char buf[16384];
    unsigned char keybuf[16];
    struct MD5Context md5c;
    unsigned char *p, *estart;
    FILE *fp;

    /*
     * Write the initial signature.
     */
    p = buf;
    memcpy(p, rsa_signature, sizeof(rsa_signature));
    p += sizeof(rsa_signature);

    /*
     * One byte giving encryption type, and one reserved (zero)
     * uint32.
     */
    *p++ = (passphrase ? SSH_CIPHER_3DES : 0);
    PUT_32BIT(p, 0);
    p += 4;

    /*
     * An ordinary SSH-1 public key consists of: a uint32
     * containing the bit count, then two bignums containing the
     * modulus and exponent respectively.
     */
    PUT_32BIT(p, bignum_bitcount(key->modulus));
    p += 4;
    p += ssh1_write_bignum(p, key->modulus);
    p += ssh1_write_bignum(p, key->exponent);

    /*
     * A string containing the comment field.
     */
    if (key->comment) {
	PUT_32BIT(p, strlen(key->comment));
	p += 4;
	memcpy(p, key->comment, strlen(key->comment));
	p += strlen(key->comment);
    } else {
	PUT_32BIT(p, 0);
	p += 4;
    }

    /*
     * The encrypted portion starts here.
     */
    estart = p;

    /*
     * Two bytes, then the same two bytes repeated.
     */
    *p++ = random_byte();
    *p++ = random_byte();
    p[0] = p[-2];
    p[1] = p[-1];
    p += 2;

    /*
     * Four more bignums: the decryption exponent, then iqmp, then
     * q, then p.
     */
    p += ssh1_write_bignum(p, key->private_exponent);
    p += ssh1_write_bignum(p, key->iqmp);
    p += ssh1_write_bignum(p, key->q);
    p += ssh1_write_bignum(p, key->p);

    /*
     * Now write zeros until the encrypted portion is a multiple of
     * 8 bytes.
     */
    while ((p - estart) % 8)
	*p++ = '\0';

    /*
     * Now encrypt the encrypted portion.
     */
    if (passphrase) {
	MD5Init(&md5c);
	MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
	MD5Final(keybuf, &md5c);
	des3_encrypt_pubkey(keybuf, estart, p - estart);
	smemclr(keybuf, sizeof(keybuf));	/* burn the evidence */
    }

    /*
     * Done. Write the result to the file.
     */
    fp = f_open(filename, "wb", TRUE);
    if (fp) {
	int ret = (fwrite(buf, 1, p - buf, fp) == (size_t) (p - buf));
        if (fclose(fp))
            ret = 0;
	return ret;
    } else
	return 0;
}
Пример #30
0
/*
 * This function is a wrapper on modpow(). It has the same effect
 * as modpow(), but employs RSA blinding to protect against timing
 * attacks.
 */
static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
{
    Bignum random, random_encrypted, random_inverse;
    Bignum input_blinded, ret_blinded;
    Bignum ret;

    SHA512_State ss;
    unsigned char digest512[64];
    int digestused = lenof(digest512);
    int hashseq = 0;

    /*
     * Start by inventing a random number chosen uniformly from the
     * range 2..modulus-1. (We do this by preparing a random number
     * of the right length and retrying if it's greater than the
     * modulus, to prevent any potential Bleichenbacher-like
     * attacks making use of the uneven distribution within the
     * range that would arise from just reducing our number mod n.
     * There are timing implications to the potential retries, of
     * course, but all they tell you is the modulus, which you
     * already knew.)
     * 
     * To preserve determinism and avoid Pageant needing to share
     * the random number pool, we actually generate this `random'
     * number by hashing stuff with the private key.
     */
    while (1) {
	int bits, byte, bitsleft, v;
	random = copybn(key->modulus);
	/*
	 * Find the topmost set bit. (This function will return its
	 * index plus one.) Then we'll set all bits from that one
	 * downwards randomly.
	 */
	bits = bignum_bitcount(random);
	byte = 0;
	bitsleft = 0;
	while (bits--) {
	    if (bitsleft <= 0) {
		bitsleft = 8;
		/*
		 * Conceptually the following few lines are equivalent to
		 *    byte = random_byte();
		 */
		if (digestused >= lenof(digest512)) {
		    unsigned char seqbuf[4];
		    PUT_32BIT(seqbuf, hashseq);
		    pSHA512_Init(&ss);
		    SHA512_Bytes(&ss, "RSA deterministic blinding", 26);
		    SHA512_Bytes(&ss, seqbuf, sizeof(seqbuf));
		    sha512_mpint(&ss, key->private_exponent);
		    pSHA512_Final(&ss, digest512);
		    hashseq++;

		    /*
		     * Now hash that digest plus the signature
		     * input.
		     */
		    pSHA512_Init(&ss);
		    SHA512_Bytes(&ss, digest512, sizeof(digest512));
		    sha512_mpint(&ss, input);
		    pSHA512_Final(&ss, digest512);

		    digestused = 0;
		}
		byte = digest512[digestused++];
	    }
	    v = byte & 1;
	    byte >>= 1;
	    bitsleft--;
	    bignum_set_bit(random, bits, v);
	}

	/*
	 * Now check that this number is strictly greater than
	 * zero, and strictly less than modulus.
	 */
	if (bignum_cmp(random, Zero) <= 0 ||
	    bignum_cmp(random, key->modulus) >= 0) {
	    freebn(random);
	    continue;
	} else {
	    break;
	}
    }

    /*
     * RSA blinding relies on the fact that (xy)^d mod n is equal
     * to (x^d mod n) * (y^d mod n) mod n. We invent a random pair
     * y and y^d; then we multiply x by y, raise to the power d mod
     * n as usual, and divide by y^d to recover x^d. Thus an
     * attacker can't correlate the timing of the modpow with the
     * input, because they don't know anything about the number
     * that was input to the actual modpow.
     * 
     * The clever bit is that we don't have to do a huge modpow to
     * get y and y^d; we will use the number we just invented as
     * _y^d_, and use the _public_ exponent to compute (y^d)^e = y
     * from it, which is much faster to do.
     */
    random_encrypted = modpow(random, key->exponent, key->modulus);
    random_inverse = modinv(random, key->modulus);
    input_blinded = modmul(input, random_encrypted, key->modulus);
    ret_blinded = modpow(input_blinded, key->private_exponent, key->modulus);
    ret = modmul(ret_blinded, random_inverse, key->modulus);

    freebn(ret_blinded);
    freebn(input_blinded);
    freebn(random_inverse);
    freebn(random_encrypted);
    freebn(random);

    return ret;
}