Пример #1
0
/* Subroutine */ int PASTEF77(c,rotg)(singlecomplex *ca, singlecomplex *cb, real *c__, singlecomplex *s)
{
    /* System generated locals */
    real r__1, r__2;
    singlecomplex q__1, q__2, q__3;

    /* Builtin functions */
    double c_abs(singlecomplex *), sqrt(doublereal);
    void bla_r_cnjg(singlecomplex *, singlecomplex *);

    /* Local variables */
    real norm;
    singlecomplex alpha;
    real scale;

    if (c_abs(ca) != 0.f) {
	goto L10;
    }
    *c__ = 0.f;
    s->real = 1.f, s->imag = 0.f;
    ca->real = cb->real, ca->imag = cb->imag;
    goto L20;
L10:
    scale = c_abs(ca) + c_abs(cb);
    q__1.real = ca->real / scale, q__1.imag = ca->imag / scale;
/* Computing 2nd power */
    r__1 = c_abs(&q__1);
    q__2.real = cb->real / scale, q__2.imag = cb->imag / scale;
/* Computing 2nd power */
    r__2 = c_abs(&q__2);
    norm = scale * sqrt(r__1 * r__1 + r__2 * r__2);
    r__1 = c_abs(ca);
    q__1.real = ca->real / r__1, q__1.imag = ca->imag / r__1;
    alpha.real = q__1.real, alpha.imag = q__1.imag;
    *c__ = c_abs(ca) / norm;
    bla_r_cnjg(&q__3, cb);
    q__2.real = alpha.real * q__3.real - alpha.imag * q__3.imag, q__2.imag = alpha.real * q__3.imag + 
	    alpha.imag * q__3.real;
    q__1.real = q__2.real / norm, q__1.imag = q__2.imag / norm;
    s->real = q__1.real, s->imag = q__1.imag;
    q__1.real = norm * alpha.real, q__1.imag = norm * alpha.imag;
    ca->real = q__1.real, ca->imag = q__1.imag;
L20:
    return 0;
} /* crotg_ */
Пример #2
0
/* Subroutine */ int PASTEF77(c,rotg)(singlecomplex *ca, singlecomplex *cb, real *c__, singlecomplex *s)
{
    /* System generated locals */
    real r__1, r__2;
    singlecomplex q__1, q__2, q__3;

    /* Builtin functions */
    double bla_c_abs(singlecomplex *), sqrt(doublereal);
    void bla_r_cnjg(singlecomplex *, singlecomplex *);

    /* Local variables */
    real norm;
    singlecomplex alpha;
    real scale;

    if (bla_c_abs(ca) != 0.f) {
	goto L10;
    }
    *c__ = 0.f;
    bli_csets( 1.f, 0.f, *s );
    bli_csets( bli_creal(*cb), bli_cimag(*cb), *ca );
    goto L20;
L10:
    scale = bla_c_abs(ca) + bla_c_abs(cb);
    bli_csets( (bli_creal(*ca) / scale), (bli_cimag(*ca) / scale), q__1 );
/* Computing 2nd power */
    r__1 = bla_c_abs(&q__1);
    bli_csets( (bli_creal(*cb) / scale), (bli_cimag(*cb) / scale), q__2 );
/* Computing 2nd power */
    r__2 = bla_c_abs(&q__2);
    norm = scale * sqrt(r__1 * r__1 + r__2 * r__2);
    r__1 = bla_c_abs(ca);
    bli_csets( (bli_creal(*ca) / r__1), (bli_cimag(*ca) / r__1), q__1 );
    bli_csets( (bli_creal(q__1)), (bli_cimag(q__1)), alpha );
    *c__ = bla_c_abs(ca) / norm;
    bla_r_cnjg(&q__3, cb);
    bli_csets( (bli_creal(alpha) * bli_creal(q__3) - bli_cimag(alpha) * bli_cimag(q__3)), (bli_creal(alpha) * bli_cimag(q__3) + bli_cimag(alpha) * bli_creal(q__3)), q__2 );
    bli_csets( (bli_creal(q__2) / norm), (bli_cimag(q__2) / norm), q__1 );
    bli_csets( bli_creal(q__1), bli_cimag(q__1), *s );
    bli_csets( (norm * bli_creal(alpha)), (norm * bli_cimag(alpha)), q__1 );
    bli_csets( bli_creal(q__1), bli_cimag(q__1), *ca );
L20:
    return 0;
} /* crotg_ */
Пример #3
0
/* Subroutine */ int PASTEF77(c,hbmv)(character *uplo, integer *n, integer *k, singlecomplex * alpha, singlecomplex *a, integer *lda, singlecomplex *x, integer *incx, singlecomplex *beta, singlecomplex *y, integer *incy)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
    real r__1;
    singlecomplex q__1, q__2, q__3, q__4;

    /* Builtin functions */
    void bla_r_cnjg(singlecomplex *, singlecomplex *);

    /* Local variables */
    integer info;
    singlecomplex temp1, temp2;
    integer i__, j, l;
    extern logical PASTEF770(lsame)(character *, character *, ftnlen, ftnlen);
    integer kplus1, ix, iy, jx, jy, kx, ky;
    extern /* Subroutine */ int PASTEF770(xerbla)(character *, integer *, ftnlen);

/*     .. Scalar Arguments .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CHBMV  performs the matrix-vector  operation */

/*     y := alpha*A*x + beta*y, */

/*  where alpha and beta are scalars, x and y are n element vectors and */
/*  A is an n by n hermitian band matrix, with k super-diagonals. */

/*  Parameters */
/*  ========== */

/*  UPLO   - CHARACTER*1. */
/*           On entry, UPLO specifies whether the upper or lower */
/*           triangular part of the band matrix A is being supplied as */
/*           follows: */

/*              UPLO = 'U' or 'u'   The upper triangular part of A is */
/*                                  being supplied. */

/*              UPLO = 'L' or 'l'   The lower triangular part of A is */
/*                                  being supplied. */

/*           Unchanged on exit. */

/*  N      - INTEGER. */
/*           On entry, N specifies the order of the matrix A. */
/*           N must be at least zero. */
/*           Unchanged on exit. */

/*  K      - INTEGER. */
/*           On entry, K specifies the number of super-diagonals of the */
/*           matrix A. K must satisfy  0 .le. K. */
/*           Unchanged on exit. */

/*  ALPHA  - COMPLEX         . */
/*           On entry, ALPHA specifies the scalar alpha. */
/*           Unchanged on exit. */

/*  A      - COMPLEX          array of DIMENSION ( LDA, n ). */
/*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
/*           by n part of the array A must contain the upper triangular */
/*           band part of the hermitian matrix, supplied column by */
/*           column, with the leading diagonal of the matrix in row */
/*           ( k + 1 ) of the array, the first super-diagonal starting at */
/*           position 2 in row k, and so on. The top left k by k triangle */
/*           of the array A is not referenced. */
/*           The following program segment will transfer the upper */
/*           triangular part of a hermitian band matrix from conventional */
/*           full matrix storage to band storage: */

/*                 DO 20, J = 1, N */
/*                    M = K + 1 - J */
/*                    DO 10, I = MAX( 1, J - K ), J */
/*                       A( M + I, J ) = matrix( I, J ) */
/*              10    CONTINUE */
/*              20 CONTINUE */

/*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
/*           by n part of the array A must contain the lower triangular */
/*           band part of the hermitian matrix, supplied column by */
/*           column, with the leading diagonal of the matrix in row 1 of */
/*           the array, the first sub-diagonal starting at position 1 in */
/*           row 2, and so on. The bottom right k by k triangle of the */
/*           array A is not referenced. */
/*           The following program segment will transfer the lower */
/*           triangular part of a hermitian band matrix from conventional */
/*           full matrix storage to band storage: */

/*                 DO 20, J = 1, N */
/*                    M = 1 - J */
/*                    DO 10, I = J, MIN( N, J + K ) */
/*                       A( M + I, J ) = matrix( I, J ) */
/*              10    CONTINUE */
/*              20 CONTINUE */

/*           Note that the imaginary parts of the diagonal elements need */
/*           not be set and are assumed to be zero. */
/*           Unchanged on exit. */

/*  LDA    - INTEGER. */
/*           On entry, LDA specifies the first dimension of A as declared */
/*           in the calling (sub) program. LDA must be at least */
/*           ( k + 1 ). */
/*           Unchanged on exit. */

/*  X      - COMPLEX          array of DIMENSION at least */
/*           ( 1 + ( n - 1 )*abs( INCX ) ). */
/*           Before entry, the incremented array X must contain the */
/*           vector x. */
/*           Unchanged on exit. */

/*  INCX   - INTEGER. */
/*           On entry, INCX specifies the increment for the elements of */
/*           X. INCX must not be zero. */
/*           Unchanged on exit. */

/*  BETA   - COMPLEX         . */
/*           On entry, BETA specifies the scalar beta. */
/*           Unchanged on exit. */

/*  Y      - COMPLEX          array of DIMENSION at least */
/*           ( 1 + ( n - 1 )*abs( INCY ) ). */
/*           Before entry, the incremented array Y must contain the */
/*           vector y. On exit, Y is overwritten by the updated vector y. */

/*  INCY   - INTEGER. */
/*           On entry, INCY specifies the increment for the elements of */
/*           Y. INCY must not be zero. */
/*           Unchanged on exit. */


/*  Level 2 Blas routine. */

/*  -- Written on 22-October-1986. */
/*     Jack Dongarra, Argonne National Lab. */
/*     Jeremy Du Croz, Nag Central Office. */
/*     Sven Hammarling, Nag Central Office. */
/*     Richard Hanson, Sandia National Labs. */


/*     .. Parameters .. */
/*     .. Local Scalars .. */
/*     .. External Functions .. */
/*     .. External Subroutines .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --x;
    --y;

    /* Function Body */
    info = 0;
    if (! PASTEF770(lsame)(uplo, "U", (ftnlen)1, (ftnlen)1) && ! PASTEF770(lsame)(uplo, "L", (
	    ftnlen)1, (ftnlen)1)) {
	info = 1;
    } else if (*n < 0) {
	info = 2;
    } else if (*k < 0) {
	info = 3;
    } else if (*lda < *k + 1) {
	info = 6;
    } else if (*incx == 0) {
	info = 8;
    } else if (*incy == 0) {
	info = 11;
    }
    if (info != 0) {
	PASTEF770(xerbla)("CHBMV ", &info, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible. */

    if (*n == 0 || (alpha->real == 0.f && alpha->imag == 0.f && (beta->real == 1.f && 
	    beta->imag == 0.f))) {
	return 0;
    }

/*     Set up the start points in  X  and  Y. */

    if (*incx > 0) {
	kx = 1;
    } else {
	kx = 1 - (*n - 1) * *incx;
    }
    if (*incy > 0) {
	ky = 1;
    } else {
	ky = 1 - (*n - 1) * *incy;
    }

/*     Start the operations. In this version the elements of the array A */
/*     are accessed sequentially with one pass through A. */

/*     First form  y := beta*y. */

    if (beta->real != 1.f || beta->imag != 0.f) {
	if (*incy == 1) {
	    if (beta->real == 0.f && beta->imag == 0.f) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    i__2 = i__;
		    y[i__2].real = 0.f, y[i__2].imag = 0.f;
/* L10: */
		}
	    } else {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    i__2 = i__;
		    i__3 = i__;
		    q__1.real = beta->real * y[i__3].real - beta->imag * y[i__3].imag, 
			    q__1.imag = beta->real * y[i__3].imag + beta->imag * y[i__3]
			    .real;
		    y[i__2].real = q__1.real, y[i__2].imag = q__1.imag;
/* L20: */
		}
	    }
	} else {
	    iy = ky;
	    if (beta->real == 0.f && beta->imag == 0.f) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    i__2 = iy;
		    y[i__2].real = 0.f, y[i__2].imag = 0.f;
		    iy += *incy;
/* L30: */
		}
	    } else {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    i__2 = iy;
		    i__3 = iy;
		    q__1.real = beta->real * y[i__3].real - beta->imag * y[i__3].imag, 
			    q__1.imag = beta->real * y[i__3].imag + beta->imag * y[i__3]
			    .real;
		    y[i__2].real = q__1.real, y[i__2].imag = q__1.imag;
		    iy += *incy;
/* L40: */
		}
	    }
	}
    }
    if (alpha->real == 0.f && alpha->imag == 0.f) {
	return 0;
    }
    if (PASTEF770(lsame)(uplo, "U", (ftnlen)1, (ftnlen)1)) {

/*        Form  y  when upper triangle of A is stored. */

	kplus1 = *k + 1;
	if (*incx == 1 && *incy == 1) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		q__1.real = alpha->real * x[i__2].real - alpha->imag * x[i__2].imag, q__1.imag =
			 alpha->real * x[i__2].imag + alpha->imag * x[i__2].real;
		temp1.real = q__1.real, temp1.imag = q__1.imag;
		temp2.real = 0.f, temp2.imag = 0.f;
		l = kplus1 - j;
/* Computing MAX */
		i__2 = 1, i__3 = j - *k;
		i__4 = j - 1;
		for (i__ = f2c_max(i__2,i__3); i__ <= i__4; ++i__) {
		    i__2 = i__;
		    i__3 = i__;
		    i__5 = l + i__ + j * a_dim1;
		    q__2.real = temp1.real * a[i__5].real - temp1.imag * a[i__5].imag, 
			    q__2.imag = temp1.real * a[i__5].imag + temp1.imag * a[i__5]
			    .real;
		    q__1.real = y[i__3].real + q__2.real, q__1.imag = y[i__3].imag + q__2.imag;
		    y[i__2].real = q__1.real, y[i__2].imag = q__1.imag;
		    bla_r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
		    i__2 = i__;
		    q__2.real = q__3.real * x[i__2].real - q__3.imag * x[i__2].imag, q__2.imag =
			     q__3.real * x[i__2].imag + q__3.imag * x[i__2].real;
		    q__1.real = temp2.real + q__2.real, q__1.imag = temp2.imag + q__2.imag;
		    temp2.real = q__1.real, temp2.imag = q__1.imag;
/* L50: */
		}
		i__4 = j;
		i__2 = j;
		i__3 = kplus1 + j * a_dim1;
		r__1 = a[i__3].real;
		q__3.real = r__1 * temp1.real, q__3.imag = r__1 * temp1.imag;
		q__2.real = y[i__2].real + q__3.real, q__2.imag = y[i__2].imag + q__3.imag;
		q__4.real = alpha->real * temp2.real - alpha->imag * temp2.imag, q__4.imag = 
			alpha->real * temp2.imag + alpha->imag * temp2.real;
		q__1.real = q__2.real + q__4.real, q__1.imag = q__2.imag + q__4.imag;
		y[i__4].real = q__1.real, y[i__4].imag = q__1.imag;
/* L60: */
	    }
	} else {
	    jx = kx;
	    jy = ky;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__4 = jx;
		q__1.real = alpha->real * x[i__4].real - alpha->imag * x[i__4].imag, q__1.imag =
			 alpha->real * x[i__4].imag + alpha->imag * x[i__4].real;
		temp1.real = q__1.real, temp1.imag = q__1.imag;
		temp2.real = 0.f, temp2.imag = 0.f;
		ix = kx;
		iy = ky;
		l = kplus1 - j;
/* Computing MAX */
		i__4 = 1, i__2 = j - *k;
		i__3 = j - 1;
		for (i__ = f2c_max(i__4,i__2); i__ <= i__3; ++i__) {
		    i__4 = iy;
		    i__2 = iy;
		    i__5 = l + i__ + j * a_dim1;
		    q__2.real = temp1.real * a[i__5].real - temp1.imag * a[i__5].imag, 
			    q__2.imag = temp1.real * a[i__5].imag + temp1.imag * a[i__5]
			    .real;
		    q__1.real = y[i__2].real + q__2.real, q__1.imag = y[i__2].imag + q__2.imag;
		    y[i__4].real = q__1.real, y[i__4].imag = q__1.imag;
		    bla_r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
		    i__4 = ix;
		    q__2.real = q__3.real * x[i__4].real - q__3.imag * x[i__4].imag, q__2.imag =
			     q__3.real * x[i__4].imag + q__3.imag * x[i__4].real;
		    q__1.real = temp2.real + q__2.real, q__1.imag = temp2.imag + q__2.imag;
		    temp2.real = q__1.real, temp2.imag = q__1.imag;
		    ix += *incx;
		    iy += *incy;
/* L70: */
		}
		i__3 = jy;
		i__4 = jy;
		i__2 = kplus1 + j * a_dim1;
		r__1 = a[i__2].real;
		q__3.real = r__1 * temp1.real, q__3.imag = r__1 * temp1.imag;
		q__2.real = y[i__4].real + q__3.real, q__2.imag = y[i__4].imag + q__3.imag;
		q__4.real = alpha->real * temp2.real - alpha->imag * temp2.imag, q__4.imag = 
			alpha->real * temp2.imag + alpha->imag * temp2.real;
		q__1.real = q__2.real + q__4.real, q__1.imag = q__2.imag + q__4.imag;
		y[i__3].real = q__1.real, y[i__3].imag = q__1.imag;
		jx += *incx;
		jy += *incy;
		if (j > *k) {
		    kx += *incx;
		    ky += *incy;
		}
/* L80: */
	    }
	}
    } else {

/*        Form  y  when lower triangle of A is stored. */

	if (*incx == 1 && *incy == 1) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__3 = j;
		q__1.real = alpha->real * x[i__3].real - alpha->imag * x[i__3].imag, q__1.imag =
			 alpha->real * x[i__3].imag + alpha->imag * x[i__3].real;
		temp1.real = q__1.real, temp1.imag = q__1.imag;
		temp2.real = 0.f, temp2.imag = 0.f;
		i__3 = j;
		i__4 = j;
		i__2 = j * a_dim1 + 1;
		r__1 = a[i__2].real;
		q__2.real = r__1 * temp1.real, q__2.imag = r__1 * temp1.imag;
		q__1.real = y[i__4].real + q__2.real, q__1.imag = y[i__4].imag + q__2.imag;
		y[i__3].real = q__1.real, y[i__3].imag = q__1.imag;
		l = 1 - j;
/* Computing MIN */
		i__4 = *n, i__2 = j + *k;
		i__3 = f2c_min(i__4,i__2);
		for (i__ = j + 1; i__ <= i__3; ++i__) {
		    i__4 = i__;
		    i__2 = i__;
		    i__5 = l + i__ + j * a_dim1;
		    q__2.real = temp1.real * a[i__5].real - temp1.imag * a[i__5].imag, 
			    q__2.imag = temp1.real * a[i__5].imag + temp1.imag * a[i__5]
			    .real;
		    q__1.real = y[i__2].real + q__2.real, q__1.imag = y[i__2].imag + q__2.imag;
		    y[i__4].real = q__1.real, y[i__4].imag = q__1.imag;
		    bla_r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
		    i__4 = i__;
		    q__2.real = q__3.real * x[i__4].real - q__3.imag * x[i__4].imag, q__2.imag =
			     q__3.real * x[i__4].imag + q__3.imag * x[i__4].real;
		    q__1.real = temp2.real + q__2.real, q__1.imag = temp2.imag + q__2.imag;
		    temp2.real = q__1.real, temp2.imag = q__1.imag;
/* L90: */
		}
		i__3 = j;
		i__4 = j;
		q__2.real = alpha->real * temp2.real - alpha->imag * temp2.imag, q__2.imag = 
			alpha->real * temp2.imag + alpha->imag * temp2.real;
		q__1.real = y[i__4].real + q__2.real, q__1.imag = y[i__4].imag + q__2.imag;
		y[i__3].real = q__1.real, y[i__3].imag = q__1.imag;
/* L100: */
	    }
	} else {
	    jx = kx;
	    jy = ky;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__3 = jx;
		q__1.real = alpha->real * x[i__3].real - alpha->imag * x[i__3].imag, q__1.imag =
			 alpha->real * x[i__3].imag + alpha->imag * x[i__3].real;
		temp1.real = q__1.real, temp1.imag = q__1.imag;
		temp2.real = 0.f, temp2.imag = 0.f;
		i__3 = jy;
		i__4 = jy;
		i__2 = j * a_dim1 + 1;
		r__1 = a[i__2].real;
		q__2.real = r__1 * temp1.real, q__2.imag = r__1 * temp1.imag;
		q__1.real = y[i__4].real + q__2.real, q__1.imag = y[i__4].imag + q__2.imag;
		y[i__3].real = q__1.real, y[i__3].imag = q__1.imag;
		l = 1 - j;
		ix = jx;
		iy = jy;
/* Computing MIN */
		i__4 = *n, i__2 = j + *k;
		i__3 = f2c_min(i__4,i__2);
		for (i__ = j + 1; i__ <= i__3; ++i__) {
		    ix += *incx;
		    iy += *incy;
		    i__4 = iy;
		    i__2 = iy;
		    i__5 = l + i__ + j * a_dim1;
		    q__2.real = temp1.real * a[i__5].real - temp1.imag * a[i__5].imag, 
			    q__2.imag = temp1.real * a[i__5].imag + temp1.imag * a[i__5]
			    .real;
		    q__1.real = y[i__2].real + q__2.real, q__1.imag = y[i__2].imag + q__2.imag;
		    y[i__4].real = q__1.real, y[i__4].imag = q__1.imag;
		    bla_r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
		    i__4 = ix;
		    q__2.real = q__3.real * x[i__4].real - q__3.imag * x[i__4].imag, q__2.imag =
			     q__3.real * x[i__4].imag + q__3.imag * x[i__4].real;
		    q__1.real = temp2.real + q__2.real, q__1.imag = temp2.imag + q__2.imag;
		    temp2.real = q__1.real, temp2.imag = q__1.imag;
/* L110: */
		}
		i__3 = jy;
		i__4 = jy;
		q__2.real = alpha->real * temp2.real - alpha->imag * temp2.imag, q__2.imag = 
			alpha->real * temp2.imag + alpha->imag * temp2.real;
		q__1.real = y[i__4].real + q__2.real, q__1.imag = y[i__4].imag + q__2.imag;
		y[i__3].real = q__1.real, y[i__3].imag = q__1.imag;
		jx += *incx;
		jy += *incy;
/* L120: */
	    }
	}
    }

    return 0;

/*     End of CHBMV . */

} /* chbmv_ */