Пример #1
0
/**
    Purpose
    -------
    Solves the least squares problem
           min || A*X - C ||
    using the QR factorization A = Q*R computed by SGEQRF_GPU.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows of the matrix A. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix A. M >= N >= 0.

    @param[in]
    nrhs    INTEGER
            The number of columns of the matrix C. NRHS >= 0.

    @param[in]
    dA      REAL array on the GPU, dimension (LDDA,N)
            The i-th column must contain the vector which defines the
            elementary reflector H(i), for i = 1,2,...,n, as returned by
            SGEQRF_GPU in the first n columns of its array argument A.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array A, LDDA >= M.

    @param[in]
    tau     REAL array, dimension (N)
            TAU(i) must contain the scalar factor of the elementary
            reflector H(i), as returned by MAGMA_SGEQRF_GPU.

    @param[in,out]
    dB      REAL array on the GPU, dimension (LDDB,NRHS)
            On entry, the M-by-NRHS matrix C.
            On exit, the N-by-NRHS solution matrix X.

    @param[in]
    dT      REAL array that is the output (the 6th argument)
            of magma_sgeqrf_gpu of size
            2*MIN(M, N)*NB + ((N+31)/32*32 )* MAX(NB, NRHS).
            The array starts with a block of size MIN(M,N)*NB that stores
            the triangular T matrices used in the QR factorization,
            followed by MIN(M,N)*NB block storing the diagonal block
            inverses for the R matrix, followed by work space of size
            ((N+31)/32*32 )* MAX(NB, NRHS).

    @param[in]
    lddb    INTEGER
            The leading dimension of the array dB. LDDB >= M.

    @param[out]
    hwork   (workspace) REAL array, dimension (LWORK)
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK,
            LWORK >= (M - N + NB)*(NRHS + NB) + NRHS*NB,
            where NB is the blocksize given by magma_get_sgeqrf_nb( M ).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the HWORK array, returns
            this value as the first entry of the WORK array.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value

    @ingroup magma_sgels_comp
    ********************************************************************/
extern "C" magma_int_t
magma_sgeqrs_gpu(magma_int_t m, magma_int_t n, magma_int_t nrhs,
                 float *dA,    magma_int_t ldda,
                 float *tau,   float *dT,
                 float *dB,    magma_int_t lddb,
                 float *hwork, magma_int_t lwork,
                 magma_int_t *info)
{
    #define dA(a_1,a_2) (dA + (a_2)*(ldda) + (a_1))
    #define dT(a_1)     (dT + (lddwork+(a_1))*nb)

    float c_zero    = MAGMA_S_ZERO;
    float c_one     = MAGMA_S_ONE;
    float c_neg_one = MAGMA_S_NEG_ONE;
    float *dwork;
    magma_int_t i, k, lddwork, rows, ib;
    magma_int_t ione = 1;

    magma_int_t nb     = magma_get_sgeqrf_nb(m);
    magma_int_t lwkopt = (m - n + nb)*(nrhs + nb) + nrhs*nb;
    int lquery = (lwork == -1);

    hwork[0] = MAGMA_S_MAKE( (float)lwkopt, 0. );

    *info = 0;
    if (m < 0)
        *info = -1;
    else if (n < 0 || m < n)
        *info = -2;
    else if (nrhs < 0)
        *info = -3;
    else if (ldda < max(1,m))
        *info = -5;
    else if (lddb < max(1,m))
        *info = -9;
    else if (lwork < lwkopt && ! lquery)
        *info = -11;

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
        return *info;

    k = min(m,n);
    if (k == 0) {
        hwork[0] = c_one;
        return *info;
    }

    /* B := Q' * B */
    magma_sormqr_gpu( MagmaLeft, MagmaTrans,
                      m, nrhs, n,
                      dA(0,0), ldda, tau,
                      dB, lddb, hwork, lwork, dT, nb, info );
    if ( *info != 0 ) {
        return *info;
    }

    /* Solve R*X = B(1:n,:) */
    lddwork= k;
    if (nb < k)
        dwork = dT+2*lddwork*nb;
    else
        dwork = dT;
    // To do: Why did we have this line originally; seems to be a bug (Stan)?
    // dwork = dT;

    i    = (k-1)/nb * nb;
    ib   = n-i;
    rows = m-i;

    // TODO: this assumes that, on exit from magma_sormqr_gpu, hwork contains
    // the last block of A and B (i.e., C in sormqr). This should be fixed.
    // Seems this data should already be on the GPU, so could switch to
    // magma_strsm and drop the ssetmatrix.
    if ( nrhs == 1 ) {
        blasf77_strsv( MagmaUpperStr, MagmaNoTransStr, MagmaNonUnitStr,
                       &ib, hwork,         &rows,
                            hwork+rows*ib, &ione);
    } else {
        blasf77_strsm( MagmaLeftStr, MagmaUpperStr, MagmaNoTransStr, MagmaNonUnitStr,
                       &ib, &nrhs,
                       &c_one, hwork,         &rows,
                               hwork+rows*ib, &rows);
    }
    
    // update the solution vector
    magma_ssetmatrix( ib, nrhs, hwork+rows*ib, rows, dwork+i, lddwork );

    // update c
    if (nrhs == 1)
        magma_sgemv( MagmaNoTrans, i, ib,
                     c_neg_one, dA(0, i), ldda,
                                dwork + i,   1,
                     c_one,     dB,           1);
    else
        magma_sgemm( MagmaNoTrans, MagmaNoTrans,
                     i, nrhs, ib,
                     c_neg_one, dA(0, i), ldda,
                                dwork + i,   lddwork,
                     c_one,     dB,           lddb);

    int start = i-nb;
    if (nb < k) {
        for (i = start; i >= 0; i -= nb) {
            ib = min(k-i, nb);
            rows = m -i;

            if (i + ib < n) {
                if (nrhs == 1) {
                    magma_sgemv( MagmaNoTrans, ib, ib,
                                 c_one,  dT(i), ib,
                                         dB+i,      1,
                                 c_zero, dwork+i,  1);
                    magma_sgemv( MagmaNoTrans, i, ib,
                                 c_neg_one, dA(0, i), ldda,
                                            dwork + i,   1,
                                 c_one,     dB,           1);
                }
                else {
                    magma_sgemm( MagmaNoTrans, MagmaNoTrans,
                                 ib, nrhs, ib,
                                 c_one,  dT(i), ib,
                                         dB+i,      lddb,
                                 c_zero, dwork+i,  lddwork);
                    magma_sgemm( MagmaNoTrans, MagmaNoTrans,
                                 i, nrhs, ib,
                                 c_neg_one, dA(0, i), ldda,
                                            dwork + i,   lddwork,
                                 c_one,     dB,          lddb);
                }
            }
        }
    }

    magma_scopymatrix( (n), nrhs,
                       dwork, lddwork,
                       dB,    lddb );
    
    return *info;
}
Пример #2
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing strsm
*/
int main( int argc, char** argv)
{
    TESTING_INIT();

    real_Double_t   gflops, cublas_perf, cublas_time, cpu_perf=0, cpu_time=0;
    float          cublas_error, normA, normx, normr, work[1];
    magma_int_t N, info;
    magma_int_t sizeA;
    magma_int_t lda, ldda;
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t *ipiv;

    float *h_A, *h_b, *h_x, *h_xcublas;
    float *d_A, *d_x;
    float c_neg_one = MAGMA_S_NEG_ONE;
    magma_int_t status = 0;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    float tol = opts.tolerance * lapackf77_slamch("E");
    
    printf("uplo = %s, transA = %s, diag = %s\n",
           lapack_uplo_const(opts.uplo), lapack_trans_const(opts.transA), lapack_diag_const(opts.diag) );
    printf("    N  CUBLAS Gflop/s (ms)   CPU Gflop/s (ms)   CUBLAS error\n");
    printf("============================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            N = opts.nsize[itest];
            gflops = FLOPS_STRSM(opts.side, N, 1) / 1e9;
            lda    = N;
            ldda   = ((lda+31)/32)*32;
            sizeA  = lda*N;
            
            TESTING_MALLOC_CPU( ipiv,      magma_int_t,        N     );
            TESTING_MALLOC_CPU( h_A,       float, lda*N );
            TESTING_MALLOC_CPU( h_b,       float, N     );
            TESTING_MALLOC_CPU( h_x,       float, N     );
            TESTING_MALLOC_CPU( h_xcublas, float, N     );
            
            TESTING_MALLOC_DEV( d_A, float, ldda*N );
            TESTING_MALLOC_DEV( d_x, float, N      );
            
            /* Initialize the matrices */
            /* Factor A into LU to get well-conditioned triangular matrix.
             * Copy L to U, since L seems okay when used with non-unit diagonal
             * (i.e., from U), while U fails when used with unit diagonal. */
            lapackf77_slarnv( &ione, ISEED, &sizeA, h_A );
            lapackf77_sgetrf( &N, &N, h_A, &lda, ipiv, &info );
            for( int j = 0; j < N; ++j ) {
                for( int i = 0; i < j; ++i ) {
                    *h_A(i,j) = *h_A(j,i);
                }
            }
            
            lapackf77_slarnv( &ione, ISEED, &N, h_b );
            blasf77_scopy( &N, h_b, &ione, h_x, &ione );
            
            /* =====================================================================
               Performs operation using CUBLAS
               =================================================================== */
            magma_ssetmatrix( N, N, h_A, lda, d_A, ldda );
            magma_ssetvector( N, h_x, 1, d_x, 1 );
            
            cublas_time = magma_sync_wtime( NULL );
            cublasStrsv( handle, cublas_uplo_const(opts.uplo),
                         cublas_trans_const(opts.transA), cublas_diag_const(opts.diag),
                         N,
                         d_A, ldda,
                         d_x, 1 );
            cublas_time = magma_sync_wtime( NULL ) - cublas_time;
            cublas_perf = gflops / cublas_time;
            
            magma_sgetvector( N, d_x, 1, h_xcublas, 1 );
            
            /* =====================================================================
               Performs operation using CPU BLAS
               =================================================================== */
            if ( opts.lapack ) {
                cpu_time = magma_wtime();
                blasf77_strsv( lapack_uplo_const(opts.uplo), lapack_trans_const(opts.transA), lapack_diag_const(opts.diag),
                               &N,
                               h_A, &lda,
                               h_x, &ione );
                cpu_time = magma_wtime() - cpu_time;
                cpu_perf = gflops / cpu_time;
            }
            
            /* =====================================================================
               Check the result
               =================================================================== */
            // ||b - Ax|| / (||A||*||x||)
            // error for CUBLAS
            normA = lapackf77_slange( "F", &N, &N, h_A, &lda, work );
            
            normx = lapackf77_slange( "F", &N, &ione, h_xcublas, &ione, work );
            blasf77_strmv( lapack_uplo_const(opts.uplo), lapack_trans_const(opts.transA), lapack_diag_const(opts.diag),
                           &N,
                           h_A, &lda,
                           h_xcublas, &ione );
            blasf77_saxpy( &N, &c_neg_one, h_b, &ione, h_xcublas, &ione );
            normr = lapackf77_slange( "F", &N, &ione, h_xcublas, &N, work );
            cublas_error = normr / (normA*normx);

            if ( opts.lapack ) {
                printf("%5d   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e   %s\n",
                        (int) N,
                        cublas_perf, 1000.*cublas_time,
                        cpu_perf,    1000.*cpu_time,
                        cublas_error, (cublas_error < tol ? "ok" : "failed"));
                status += ! (cublas_error < tol);
            }
            else {
                printf("%5d   %7.2f (%7.2f)     ---  (  ---  )   %8.2e   %s\n",
                        (int) N,
                        cublas_perf, 1000.*cublas_time,
                        cublas_error, (cublas_error < tol ? "ok" : "failed"));
                status += ! (cublas_error < tol);
            }
            
            TESTING_FREE_CPU( ipiv );
            TESTING_FREE_CPU( h_A  );
            TESTING_FREE_CPU( h_b  );
            TESTING_FREE_CPU( h_x  );
            TESTING_FREE_CPU( h_xcublas );
            
            TESTING_FREE_DEV( d_A );
            TESTING_FREE_DEV( d_x );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }

    TESTING_FINALIZE();
    return status;
}
Пример #3
0
extern "C" magma_err_t
magma_sgeqrs_gpu(magma_int_t m, magma_int_t n, magma_int_t nrhs,
                 magmaFloat_ptr dA, size_t dA_offset, magma_int_t ldda,
                 float *tau,   magmaFloat_ptr dT, size_t dT_offset,
                 magmaFloat_ptr dB, size_t dB_offset, magma_int_t lddb,
                 float *hwork, magma_int_t lwork,
                 magma_int_t *info, magma_queue_t queue)
{
/*  -- clMagma (version 0.1) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       @date January 2014

    Purpose
    =======
    Solves the least squares problem
           min || A*X - C ||
    using the QR factorization A = Q*R computed by SGEQRF_GPU.

    Arguments
    =========
    M       (input) INTEGER
            The number of rows of the matrix A. M >= 0.

    N       (input) INTEGER
            The number of columns of the matrix A. M >= N >= 0.

    NRHS    (input) INTEGER
            The number of columns of the matrix C. NRHS >= 0.

    A       (input) REAL array on the GPU, dimension (LDDA,N)
            The i-th column must contain the vector which defines the
            elementary reflector H(i), for i = 1,2,...,n, as returned by
            SGEQRF_GPU in the first n columns of its array argument A.

    LDDA    (input) INTEGER
            The leading dimension of the array A, LDDA >= M.

    TAU     (input) REAL array, dimension (N)
            TAU(i) must contain the scalar factor of the elementary
            reflector H(i), as returned by MAGMA_SGEQRF_GPU.

    DB      (input/output) REAL array on the GPU, dimension (LDDB,NRHS)
            On entry, the M-by-NRHS matrix C.
            On exit, the N-by-NRHS solution matrix X.

    DT      (input) REAL array that is the output (the 6th argument)
            of magma_sgeqrf_gpu of size
            2*MIN(M, N)*NB + ((N+31)/32*32 )* MAX(NB, NRHS).
            The array starts with a block of size MIN(M,N)*NB that stores
            the triangular T matrices used in the QR factorization,
            followed by MIN(M,N)*NB block storing the diagonal block
            inverses for the R matrix, followed by work space of size
            ((N+31)/32*32 )* MAX(NB, NRHS).

    LDDB    (input) INTEGER
            The leading dimension of the array DB. LDDB >= M.

    HWORK   (workspace/output) REAL array, dimension (LWORK)
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The dimension of the array WORK, LWORK >= max(1,NRHS).
            For optimum performance LWORK >= (M-N+NB)*(NRHS + 2*NB), where
            NB is the blocksize given by magma_get_sgeqrf_nb( M ).

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the HWORK array, returns
            this value as the first entry of the WORK array.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
    =====================================================================    */

   #define a_ref(a_1,a_2)  dA, (dA_offset + (a_1) + (a_2)*(ldda))
   #define d_ref(a_1)      dT, (dT_offset + (lddwork+(a_1))*nb)

    float c_zero    = MAGMA_S_ZERO;
    float c_one     = MAGMA_S_ONE;
    float c_neg_one = MAGMA_S_NEG_ONE;
    magmaFloat_ptr dwork;
    magma_int_t i, k, lddwork, rows, ib;
    magma_int_t ione = 1;

    magma_int_t nb     = magma_get_sgeqrf_nb(m);
    magma_int_t lwkopt = (m-n+nb)*(nrhs+2*nb);
    long int lquery = (lwork == -1);

    hwork[0] = MAGMA_S_MAKE( (float)lwkopt, 0. );

    *info = 0;
    if (m < 0)
        *info = -1;
    else if (n < 0 || m < n)
        *info = -2;
    else if (nrhs < 0)
        *info = -3;
    else if (ldda < max(1,m))
        *info = -5;
    else if (lddb < max(1,m))
        *info = -8;
    else if (lwork < lwkopt && ! lquery)
        *info = -10;

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
        return *info;

    k = min(m,n);
    if (k == 0) {
        hwork[0] = c_one;
        return *info;
    }

    /* B := Q' * B */
    magma_sormqr_gpu( MagmaLeft, MagmaTrans,
                      m, nrhs, n,
                      a_ref(0,0), ldda, tau,
                      dB, dB_offset, lddb, hwork, lwork, dT, dT_offset, nb, info, queue );
    if ( *info != 0 ) {
        return *info;
    }

    /* Solve R*X = B(1:n,:) */
    lddwork= k;

    int ldtwork;
    size_t dwork_offset = 0;
    if (nb < k)
      {
        dwork = dT;
        dwork_offset = dT_offset+2*lddwork*nb;
      }
    else
      {
        ldtwork = ( 2*k + ((n+31)/32)*32 )*nb;
        magma_smalloc( &dwork, ldtwork );
      }
    // To do: Why did we have this line originally; seems to be a bug (Stan)?
    //dwork = dT;

    i    = (k-1)/nb * nb;
    ib   = n-i;
    rows = m-i;

    if ( nrhs == 1 ) {
        blasf77_strsv( MagmaUpperStr, MagmaNoTransStr, MagmaNonUnitStr,
                       &ib, hwork,         &rows,
                            hwork+rows*ib, &ione);
    } else {
        blasf77_strsm( MagmaLeftStr, MagmaUpperStr, MagmaNoTransStr, MagmaNonUnitStr,
                       &ib, &nrhs,
                       &c_one, hwork,         &rows,
                               hwork+rows*ib, &rows);
    }
      
    // update the solution vector
    magma_ssetmatrix( ib, nrhs, hwork+rows*ib, 0, rows, dwork, dwork_offset+i, lddwork, queue );

    // update c
    if (nrhs == 1)
        magma_sgemv( MagmaNoTrans, i, ib,
                     c_neg_one, a_ref(0, i), ldda,
                                         dwork, dwork_offset+i, 1,
                     c_one,     dB, dB_offset, 1, queue );
    else
        magma_sgemm( MagmaNoTrans, MagmaNoTrans,
                     i, nrhs, ib,
                     c_neg_one, a_ref(0, i), ldda,
                                dwork, dwork_offset + i,   lddwork,
                     c_one,     dB, dB_offset, lddb, queue );

    int start = i-nb;
    if (nb < k) {
        for (i = start; i >=0; i -= nb) {
            ib = min(k-i, nb);
            rows = m -i;

            if (i + ib < n) {
                if (nrhs == 1) {
                    magma_sgemv( MagmaNoTrans, ib, ib,
                                 c_one,  d_ref(i), ib,
                                 dB, dB_offset+i,      1,
                                 c_zero, dwork, dwork_offset+i,  1, queue );
                    magma_sgemv( MagmaNoTrans, i, ib,
                                 c_neg_one, a_ref(0, i), ldda,
                                 dwork, dwork_offset+i,   1,
                                 c_one,     dB, dB_offset, 1, queue );
                } else {
                    magma_sgemm( MagmaNoTrans, MagmaNoTrans,
                                 ib, nrhs, ib,
                                 c_one,  d_ref(i), ib,
                                 dB, dB_offset+i, lddb,
                                 c_zero, dwork, dwork_offset+i,  lddwork, queue );
                    magma_sgemm( MagmaNoTrans, MagmaNoTrans,
                                 i, nrhs, ib,
                                 c_neg_one, a_ref(0, i), ldda,
                                 dwork, dwork_offset+i, lddwork,
                                 c_one,     dB, dB_offset, lddb, queue );
                }
            }
        }
    }

    magma_scopymatrix( (n), nrhs,
                       dwork, dwork_offset, lddwork,
                       dB, dB_offset,   lddb, queue );

    if (nb >= k)
      magma_free(dwork);

    magma_queue_sync( queue );

    return *info;
}