Пример #1
0
int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
                              BN_CTX *ctx) {
  int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
                   BN_CTX *);
  int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
  const BIGNUM *p;
  BN_CTX *new_ctx = NULL;
  BIGNUM *rh, *tmp, *Z4, *Z6;
  int ret = 0;

  if (EC_POINT_is_at_infinity(group, point)) {
    return 1;
  }

  field_mul = group->meth->field_mul;
  field_sqr = group->meth->field_sqr;
  p = &group->field;

  if (ctx == NULL) {
    ctx = new_ctx = BN_CTX_new();
    if (ctx == NULL) {
      return 0;
    }
  }

  BN_CTX_start(ctx);
  rh = BN_CTX_get(ctx);
  tmp = BN_CTX_get(ctx);
  Z4 = BN_CTX_get(ctx);
  Z6 = BN_CTX_get(ctx);
  if (Z6 == NULL) {
    goto err;
  }

  // We have a curve defined by a Weierstrass equation
  //      y^2 = x^3 + a*x + b.
  // The point to consider is given in Jacobian projective coordinates
  // where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
  // Substituting this and multiplying by  Z^6  transforms the above equation
  // into
  //      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
  // To test this, we add up the right-hand side in 'rh'.

  // rh := X^2
  if (!field_sqr(group, rh, &point->X, ctx)) {
    goto err;
  }

  if (BN_cmp(&point->Z, &group->one) != 0) {
    if (!field_sqr(group, tmp, &point->Z, ctx) ||
        !field_sqr(group, Z4, tmp, ctx) ||
        !field_mul(group, Z6, Z4, tmp, ctx)) {
      goto err;
    }

    // rh := (rh + a*Z^4)*X
    if (group->a_is_minus3) {
      if (!bn_mod_lshift1_consttime(tmp, Z4, p, ctx) ||
          !bn_mod_add_consttime(tmp, tmp, Z4, p, ctx) ||
          !bn_mod_sub_consttime(rh, rh, tmp, p, ctx) ||
          !field_mul(group, rh, rh, &point->X, ctx)) {
        goto err;
      }
    } else {
      if (!field_mul(group, tmp, Z4, &group->a, ctx) ||
          !bn_mod_add_consttime(rh, rh, tmp, p, ctx) ||
          !field_mul(group, rh, rh, &point->X, ctx)) {
        goto err;
      }
    }

    // rh := rh + b*Z^6
    if (!field_mul(group, tmp, &group->b, Z6, ctx) ||
        !bn_mod_add_consttime(rh, rh, tmp, p, ctx)) {
      goto err;
    }
  } else {
    // rh := (rh + a)*X
    if (!bn_mod_add_consttime(rh, rh, &group->a, p, ctx) ||
        !field_mul(group, rh, rh, &point->X, ctx)) {
      goto err;
    }
    // rh := rh + b
    if (!bn_mod_add_consttime(rh, rh, &group->b, p, ctx)) {
      goto err;
    }
  }

  // 'lh' := Y^2
  if (!field_sqr(group, tmp, &point->Y, ctx)) {
    goto err;
  }

  ret = (0 == BN_ucmp(tmp, rh));

err:
  BN_CTX_end(ctx);
  BN_CTX_free(new_ctx);
  return ret;
}
Пример #2
0
int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
                      const EC_POINT *b, BN_CTX *ctx) {
  int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
                   BN_CTX *);
  int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
  const BIGNUM *p;
  BN_CTX *new_ctx = NULL;
  BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
  int ret = 0;

  if (a == b) {
    return EC_POINT_dbl(group, r, a, ctx);
  }
  if (EC_POINT_is_at_infinity(group, a)) {
    return EC_POINT_copy(r, b);
  }
  if (EC_POINT_is_at_infinity(group, b)) {
    return EC_POINT_copy(r, a);
  }

  field_mul = group->meth->field_mul;
  field_sqr = group->meth->field_sqr;
  p = &group->field;

  if (ctx == NULL) {
    ctx = new_ctx = BN_CTX_new();
    if (ctx == NULL) {
      return 0;
    }
  }

  BN_CTX_start(ctx);
  n0 = BN_CTX_get(ctx);
  n1 = BN_CTX_get(ctx);
  n2 = BN_CTX_get(ctx);
  n3 = BN_CTX_get(ctx);
  n4 = BN_CTX_get(ctx);
  n5 = BN_CTX_get(ctx);
  n6 = BN_CTX_get(ctx);
  if (n6 == NULL) {
    goto end;
  }

  // Note that in this function we must not read components of 'a' or 'b'
  // once we have written the corresponding components of 'r'.
  // ('r' might be one of 'a' or 'b'.)

  // n1, n2
  int b_Z_is_one = BN_cmp(&b->Z, &group->one) == 0;

  if (b_Z_is_one) {
    if (!BN_copy(n1, &a->X) || !BN_copy(n2, &a->Y)) {
      goto end;
    }
    // n1 = X_a
    // n2 = Y_a
  } else {
    if (!field_sqr(group, n0, &b->Z, ctx) ||
        !field_mul(group, n1, &a->X, n0, ctx)) {
      goto end;
    }
    // n1 = X_a * Z_b^2

    if (!field_mul(group, n0, n0, &b->Z, ctx) ||
        !field_mul(group, n2, &a->Y, n0, ctx)) {
      goto end;
    }
    // n2 = Y_a * Z_b^3
  }

  // n3, n4
  int a_Z_is_one = BN_cmp(&a->Z, &group->one) == 0;
  if (a_Z_is_one) {
    if (!BN_copy(n3, &b->X) || !BN_copy(n4, &b->Y)) {
      goto end;
    }
    // n3 = X_b
    // n4 = Y_b
  } else {
    if (!field_sqr(group, n0, &a->Z, ctx) ||
        !field_mul(group, n3, &b->X, n0, ctx)) {
      goto end;
    }
    // n3 = X_b * Z_a^2

    if (!field_mul(group, n0, n0, &a->Z, ctx) ||
        !field_mul(group, n4, &b->Y, n0, ctx)) {
      goto end;
    }
    // n4 = Y_b * Z_a^3
  }

  // n5, n6
  if (!bn_mod_sub_consttime(n5, n1, n3, p, ctx) ||
      !bn_mod_sub_consttime(n6, n2, n4, p, ctx)) {
    goto end;
  }
  // n5 = n1 - n3
  // n6 = n2 - n4

  if (BN_is_zero(n5)) {
    if (BN_is_zero(n6)) {
      // a is the same point as b
      BN_CTX_end(ctx);
      ret = EC_POINT_dbl(group, r, a, ctx);
      ctx = NULL;
      goto end;
    } else {
      // a is the inverse of b
      BN_zero(&r->Z);
      ret = 1;
      goto end;
    }
  }

  // 'n7', 'n8'
  if (!bn_mod_add_consttime(n1, n1, n3, p, ctx) ||
      !bn_mod_add_consttime(n2, n2, n4, p, ctx)) {
    goto end;
  }
  // 'n7' = n1 + n3
  // 'n8' = n2 + n4

  // Z_r
  if (a_Z_is_one && b_Z_is_one) {
    if (!BN_copy(&r->Z, n5)) {
      goto end;
    }
  } else {
    if (a_Z_is_one) {
      if (!BN_copy(n0, &b->Z)) {
        goto end;
      }
    } else if (b_Z_is_one) {
      if (!BN_copy(n0, &a->Z)) {
        goto end;
      }
    } else if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) {
      goto end;
    }
    if (!field_mul(group, &r->Z, n0, n5, ctx)) {
      goto end;
    }
  }

  // Z_r = Z_a * Z_b * n5

  // X_r
  if (!field_sqr(group, n0, n6, ctx) ||
      !field_sqr(group, n4, n5, ctx) ||
      !field_mul(group, n3, n1, n4, ctx) ||
      !bn_mod_sub_consttime(&r->X, n0, n3, p, ctx)) {
    goto end;
  }
  // X_r = n6^2 - n5^2 * 'n7'

  // 'n9'
  if (!bn_mod_lshift1_consttime(n0, &r->X, p, ctx) ||
      !bn_mod_sub_consttime(n0, n3, n0, p, ctx)) {
    goto end;
  }
  // n9 = n5^2 * 'n7' - 2 * X_r

  // Y_r
  if (!field_mul(group, n0, n0, n6, ctx) ||
      !field_mul(group, n5, n4, n5, ctx)) {
    goto end;  // now n5 is n5^3
  }
  if (!field_mul(group, n1, n2, n5, ctx) ||
      !bn_mod_sub_consttime(n0, n0, n1, p, ctx)) {
    goto end;
  }
  if (BN_is_odd(n0) && !BN_add(n0, n0, p)) {
    goto end;
  }
  // now  0 <= n0 < 2*p,  and n0 is even
  if (!BN_rshift1(&r->Y, n0)) {
    goto end;
  }
  // Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2

  ret = 1;

end:
  if (ctx) {
    // otherwise we already called BN_CTX_end
    BN_CTX_end(ctx);
  }
  BN_CTX_free(new_ctx);
  return ret;
}
Пример #3
0
int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
                      BN_CTX *ctx) {
  int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
                   BN_CTX *);
  int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
  const BIGNUM *p;
  BN_CTX *new_ctx = NULL;
  BIGNUM *n0, *n1, *n2, *n3;
  int ret = 0;

  if (EC_POINT_is_at_infinity(group, a)) {
    BN_zero(&r->Z);
    return 1;
  }

  field_mul = group->meth->field_mul;
  field_sqr = group->meth->field_sqr;
  p = &group->field;

  if (ctx == NULL) {
    ctx = new_ctx = BN_CTX_new();
    if (ctx == NULL) {
      return 0;
    }
  }

  BN_CTX_start(ctx);
  n0 = BN_CTX_get(ctx);
  n1 = BN_CTX_get(ctx);
  n2 = BN_CTX_get(ctx);
  n3 = BN_CTX_get(ctx);
  if (n3 == NULL) {
    goto err;
  }

  // Note that in this function we must not read components of 'a'
  // once we have written the corresponding components of 'r'.
  // ('r' might the same as 'a'.)

  // n1
  if (BN_cmp(&a->Z, &group->one) == 0) {
    if (!field_sqr(group, n0, &a->X, ctx) ||
        !bn_mod_lshift1_consttime(n1, n0, p, ctx) ||
        !bn_mod_add_consttime(n0, n0, n1, p, ctx) ||
        !bn_mod_add_consttime(n1, n0, &group->a, p, ctx)) {
      goto err;
    }
    // n1 = 3 * X_a^2 + a_curve
  } else if (group->a_is_minus3) {
    if (!field_sqr(group, n1, &a->Z, ctx) ||
        !bn_mod_add_consttime(n0, &a->X, n1, p, ctx) ||
        !bn_mod_sub_consttime(n2, &a->X, n1, p, ctx) ||
        !field_mul(group, n1, n0, n2, ctx) ||
        !bn_mod_lshift1_consttime(n0, n1, p, ctx) ||
        !bn_mod_add_consttime(n1, n0, n1, p, ctx)) {
      goto err;
    }
    // n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
    //    = 3 * X_a^2 - 3 * Z_a^4
  } else {
    if (!field_sqr(group, n0, &a->X, ctx) ||
        !bn_mod_lshift1_consttime(n1, n0, p, ctx) ||
        !bn_mod_add_consttime(n0, n0, n1, p, ctx) ||
        !field_sqr(group, n1, &a->Z, ctx) ||
        !field_sqr(group, n1, n1, ctx) ||
        !field_mul(group, n1, n1, &group->a, ctx) ||
        !bn_mod_add_consttime(n1, n1, n0, p, ctx)) {
      goto err;
    }
    // n1 = 3 * X_a^2 + a_curve * Z_a^4
  }

  // Z_r
  if (BN_cmp(&a->Z, &group->one) == 0) {
    if (!BN_copy(n0, &a->Y)) {
      goto err;
    }
  } else if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) {
    goto err;
  }
  if (!bn_mod_lshift1_consttime(&r->Z, n0, p, ctx)) {
    goto err;
  }
  // Z_r = 2 * Y_a * Z_a

  // n2
  if (!field_sqr(group, n3, &a->Y, ctx) ||
      !field_mul(group, n2, &a->X, n3, ctx) ||
      !bn_mod_lshift_consttime(n2, n2, 2, p, ctx)) {
    goto err;
  }
  // n2 = 4 * X_a * Y_a^2

  // X_r
  if (!bn_mod_lshift1_consttime(n0, n2, p, ctx) ||
      !field_sqr(group, &r->X, n1, ctx) ||
      !bn_mod_sub_consttime(&r->X, &r->X, n0, p, ctx)) {
    goto err;
  }
  // X_r = n1^2 - 2 * n2

  // n3
  if (!field_sqr(group, n0, n3, ctx) ||
      !bn_mod_lshift_consttime(n3, n0, 3, p, ctx)) {
    goto err;
  }
  // n3 = 8 * Y_a^4

  // Y_r
  if (!bn_mod_sub_consttime(n0, n2, &r->X, p, ctx) ||
      !field_mul(group, n0, n1, n0, ctx) ||
      !bn_mod_sub_consttime(&r->Y, n0, n3, p, ctx)) {
    goto err;
  }
  // Y_r = n1 * (n2 - X_r) - n3

  ret = 1;

err:
  BN_CTX_end(ctx);
  BN_CTX_free(new_ctx);
  return ret;
}
Пример #4
0
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
  // Compute a square root of |a| mod |p| using the Tonelli/Shanks algorithm
  // (cf. Henri Cohen, "A Course in Algebraic Computational Number Theory",
  // algorithm 1.5.1). |p| is assumed to be a prime.

  BIGNUM *ret = in;
  int err = 1;
  int r;
  BIGNUM *A, *b, *q, *t, *x, *y;
  int e, i, j;

  if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
    if (BN_abs_is_word(p, 2)) {
      if (ret == NULL) {
        ret = BN_new();
      }
      if (ret == NULL) {
        goto end;
      }
      if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
        if (ret != in) {
          BN_free(ret);
        }
        return NULL;
      }
      return ret;
    }

    OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
    return (NULL);
  }

  if (BN_is_zero(a) || BN_is_one(a)) {
    if (ret == NULL) {
      ret = BN_new();
    }
    if (ret == NULL) {
      goto end;
    }
    if (!BN_set_word(ret, BN_is_one(a))) {
      if (ret != in) {
        BN_free(ret);
      }
      return NULL;
    }
    return ret;
  }

  BN_CTX_start(ctx);
  A = BN_CTX_get(ctx);
  b = BN_CTX_get(ctx);
  q = BN_CTX_get(ctx);
  t = BN_CTX_get(ctx);
  x = BN_CTX_get(ctx);
  y = BN_CTX_get(ctx);
  if (y == NULL) {
    goto end;
  }

  if (ret == NULL) {
    ret = BN_new();
  }
  if (ret == NULL) {
    goto end;
  }

  // A = a mod p
  if (!BN_nnmod(A, a, p, ctx)) {
    goto end;
  }

  // now write  |p| - 1  as  2^e*q  where  q  is odd
  e = 1;
  while (!BN_is_bit_set(p, e)) {
    e++;
  }
  // we'll set  q  later (if needed)

  if (e == 1) {
    // The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
    // modulo  (|p|-1)/2,  and square roots can be computed
    // directly by modular exponentiation.
    // We have
    //     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
    // so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
    if (!BN_rshift(q, p, 2)) {
      goto end;
    }
    q->neg = 0;
    if (!BN_add_word(q, 1) ||
        !BN_mod_exp_mont(ret, A, q, p, ctx, NULL)) {
      goto end;
    }
    err = 0;
    goto vrfy;
  }

  if (e == 2) {
    // |p| == 5  (mod 8)
    //
    // In this case  2  is always a non-square since
    // Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
    // So if  a  really is a square, then  2*a  is a non-square.
    // Thus for
    //      b := (2*a)^((|p|-5)/8),
    //      i := (2*a)*b^2
    // we have
    //     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
    //         = (2*a)^((p-1)/2)
    //         = -1;
    // so if we set
    //      x := a*b*(i-1),
    // then
    //     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
    //         = a^2 * b^2 * (-2*i)
    //         = a*(-i)*(2*a*b^2)
    //         = a*(-i)*i
    //         = a.
    //
    // (This is due to A.O.L. Atkin,
    // <URL:
    //http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
    // November 1992.)

    // t := 2*a
    if (!bn_mod_lshift1_consttime(t, A, p, ctx)) {
      goto end;
    }

    // b := (2*a)^((|p|-5)/8)
    if (!BN_rshift(q, p, 3)) {
      goto end;
    }
    q->neg = 0;
    if (!BN_mod_exp_mont(b, t, q, p, ctx, NULL)) {
      goto end;
    }

    // y := b^2
    if (!BN_mod_sqr(y, b, p, ctx)) {
      goto end;
    }

    // t := (2*a)*b^2 - 1
    if (!BN_mod_mul(t, t, y, p, ctx) ||
        !BN_sub_word(t, 1)) {
      goto end;
    }

    // x = a*b*t
    if (!BN_mod_mul(x, A, b, p, ctx) ||
        !BN_mod_mul(x, x, t, p, ctx)) {
      goto end;
    }

    if (!BN_copy(ret, x)) {
      goto end;
    }
    err = 0;
    goto vrfy;
  }

  // e > 2, so we really have to use the Tonelli/Shanks algorithm.
  // First, find some  y  that is not a square.
  if (!BN_copy(q, p)) {
    goto end;  // use 'q' as temp
  }
  q->neg = 0;
  i = 2;
  do {
    // For efficiency, try small numbers first;
    // if this fails, try random numbers.
    if (i < 22) {
      if (!BN_set_word(y, i)) {
        goto end;
      }
    } else {
      if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) {
        goto end;
      }
      if (BN_ucmp(y, p) >= 0) {
        if (!(p->neg ? BN_add : BN_sub)(y, y, p)) {
          goto end;
        }
      }
      // now 0 <= y < |p|
      if (BN_is_zero(y)) {
        if (!BN_set_word(y, i)) {
          goto end;
        }
      }
    }

    r = bn_jacobi(y, q, ctx);  // here 'q' is |p|
    if (r < -1) {
      goto end;
    }
    if (r == 0) {
      // m divides p
      OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
      goto end;
    }
  } while (r == 1 && ++i < 82);

  if (r != -1) {
    // Many rounds and still no non-square -- this is more likely
    // a bug than just bad luck.
    // Even if  p  is not prime, we should have found some  y
    // such that r == -1.
    OPENSSL_PUT_ERROR(BN, BN_R_TOO_MANY_ITERATIONS);
    goto end;
  }

  // Here's our actual 'q':
  if (!BN_rshift(q, q, e)) {
    goto end;
  }

  // Now that we have some non-square, we can find an element
  // of order  2^e  by computing its q'th power.
  if (!BN_mod_exp_mont(y, y, q, p, ctx, NULL)) {
    goto end;
  }
  if (BN_is_one(y)) {
    OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
    goto end;
  }

  // Now we know that (if  p  is indeed prime) there is an integer
  // k,  0 <= k < 2^e,  such that
  //
  //      a^q * y^k == 1   (mod p).
  //
  // As  a^q  is a square and  y  is not,  k  must be even.
  // q+1  is even, too, so there is an element
  //
  //     X := a^((q+1)/2) * y^(k/2),
  //
  // and it satisfies
  //
  //     X^2 = a^q * a     * y^k
  //         = a,
  //
  // so it is the square root that we are looking for.

  // t := (q-1)/2  (note that  q  is odd)
  if (!BN_rshift1(t, q)) {
    goto end;
  }

  // x := a^((q-1)/2)
  if (BN_is_zero(t))  // special case: p = 2^e + 1
  {
    if (!BN_nnmod(t, A, p, ctx)) {
      goto end;
    }
    if (BN_is_zero(t)) {
      // special case: a == 0  (mod p)
      BN_zero(ret);
      err = 0;
      goto end;
    } else if (!BN_one(x)) {
      goto end;
    }
  } else {
    if (!BN_mod_exp_mont(x, A, t, p, ctx, NULL)) {
      goto end;
    }
    if (BN_is_zero(x)) {
      // special case: a == 0  (mod p)
      BN_zero(ret);
      err = 0;
      goto end;
    }
  }

  // b := a*x^2  (= a^q)
  if (!BN_mod_sqr(b, x, p, ctx) ||
      !BN_mod_mul(b, b, A, p, ctx)) {
    goto end;
  }

  // x := a*x    (= a^((q+1)/2))
  if (!BN_mod_mul(x, x, A, p, ctx)) {
    goto end;
  }

  while (1) {
    // Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
    // where  E  refers to the original value of  e,  which we
    // don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
    //
    // We have  a*b = x^2,
    //    y^2^(e-1) = -1,
    //    b^2^(e-1) = 1.

    if (BN_is_one(b)) {
      if (!BN_copy(ret, x)) {
        goto end;
      }
      err = 0;
      goto vrfy;
    }


    // find smallest  i  such that  b^(2^i) = 1
    i = 1;
    if (!BN_mod_sqr(t, b, p, ctx)) {
      goto end;
    }
    while (!BN_is_one(t)) {
      i++;
      if (i == e) {
        OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
        goto end;
      }
      if (!BN_mod_mul(t, t, t, p, ctx)) {
        goto end;
      }
    }


    // t := y^2^(e - i - 1)
    if (!BN_copy(t, y)) {
      goto end;
    }
    for (j = e - i - 1; j > 0; j--) {
      if (!BN_mod_sqr(t, t, p, ctx)) {
        goto end;
      }
    }
    if (!BN_mod_mul(y, t, t, p, ctx) ||
        !BN_mod_mul(x, x, t, p, ctx) ||
        !BN_mod_mul(b, b, y, p, ctx)) {
      goto end;
    }
    e = i;
  }

vrfy:
  if (!err) {
    // verify the result -- the input might have been not a square
    // (test added in 0.9.8)

    if (!BN_mod_sqr(x, ret, p, ctx)) {
      err = 1;
    }

    if (!err && 0 != BN_cmp(x, A)) {
      OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
      err = 1;
    }
  }

end:
  if (err) {
    if (ret != in) {
      BN_clear_free(ret);
    }
    ret = NULL;
  }
  BN_CTX_end(ctx);
  return ret;
}