// The cache_entries parameter is empty (on cold call site) or has entries // (on cache miss). Called from assembly with the actual return address. // Compilation of the inline cache may trigger a GC, which may trigger a // compaction; // also, the block containing the return address may now be dead. Use a // code_root to take care of the details. // Allocates memory cell factor_vm::inline_cache_miss(cell return_address_) { code_root return_address(return_address_, this); bool tail_call_site = tail_call_site_p(return_address.value); #ifdef PIC_DEBUG FACTOR_PRINT("Inline cache miss at " << (tail_call_site ? "tail" : "non-tail") << " call site 0x" << std::hex << return_address.value << std::dec); print_callstack(); #endif data_root<array> cache_entries(ctx->pop(), this); fixnum index = untag_fixnum(ctx->pop()); data_root<array> methods(ctx->pop(), this); data_root<word> generic_word(ctx->pop(), this); data_root<object> object(((cell*)ctx->datastack)[-index], this); cell pic_size = array_capacity(cache_entries.untagged()) / 2; update_pic_transitions(pic_size); cell xt = generic_word->entry_point; if (pic_size < max_pic_size) { cell klass = object_class(object.value()); cell method = lookup_method(object.value(), methods.value()); data_root<array> new_cache_entries( add_inline_cache_entry(cache_entries.value(), klass, method), this); inline_cache_jit jit(generic_word.value(), this); jit.emit_inline_cache(index, generic_word.value(), methods.value(), new_cache_entries.value(), tail_call_site); code_block* code = jit.to_code_block(CODE_BLOCK_PIC, JIT_FRAME_SIZE); initialize_code_block(code); xt = code->entry_point(); } // Install the new stub. if (return_address.valid) { // Since each PIC is only referenced from a single call site, // if the old call target was a PIC, we can deallocate it immediately, // instead of leaving dead PICs around until the next GC. deallocate_inline_cache(return_address.value); set_call_target(return_address.value, xt); #ifdef PIC_DEBUG FACTOR_PRINT("Updated " << (tail_call_site ? "tail" : "non-tail") << " call site 0x" << std::hex << return_address.value << std::dec << " with 0x" << std::hex << (cell)xt << std::dec); print_callstack(); #endif } return xt; }
/* Allocates memory */ cell factor_vm::add_inline_cache_entry(cell cache_entries_, cell klass_, cell method_) { gc_root<array> cache_entries(cache_entries_,this); gc_root<object> klass(klass_,this); gc_root<word> method(method_,this); cell pic_size = array_capacity(cache_entries.untagged()); gc_root<array> new_cache_entries(reallot_array(cache_entries.untagged(),pic_size + 2),this); set_array_nth(new_cache_entries.untagged(),pic_size,klass.value()); set_array_nth(new_cache_entries.untagged(),pic_size + 1,method.value()); return new_cache_entries.value(); }
/* The cache_entries parameter is either f (on cold call site) or an array (on cache miss). Called from assembly with the actual return address */ void *factor_vm::inline_cache_miss(cell return_address) { check_code_pointer(return_address); /* Since each PIC is only referenced from a single call site, if the old call target was a PIC, we can deallocate it immediately, instead of leaving dead PICs around until the next GC. */ deallocate_inline_cache(return_address); gc_root<array> cache_entries(dpop(),this); fixnum index = untag_fixnum(dpop()); gc_root<array> methods(dpop(),this); gc_root<word> generic_word(dpop(),this); gc_root<object> object(((cell *)ds)[-index],this); void *xt; cell pic_size = inline_cache_size(cache_entries.value()); update_pic_transitions(pic_size); if(pic_size >= max_pic_size) xt = megamorphic_call_stub(generic_word.value()); else { cell klass = object_class(object.value()); cell method = lookup_method(object.value(),methods.value()); gc_root<array> new_cache_entries(add_inline_cache_entry( cache_entries.value(), klass, method),this); xt = compile_inline_cache(index, generic_word.value(), methods.value(), new_cache_entries.value(), tail_call_site_p(return_address))->xt(); } /* Install the new stub. */ set_call_target(return_address,xt); #ifdef PIC_DEBUG printf("Updated %s call site 0x%lx with 0x%lx\n", tail_call_site_p(return_address) ? "tail" : "non-tail", return_address, (cell)xt); #endif return xt; }
code_block *factor_vm::compile_inline_cache(fixnum index,cell generic_word_,cell methods_,cell cache_entries_,bool tail_call_p) { gc_root<word> generic_word(generic_word_,this); gc_root<array> methods(methods_,this); gc_root<array> cache_entries(cache_entries_,this); inline_cache_jit jit(generic_word.value(),this); jit.compile_inline_cache(index, generic_word.value(), methods.value(), cache_entries.value(), tail_call_p); code_block *code = jit.to_code_block(); relocate_code_block(code); return code; }
// index: 0 = top of stack, 1 = item underneath, etc // cache_entries: array of class/method pairs // Allocates memory void inline_cache_jit::emit_inline_cache(fixnum index, cell generic_word_, cell methods_, cell cache_entries_, bool tail_call_p) { data_root<word> generic_word(generic_word_, parent); data_root<array> methods(methods_, parent); data_root<array> cache_entries(cache_entries_, parent); cell ic_type = determine_inline_cache_type(cache_entries.untagged()); parent->update_pic_count(ic_type); // Generate machine code to determine the object's class. emit_with_literal(parent->special_objects[PIC_LOAD], tag_fixnum(-index * sizeof(cell))); // Put the tag of the object, or class of the tuple in a register. emit(parent->special_objects[ic_type]); // Generate machine code to check, in turn, if the class is one of the cached // entries. for (cell i = 0; i < array_capacity(cache_entries.untagged()); i += 2) { cell klass = array_nth(cache_entries.untagged(), i); cell method = array_nth(cache_entries.untagged(), i + 1); emit_check_and_jump(ic_type, i, klass, method); } // If none of the above conditionals tested true, then execution "falls // through" to here. // A stack frame is set up, since the inline-cache-miss sub-primitive // makes a subroutine call to the VM. emit(parent->special_objects[JIT_PROLOG]); // The inline-cache-miss sub-primitive call receives enough information to // reconstruct the PIC with the new entry. push(generic_word.value()); push(methods.value()); push(tag_fixnum(index)); push(cache_entries.value()); emit_subprimitive( parent->special_objects[tail_call_p ? PIC_MISS_TAIL_WORD : PIC_MISS_WORD], true, // tail_call_p true); // stack_frame_p }
/* index: 0 = top of stack, 1 = item underneath, etc cache_entries: array of class/method pairs */ void inline_cache_jit::compile_inline_cache(fixnum index, cell generic_word_, cell methods_, cell cache_entries_, bool tail_call_p) { gc_root<word> generic_word(generic_word_,parent); gc_root<array> methods(methods_,parent); gc_root<array> cache_entries(cache_entries_,parent); cell inline_cache_type = parent->determine_inline_cache_type(cache_entries.untagged()); parent->update_pic_count(inline_cache_type); /* Generate machine code to determine the object's class. */ emit_class_lookup(index,inline_cache_type); /* Generate machine code to check, in turn, if the class is one of the cached entries. */ cell i; for(i = 0; i < array_capacity(cache_entries.untagged()); i += 2) { /* Class equal? */ cell klass = array_nth(cache_entries.untagged(),i); emit_check(klass); /* Yes? Jump to method */ cell method = array_nth(cache_entries.untagged(),i + 1); emit_with(parent->userenv[PIC_HIT],method); } /* Generate machine code to handle a cache miss, which ultimately results in this function being called again. The inline-cache-miss primitive call receives enough information to reconstruct the PIC. */ push(generic_word.value()); push(methods.value()); push(tag_fixnum(index)); push(cache_entries.value()); word_special(parent->userenv[tail_call_p ? PIC_MISS_TAIL_WORD : PIC_MISS_WORD]); }