Пример #1
0
object *quotient_proc(object *arguments) {
    return make_fixnum(
        ((car(arguments) )->data.fixnum.value)/
        ((cadr(arguments))->data.fixnum.value));
}
Пример #2
0
object *text_of_quotation(object *exp) {
    return cadr(exp);
}
Пример #3
0
object *definition_variable(object *exp) {
    return is_symbol(cadr(exp)) ? cadr(exp) : caadr(exp);
}
Пример #4
0
object *if_predicate(object *exp) {
    return cadr(exp);
}
Пример #5
0
object *binding_argument(object *binding) {
    return cadr(binding);
}
Пример #6
0
/*
 * local pprinting function
 *
 * Do not try to understand how it works. When I wrote it I and God knew how
 * it worked. I have forgotten...
 * Ask God!
 *
 * p is the expression is to print.
 * k is magic argument to handle non-algorithmic behaviour of pprint.
 *   (k holds internal beautiness (!) factor of printout. (AI!) :-)
 *  Serious:
 *    k=1  we dunno anything about expression
 *    k=1  the tabulatig spaces were alrady printed!
 *    k=2  we are in flatc mode
 *          -dont print tabulating space
 *          -there is no need to check flatc size.
 */
static LVAL __pprint(tpLspObject pLSP,LVAL p,int k)
#define _pprint(x) __pprint(pLSP,(x),1)
{
   LVAL fp;
   int j,multiline;
   char *s;

   if( null(p) )
   {
      fprintf(pLSP->f,"NIL");
      return NIL;
   }
   switch(gettype(p))
   {
   case NTYPE_CON:
      if( k == 2 || flatc(p) < SCRSIZE-TABPOS )
      {
         /* Print in flat mode. */
         if( k == 1 )
            fprintf(pLSP->f,"%*s(",TABPOS,"");
         else
            fprintf(pLSP->f,"(");
         for( fp = p ; fp ;  )
         {
            __pprint(pLSP,car(fp),2);
            fp = cdr(fp);
            if( fp )
               fprintf(pLSP->f," ");
         }
         fprintf(pLSP->f,")");
         return NIL;
      }
      if( atom(fp=car(p)) || flatc(fp) < (SCRSIZE-TABPOS)/2 )
      {
         fprintf(pLSP->f,"(");
         SCRSIZE--; /* Schrink screen size thinking of the closing paren. */
         j = flatc(fp)+2;/* ([flatc]SPACE */
         TABPOS += j;
         __pprint(pLSP,fp,0);
         if( cdr(p) )
         {
            fprintf(pLSP->f," ");
            __pprint(pLSP,cadr(p),0);
            fprintf(pLSP->f,"\n");
            for( fp = cdr(cdr(p)) ; fp ; )
            {
               fprintf(pLSP->f,"%*s",TABPOS,"");
               __pprint(pLSP,car(fp),0);
               fp = cdr(fp);
               if( fp )
                  fprintf(pLSP->f,"\n");
            }
         }
         TABPOS -= j;
         fprintf(pLSP->f,")");
         SCRSIZE++;
         return NIL;
      }
      fprintf(pLSP->f,"(");
       /* Schrink screen size thinking of the closing paren. */
      SCRSIZE--;
      TABPOS++;
      __pprint(pLSP,car(p),0);
      if( fp = cdr(p) )
         fprintf(pLSP->f,"\n");
      while( fp )
      {
         fprintf(pLSP->f,"%*s",TABPOS,"");
         _pprint(car(fp));
         fp = cdr(fp);
            if( fp )
               fprintf(pLSP->f,"\n");
      }
      TABPOS--;
      fprintf(pLSP->f,")");
      SCRSIZE++;
      return NIL;
   case NTYPE_FLO:
      fprintf(pLSP->f,"%lf",getfloat(p));
      return NIL;
   case NTYPE_INT:
      fprintf(pLSP->f,"%ld",getint(p));
      return NIL;
   case NTYPE_STR:
      multiline = 0;
      for( s=getstring(p) ; *s ; s++ )
        if( *s == '\n' ){
          multiline = 1;
          break;
          }

      fprintf(pLSP->f,multiline ? "\"\"\"" : "\"");
      for( s=getstring(p) ; *s ; s++ )
         switch( *s )
         {                      /* Handle spacial characters. */
         case '\"':
            fprintf(pLSP->f,"\\\"");
            break;
         default:
            fprintf(pLSP->f,"%c",*s);
            break;
         }
      fprintf(pLSP->f,multiline ? "\"\"\"" : "\"");
      return NIL;
   case NTYPE_SYM:
      fprintf(pLSP->f,"%s",getsymbol(p));
      return NIL;
   case NTYPE_CHR:
      fprintf(pLSP->f,"#\\%c",getchr(p));
      return NIL;
   default:
      return NIL;
   }
   fprintf(pLSP->f,BUFFER);
   return NIL;
}
Пример #7
0
refObject skolemize(refObject layer, refObject type)
{ struct
  { refFrame  link;
    int       count;
    refObject first;
    refObject labeler;
    refObject last;
    refObject layer;
    refObject next;
    refObject type; } f0;

//  IS SKOLEMIZABLE. Test if TYPE, which is ground in LAYER, can be the base of
//  a Skolem type. It can be, if it has a subtype that's different from itself.
//  For example, OBJ has an infinite number of such subtypes but INT0 has none.
//  The WHILE loop helps simulate tail recursions.

  bool isSkolemizable(refObject layer, refObject type)
  { while (true)
    { if (isName(type))
      { getKey(r(layer), r(type), layer, type); }
      else

//  Visit a type. If LABELER says we've been here before, then return false. If
//  we haven't, then record TYPE in LABELER so we won't come here again.

      if (isPair(type))
      { if (gotKey(toss, toss, f0.labeler, type))
        { return false; }
        else
        { refObject pars;
          setKey(f0.labeler, type, nil, nil);
          switch (toHook(car(type)))

//  Visit a trivially Skolemizable type. An ALTS, FORM, or GEN type can have an
//  ALTS type as a subtype. A REF or ROW type can have NULL as a subtype.

          { case altsHook:
            case arraysHook:
            case formHook:
            case genHook:
            case jokerHook:
            case referHook:
            case rowHook:
            case skoHook:
            case tuplesHook:
            { return true; }

//  Visit a type that is trivially not Skolemizable.

            case cellHook:
            case char0Hook:
            case char1Hook:
            case int0Hook:
            case int1Hook:
            case int2Hook:
            case listHook:
            case nullHook:
            case real0Hook:
            case real1Hook:
            case strTypeHook:
            case symHook:
            case voidHook:
            { return false; }

//  Visit an ARRAY type. It's Skolemizable if its base type is.

            case arrayHook:
            { type = caddr(type);
              break; }

//  Visit a PROC type. It's Skolemizable if (1) it has a Skolemizable parameter
//  type, (2) it has the missing name NO NAME as a parameter name, (3) it has a
//  Skolemizable yield type.

            case procHook:
            { type = cdr(type);
              pars = car(type);
              while (pars != nil)
              { pars = cdr(pars);
                if (car(pars) == noName)
                { return true; }
                else
                { pars = cdr(pars); }}
              pars = car(type);
              while (pars != nil)
              { if (isSkolemizable(layer, car(pars)))
                { return true; }
                else
                { pars = cddr(pars); }}
              type = cadr(type);
              break; }

//  Visit a TUPLE type. It's Skolemizable if it has a Skolemizable slot type or
//  if it has the missing name NO NAME as a slot name.

            case tupleHook:
            { pars = cdr(type);
              while (pars != nil)
              { pars = cdr(pars);
                if (car(pars) == noName)
                { return true; }
                else
                { pars = cdr(pars); }}
              pars = cdr(type);
              while (pars != nil)
              { if (isSkolemizable(layer, car(pars)))
                { return true; }
                else
                { pars = cddr(pars); }}
              return false; }

//  Visit a prefix type. It's Skolemizable if its base type is.

            case typeHook:
            case varHook:
            { type = cadr(type);
              break; }

//  Visit an illegal type. We should never get here.

            default:
            { fail("Got ?%s(...) in isSkolemizable!", hookTo(car(type))); }}}}

//  Visit an illegal object. We should never get here either.

      else
      { fail("Got bad type in isSkolemizable!"); }}}

//  Lost? This is SKOLEMIZE's body. These identities show what's going on.
//
//    S(type T B)  =>  T S(B)
//    S(U)         =>  ?sko(U)
//    S(V)         =>  V
//
//  Here S(X) is the Skolem type for type X. T is a series of zero or more TYPE
//  prefixes. B is a type, U is a type with at least one subtype different from
//  itself, and V is a type with no subtypes different from itself.

  push(f0, 6);
  f0.labeler = pushLayer(nil, plainInfo);
  f0.layer = layer;
  f0.type = type;
  while (isName(f0.type))
  { getKey(r(f0.layer), r(f0.type), f0.layer, f0.type); }
  if (isCar(f0.type, typeHook))
  { f0.type = cadr(f0.type);
    if (isSkolemizable(f0.layer, f0.type))
    { if (isCar(f0.type, typeHook))
      { f0.first = f0.last = makePair(hooks[typeHook], nil);
        f0.type = cadr(f0.type);
        while (isCar(f0.type, typeHook))
        { f0.next = makePair(hooks[typeHook], nil);
          cdr(f0.last) = makePair(f0.next, nil);
          f0.last = f0.next;
          f0.type = cadr(f0.type); }
        f0.next = makePrefix(skoHook, f0.type);
        cdr(f0.last) = makePair(f0.next, nil); }
      else
      { f0.first = makePrefix(skoHook, f0.type); }}
    else
    { f0.first = makePair(car(f0.type), cdr(f0.type)); }}
  else
  { fail("Type type expected in skolemize!"); }
  pop();
  destroyLayer(f0.labeler);
  return f0.first; }
Пример #8
0
// (bye 'cnt|NIL)
any doBye(any ex) {
   any x = EVAL(cadr(ex));

   bye(isNil(x)? 0 : xCnt(ex,x));
}
Пример #9
0
// (de sym . any) -> sym
any doDe(any ex) {
   redefine(ex, cadr(ex), cddr(ex));
   return cadr(ex);
}
Пример #10
0
object *set_cdr_proc(object *arguments) {
    set_cdr(car(arguments), cadr(arguments));
    return ok_symbol();
}
Пример #11
0
sExpression *eval(sExpression *exp, sEnvironment *env){
  /* ------------------atom-----------------------*/
  /* 1, 10, false, null, "abc" */
  if(isSelfEval(exp))
  {
    return exp;
  }
  /* a symbol */
  else if(isVariable(exp, env))
  {
    return lookupVariable(toSymb(exp), env);
  }
  /* ------------------list-----------------------*/
  /* (quote blur blur) */
  else if(isQuoted(exp))
  {
    return textOfQuoted(exp);
  }
  /* (set! name value) */
  else if(isAssignment(exp))
  {
    return evalAssignment(exp, env);
  }
  /* (define name value) */
  else if(isDefinition(exp))
  {
    return evalDefine(exp, env);
  }
  /* (define-syntax name ...) */
  else if(isDefinitionSyntax(exp))
  {
    return evalDefineSyntax(exp, env);
  }
  /* (if blur blur blur) */
  else if(isIf(exp))
  {
    return evalIf(toList(exp), env);
  }
  /* (lambda (args) (body)) */
  else if(isLambdaConst(exp))
  {
    sList *body;
    sList *param = toList( cadr(toList(exp)));
    sExpression *temp = cdr(toList( cdr(toList(exp))));
    if(isList(temp)){
      body = toList(temp);
    }else{
      body = toList(cons(temp, &sNull));
    }
    return newLambda(param, body, env);
  }
  /* (syntax blur blur) syntax rule */
  else if(isSymbol(car(toList(exp))) && isSyntaxRule(eval(car(toList(exp)), env)))
  {
    sExpression *exp2 = evalSyntaxRule(toSyntax(eval(car(toList(exp)), env)), exp);
    return eval(exp2, env);
  }
  /* the other list (x . y) */
  else if(isApplication(exp))
  {
    if(LAZY_EVAL){
      sExpression *proexp = actualValue(operator(toList(exp)), env);
      if(isLambdaType(proexp) || isPrimitiveProc(proexp)){
        sExpression *operand = operands(toList(exp));
        return applyLazly(proexp, operand, env);
      }
    }else{
      sExpression *proexp = eval(operator(toList(exp)), env);
      if(isLambdaType(proexp) || isPrimitiveProc(proexp)){
        sExpression *operand = operands(toList(exp));
        sExpression *arguments = listOfValues(operand, env);
        return apply(proexp, arguments, env);
      }
    }
  }
  return &sError;
}
Пример #12
0
object *cons_proc(object *arguments) {
    return cons(car(arguments), cadr(arguments));
}
Пример #13
0
/*
 * (call <tag_ffi_cif>
 *       <closure w/C function pointer>
 *       <rvalue size in bytes>
 * )
 */
cons_t* proc_ffi_call(cons_t* p, environment_t*)
{
  assert_length(p, 2, 4);
  assert_pointer(tag_ffi_cif, car(p));
  assert_type(CLOSURE, cadr(p));
  assert_type(INTEGER, caddr(p));

  /*
   * libffi description of function.
   */

  ffi_cif *cif = static_cast<ffi_cif*>(car(p)->pointer->value);

  /*
   * Pointer to function to call.
   */

  if ( cadr(p)->closure->function == NULL )
    raise(runtime_exception(
      "Can only call foreign C functions; not Scheme procedures"));

  void (*funptr)() =
    reinterpret_cast<void(*)()>(cadr(p)->closure->function);

  /*
   * Size of return value.
   */
  integer_t size = 0;

  if ( length(p)>2 )
    size = caddr(p)->number.integer;

  if ( size < 0 )
    raise(runtime_exception(format(
      "Cannot allocate a negative number of bytes: %d", size)));

  /*
   * Allocate enough memory necessary to hold return data.
   */
  value_t *retval = new value_t(size);

  /*
   * Function arguments (currently unsupported).
   */
  void **funargs = NULL;

  if ( !nullp(cadddr(p)) ) {
    cons_t *args = cadddr(p);

    if ( length(args) != cif->nargs )
      raise(runtime_exception(format(
        "Foreign function expects %d arguments",
        cif->nargs)));

    funargs = static_cast<void**>(malloc(sizeof(void*)*(cif->nargs+1)));

    size_t n=0;
    for ( cons_t *a = args; !nullp(a); a = cdr(a), ++n ) {
      funargs[n] = make_arg(cif->arg_types[n], car(a));
    }

    funargs[cif->nargs] = NULL; // TODO: is this necessary?
  }

  /*
   * TODO: Destroy allocated funargs data after ffi_call, unless those are
   * pointer values used to store returned data.
   */

  ffi_call(cif, funptr, &retval->data, funargs);
  return pointer(tag_ffi_retval, retval);
}
Пример #14
0
object *remainder_proc(object *arguments) {
    return make_fixnum(
        ((car(arguments) )->data.fixnum.value)%
        ((cadr(arguments))->data.fixnum.value));
}
Пример #15
0
PUBLIC tree lib_call(def d, tree args)
{
     int n_args = list_len(args);
     tree call = NULL;
     bool ok = TRUE;
     type t = d->t_type;

     switch (d->d_libid) {
     case L_CHR:
	  ok = (n_args == 1
		&& same_type(car(args)->t_type, int_type));
	  break;

     case L_ORD:
	  ok = (n_args == 1
		&& (same_type(car(args)->t_type, char_type)
		    || same_type(car(args)->t_type, bool_type)));
	  break;

     case L_HALT:
     case L_FLUSH:
	  ok = (n_args == 0);
	  break;

     case L_EOF:
     case L_EOLN:
	  if (n_args == 0)
	       args = list1((tree) _input_);
	  else
	       ok = (n_args = 1
		     && same_type(car(args)->t_type, text_type));
	  break;

     case L_READ:
     case L_READLN:
     case L_WRITE:
     case L_WRITELN:
	  {
	       tree p = args;

	       if (p != nil && same_type(car(p)->t_type, text_type))
		    p = cdr(p);
	       for (; p != nil; p = cdr(p)) {
		    type at = car(p)->t_type;
		    if (! (same_type(at, int_type)
			   || same_type(at, char_type)
			   || same_type(at, string_type))) {
			 ok = FALSE;
			 break;
		    }
	       }
	       return node_t(LIBCALL, (tree) d, args, void_type);
	  }

     case L_ARGC:
	  ok = (n_args == 0);
	  break;

     case L_ARGV:
	  ok = (n_args == 2
		&& same_type(car(args)->t_type, int_type)
		&& is_string_type(cadr(args)->t_type));
	  break;

     case L_OPENIN:
	  ok = (n_args == 2
		&& same_type(car(args)->t_type, text_type)
		&& is_string_type(cadr(args)->t_type));
	  break;

     case L_CLOSEIN:
	  ok = (n_args == 1 && same_type(car(args)->t_type, text_type));
	  break;

     default:
	  ok = FALSE;
	  t = err_type;
     }

     if (! ok) {
	  error("I choked on a library call");
	  return (tree) dummy_def;
     }

     if (call == NULL)
	  return node_t(CALL, (tree) d, args, t);

     return call;
}
Пример #16
0
// (lit 'any) -> any
any doLit(any x) {
   x = cadr(x);
   if (isNum(x = EVAL(x)) || isNil(x) || x == T || isCell(x) && isNum(car(x)))
      return x;
   return cons(Quote, x);
}
Пример #17
0
/* An explicit control evaluator, taken almost directly from SICP, section
 * 5.2.  list is a flat list of expressions to evaluate.  where is a label to
 * begin at.  Return value depends on where.
 */ 
NODE *evaluator(NODE *list, enum labels where) {

    /* registers */
    NODE    *exp    = NIL,  /* the current expression */
	    *val    = NIL,  /* the value of the last expression */
	    *proc   = NIL,  /* the procedure definition */
	    *argl   = NIL,  /* evaluated argument list */
	    *unev   = NIL,  /* list of unevaluated expressions */
	    *stack  = NIL,  /* register stack */
	    *parm   = NIL,  /* the current formal */
	    *catch_tag = NIL,
	    *arg    = NIL;  /* the current actual */

/* registers that don't get reference counted, so we pretend they're ints */
FIXNUM	    vsp    = 0,		/* temp ptr into var_stack */
	    cont   = 0,		/* where to go next */
	    formals = (FIXNUM)NIL; /* list of formal parameters */

    int i, nargs;
    BOOLEAN tracing;	    /* are we tracing the current procedure? */
    FIXNUM oldtailcall;	    /* in case of reentrant use of evaluator */
    FIXNUM repcount;	    /* count for repeat */
    FIXNUM old_ift_iff;

    oldtailcall = tailcall;
    old_ift_iff = ift_iff_flag;
    save2(var,this_line);
    assign(var, var_stack);
    save2(fun,ufun);
    cont = (FIXNUM)all_done;
    numsave((FIXNUM)cont);
    newcont(where);
    goto fetch_cont;
    
begin_line:
    ref(list);
    assign(this_line, list);
    newcont(end_line);
begin_seq:
    make_tree(list);
    if (!is_tree(list)) {
	assign(val, UNBOUND);
	goto fetch_cont;
    }
    assign(unev, tree__tree(list));
    assign(val, UNBOUND);
    goto eval_sequence;

end_line:
    if (val != UNBOUND) {
	if (NOT_THROWING) err_logo(DK_WHAT, val);
	deref(val);
    }
    val = NIL;
    deref(list);
    goto fetch_cont;


/* ----------------- EVAL ---------------------------------- */

tail_eval_dispatch:
    tailcall = 1;
eval_dispatch:
    switch (nodetype(exp)) {
	case QUOTE:			/* quoted literal */
	    assign(val, node__quote(exp));
	    goto fetch_cont;
	case COLON:			/* variable */
	    assign(val, valnode__colon(exp));
	    while (val == UNBOUND && NOT_THROWING)
		assign(val, err_logo(NO_VALUE, node__colon(exp)));
	    goto fetch_cont;
	case CONS:			/* procedure application */
	    if (tailcall == 1 && is_macro(car(exp)) &&
				 is_list(procnode__caseobj(car(exp)))) {
		/* tail call to user-defined macro must be treated as non-tail
		 * because the expression returned by the macro
		 * remains to be evaluated in the caller's context */
		assign(unev, NIL);
		goto non_tail_eval;
	    }
	    assign(fun, car(exp));
	    if (cdr(exp) != NIL)
		goto ev_application;
	    else
		goto ev_no_args;
	default:
	    assign(val, exp);		/* self-evaluating */
	    goto fetch_cont;
    }

ev_no_args:
    /* Evaluate an application of a procedure with no arguments. */
    assign(argl, NIL);
    goto apply_dispatch;    /* apply the procedure */

ev_application:
    /* Evaluate an application of a procedure with arguments. */
    assign(unev, cdr(exp));
    assign(argl, NIL);
    mixsave(tailcall,var);
    num2save(val_status,ift_iff_flag);
    save2(didnt_get_output,didnt_output_name);
eval_arg_loop:
    if (unev == NIL) goto eval_args_done;
    assign(exp, car(unev));
    if (exp == Not_Enough_Node) {
	if (NOT_THROWING)
	    err_logo(NOT_ENOUGH, NIL);
	goto eval_args_done;
    }
    save(argl);
    save2(unev,fun);
    save2(ufun,last_ufun);
    save2(this_line,last_line);
    assign(var, var_stack);
    tailcall = -1;
    val_status = 1;
    assign(didnt_get_output,
	   cons_list(0,fun,ufun,this_line,END_OF_LIST));
    assign(didnt_output_name, NIL);
    newcont(accumulate_arg);
    goto eval_dispatch;	    /* evaluate the current argument */

accumulate_arg:
    /* Put the evaluated argument into the argl list. */
    reset_args(var);
    restore2(this_line,last_line);
    restore2(ufun,last_ufun);
    assign(last_call, fun);
    restore2(unev,fun);
    restore(argl);
    while (NOT_THROWING && val == UNBOUND) {
	assign(val, err_logo(DIDNT_OUTPUT, NIL));
    }
    push(val, argl);
    pop(unev);
    goto eval_arg_loop;

eval_args_done:
    restore2(didnt_get_output,didnt_output_name);
    num2restore(val_status,ift_iff_flag);
    mixrestore(tailcall,var);
    if (stopping_flag == THROWING) {
	assign(val, UNBOUND);
	goto fetch_cont;
    }
    assign(argl, reverse(argl));
/* --------------------- APPLY ---------------------------- */
apply_dispatch:
    /* Load in the procedure's definition and decide whether it's a compound
     * procedure or a primitive procedure.
     */
    proc = procnode__caseobj(fun);
    if (is_macro(fun)) {
	num2save(val_status,tailcall);
	val_status = 1;
	newcont(macro_return);
    }
    if (proc == UNDEFINED) {
	if (ufun != NIL) {
	    untreeify_proc(ufun);
	}
	if (NOT_THROWING)
	    assign(val, err_logo(DK_HOW, fun));
	else
	    assign(val, UNBOUND);
	goto fetch_cont;
    }
    if (is_list(proc)) goto compound_apply;
    /* primitive_apply */
    if (NOT_THROWING)
	assign(val, (*getprimfun(proc))(argl));
    else
	assign(val, UNBOUND);
#define do_case(x) case x: goto x;
fetch_cont:
    {
	enum labels x = (enum labels)cont;
	cont = (FIXNUM)car(stack);
	numpop(&stack);
	switch (x) {
	    do_list(do_case)
	    default: abort();
	}
    }

compound_apply:
#ifdef mac
    check_mac_stop();
#endif
#ifdef ibm
    check_ibm_stop();
#endif
    if (tracing = flag__caseobj(fun, PROC_TRACED)) {
	for (i = 0; i < trace_level; i++) print_space(writestream);
	trace_level++;
	ndprintf(writestream, "( %s ", fun);
    }
/* Bind the actuals to the formals */
    vsp = (FIXNUM)var_stack;	/* remember where we came in */
    for (formals = (FIXNUM)formals__procnode(proc);
    	 formals != (FIXNUM)NIL;
	 formals = (FIXNUM)cdr((NODE *)formals)) {
	    parm = car((NODE *)formals);
	    if (nodetype(parm) == INT) break;	/* default # args */
	    if (argl != NIL) {
		arg = car(argl);
		if (tracing) {
		    print_node(writestream, maybe_quote(arg));
		    print_space(writestream);
		}
	    } else
		arg = UNBOUND;
	    if (nodetype(parm) == CASEOBJ) {
		if (not_local(parm,(NODE *)vsp)) {
		    push(parm, var_stack);
		    setobject(var_stack, valnode__caseobj(parm));
		}
		tell_shadow(parm);
		setvalnode__caseobj(parm, arg);
	    } else if (nodetype(parm) == CONS) {
		/* parm is optional or rest */
		if (not_local(car(parm),(NODE *)vsp)) {
		    push(car(parm), var_stack);
		    setobject(var_stack, valnode__caseobj(car(parm)));
		}
		tell_shadow(car(parm));
		if (cdr(parm) == NIL) {		    /* parm is rest */
		    setvalnode__caseobj(car(parm), argl);
		    break;
		}
		if (arg == UNBOUND) {		    /* use default */
		    save2(fun,var);
		    save2(ufun,last_ufun);
		    save2(this_line,last_line);
		    save2(didnt_output_name,didnt_get_output);
		    num2save(ift_iff_flag,val_status);
		    assign(var, var_stack);
		    tailcall = -1;
		    val_status = 1;
		    mixsave(formals,argl);
		    numsave(vsp);
		    assign(list, cdr(parm));
		    if (NOT_THROWING)
			make_tree(list);
		    else
			assign(list, NIL);
		    if (!is_tree(list)) {
			assign(val, UNBOUND);
			goto set_args_continue;
		    }
		    assign(unev, tree__tree(list));
		    assign(val, UNBOUND);
		    newcont(set_args_continue);
		    goto eval_sequence;

set_args_continue:
		    numrestore(vsp);
		    mixrestore(formals,argl);
		    parm = car((NODE *)formals);
		    reset_args(var);
		    num2restore(ift_iff_flag,val_status);
		    restore2(didnt_output_name,didnt_get_output);
		    restore2(this_line,last_line);
		    restore2(ufun,last_ufun);
		    restore2(fun,var);
		    arg = val;
		}
		setvalnode__caseobj(car(parm), arg);
	    }
	    if (argl != NIL) pop(argl);
    }
    if (check_throwing) {
	assign(val, UNBOUND);
	goto fetch_cont;
    }
    vsp = 0;
    if (tracing = flag__caseobj(fun, PROC_TRACED)) {
	if (NOT_THROWING) print_char(writestream, ')');
	new_line(writestream);
	save(fun);
	newcont(compound_apply_continue);
    }
    assign(val, UNBOUND);
    assign(last_ufun, ufun);
    assign(ufun, fun);
    assign(last_line, this_line);
    assign(this_line, NIL);
    proc = procnode__caseobj(fun);
    assign(list, bodylist__procnode(proc));	/* get the body ... */
    make_tree_from_body(list);
    if (!is_tree(list)) {
	goto fetch_cont;
    }
    assign(unev, tree__tree(list));
    if (NOT_THROWING) stopping_flag = RUN;
    assign(output_node, UNBOUND);
    if (val_status == 1) val_status = 2;
    else if (val_status == 5) val_status = 3;
    else val_status = 0;
eval_sequence:
    /* Evaluate each expression in the sequence.  Stop as soon as
     * val != UNBOUND.
     */
    if (!RUNNING || val != UNBOUND) {
	goto fetch_cont;
    }
    if (nodetype(unev) == LINE) {
	assign(this_line, unparsed__line(unev));
	if (flag__caseobj(ufun, PROC_STEPPED)) {
	    char junk[20];

	    if (tracing) {
		int i = 1;
		while (i++ < trace_level) print_space(stdout);
	    }
	    print_node(stdout, this_line);
	    ndprintf(stdout, " >>> ");
	    input_blocking++;
#ifndef TIOCSTI
	    if (!setjmp(iblk_buf))
#endif
#ifdef __ZTC__
		ztc_getcr();
#else
		fgets(junk, 19, stdin);
#endif
	    input_blocking = 0;
	    update_coords('\n');
	}
    }
    assign(exp, car(unev));
    pop(unev);
    if (is_list(exp) && (is_tailform(procnode__caseobj(car(exp))))) {
      if (nameis(car(exp),Output) || nameis(car(exp),Op)) {
	assign(didnt_get_output,
	       cons_list(0,car(exp),ufun,this_line,END_OF_LIST));
	assign(didnt_output_name, NIL);
	if (val_status == 2 || val_status == 3) {
	    val_status = 1;
	    assign(exp, cadr(exp));
	    goto tail_eval_dispatch;
	} else if (ufun == NIL) {
	    err_logo(AT_TOPLEVEL,car(exp));
	    assign(val, UNBOUND);
	    goto fetch_cont;
	} else if (val_status < 4) {
	    val_status = 1;
	    assign(exp, cadr(exp));
	    assign(unev, NIL);
	    goto non_tail_eval;	    /* compute value then give error */
	}
      } else if (nameis(car(exp),Stop)) {
	if (ufun == NIL) {
	    err_logo(AT_TOPLEVEL,car(exp));
	    assign(val, UNBOUND);
	    goto fetch_cont;
	} else if (val_status == 0 || val_status == 3) {
	    assign(val, UNBOUND);
	    goto fetch_cont;
	} else if (val_status < 4) {
	    assign(didnt_output_name, fun);
	    assign(val, UNBOUND);
	    goto fetch_cont;
	}
      } else { /* maybeoutput */
	assign(exp, cadr(exp));
	val_status = 5;
	goto tail_eval_dispatch;
      }
    }
    if (unev == NIL) {
	if (val_status == 2 || val_status == 4) {
	    assign(didnt_output_name, fun);
	    assign(unev, UNBOUND);
	    goto non_tail_eval;
	} else {
	    goto tail_eval_dispatch;
	}
    }
    if (is_list(car(unev)) && nameis(car(car(unev)),Stop)) {
	if ((val_status == 0 || val_status == 3) && ufun != NIL) {
	    goto tail_eval_dispatch;
	} else if (val_status < 4) {
	    assign(didnt_output_name, fun);
	    goto tail_eval_dispatch;
	}
    }
non_tail_eval:
    save2(unev,fun);
    num2save(ift_iff_flag,val_status);
    save2(ufun,last_ufun);
    save2(this_line,last_line);
    save(var);
    assign(var, var_stack);
    tailcall = 0;
    newcont(eval_sequence_continue);
    goto eval_dispatch;

eval_sequence_continue:
    reset_args(var);
    restore(var);
    restore2(this_line,last_line);
    restore2(ufun,last_ufun);
    if (dont_fix_ift) {
	num2restore(dont_fix_ift,val_status);
	dont_fix_ift = 0;
    } else
	num2restore(ift_iff_flag,val_status);
    restore2(unev,fun);
    if (stopping_flag == MACRO_RETURN) {
	if (unev == UNBOUND) assign(unev, NIL);
	assign(unev, append(val, unev));
	assign(val, UNBOUND);
	stopping_flag = RUN;
	if (unev == NIL) goto fetch_cont;
    } else if (val_status < 4) {
	if (STOPPING || RUNNING) assign(output_node, UNBOUND);
	if (stopping_flag == OUTPUT || STOPPING) {
	    stopping_flag = RUN;
	    assign(val, output_node);
	    if (val != UNBOUND && val_status < 2 && NOT_THROWING) {
		assign(didnt_output_name,Output);
		err_logo(DIDNT_OUTPUT,Output);
	    }
	    if (val == UNBOUND && val_status == 1 && NOT_THROWING) {
		assign(didnt_output_name,Stop);
		err_logo(DIDNT_OUTPUT,Output);
	    }
	    goto fetch_cont;
	}
    }
    if (val != UNBOUND) {
	err_logo((unev == NIL ? DK_WHAT_UP : DK_WHAT), val);
	assign(val, UNBOUND);
    }
    if (NOT_THROWING && (unev == NIL || unev == UNBOUND)) {
	if (val_status != 4)  err_logo(DIDNT_OUTPUT,NIL);
	goto fetch_cont;
    }
    goto eval_sequence;

compound_apply_continue:
    /* Only get here if tracing */
    restore(fun);
    --trace_level;
    if (NOT_THROWING) {
	for (i = 0; i < trace_level; i++) print_space(writestream);
	print_node(writestream, fun);
	if (val == UNBOUND)
	    ndprintf(writestream, " stops\n");
	else {
	    ref(val);
	    ndprintf(writestream, " outputs %s\n", maybe_quote(val));
	    deref(val);
	}
    }
    goto fetch_cont;

/* --------------------- MACROS ---------------------------- */

macro_return:
    num2restore(val_status,tailcall);
    while (!is_list(val) && NOT_THROWING) {
	assign(val,err_logo(ERR_MACRO,val));
    }
    if (NOT_THROWING) {
	if (is_cont(val)) {
	    newcont(cont__cont(val));
	    val->n_car = NIL;
	    assign(val, val__cont(val));
	    goto fetch_cont;
	}
macro_reval:
	if (tailcall == 0) {
	    make_tree(val);
	    stopping_flag = MACRO_RETURN;
	    if (!is_tree(val)) assign(val, NIL);
	    else assign(val, tree__tree(val));
	    goto fetch_cont;
	}
	assign(list,val);
	goto begin_seq;
    }
    assign(val, UNBOUND);
    goto fetch_cont;

runresult_continuation:
    assign(list, val);
    newcont(runresult_followup);
    val_status = 5;
    goto begin_seq;

runresult_followup:
    if (val == UNBOUND) {
	assign(val, NIL);
    } else {
	assign(val, cons(val, NIL));
    }
    goto fetch_cont;

repeat_continuation:
    assign(list, cdr(val));
    repcount = getint(car(val));
repeat_again:
    assign(val, UNBOUND);
    if (repcount == 0) goto fetch_cont;
    mixsave(repcount,list);
    num2save(val_status,tailcall);
    val_status = 4;
    newcont(repeat_followup);
    goto begin_seq;

repeat_followup:
    if (val != UNBOUND && NOT_THROWING) {
	ref(val);
	err_logo(DK_WHAT, val);
	unref(val);
    }
    num2restore(val_status,tailcall);
    mixrestore(repcount,list);
    if (val_status < 4 && tailcall != 0) {
	if (STOPPING || RUNNING) assign(output_node, UNBOUND);
	if (stopping_flag == OUTPUT || STOPPING) {
	    stopping_flag = RUN;
	    assign(val, output_node);
	    if (val != UNBOUND && val_status < 2) {
		err_logo(DK_WHAT_UP,val);
	    }
	    goto fetch_cont;
	}
    }
    if (repcount > 0)    /* negative means forever */
	--repcount;
#ifdef mac
    check_mac_stop();
#endif
#ifdef ibm
    check_ibm_stop();
#endif
    if (RUNNING) goto repeat_again;
    assign(val, UNBOUND);
    goto fetch_cont;

catch_continuation:
    assign(list, cdr(val));
    assign(catch_tag, car(val));
    if (compare_node(catch_tag,Error,TRUE) == 0) {
	push(Erract, var_stack);
	setobject(var_stack, valnode__caseobj(Erract));
	setvalnode__caseobj(Erract, UNBOUND);
    }
    save(catch_tag);
    save2(didnt_output_name,didnt_get_output);
    num2save(val_status,tailcall);
    newcont(catch_followup);
    val_status = 5;
    goto begin_seq;

catch_followup:
    num2restore(val_status,tailcall);
    restore2(didnt_output_name,didnt_get_output);
    restore(catch_tag);
    if (val_status < 4 && tailcall != 0) {
	if (STOPPING || RUNNING) assign(output_node, UNBOUND);
	if (stopping_flag == OUTPUT || STOPPING) {
	    stopping_flag = RUN;
	    assign(val, output_node);
	    if (val != UNBOUND && val_status < 2) {
		err_logo(DK_WHAT_UP,val);
	    }
	}
    }
    if (stopping_flag == THROWING &&
	compare_node(throw_node, catch_tag, TRUE) == 0) {
	    throw_node = reref(throw_node, UNBOUND);
	    stopping_flag = RUN;
	    assign(val, output_node);
    }
    goto fetch_cont;

begin_apply:
    /* This is for lapply. */
    assign(fun, car(val));
    while (nodetype(fun) == ARRAY && NOT_THROWING)
	assign(fun, err_logo(APPLY_BAD_DATA, fun));
    assign(argl, cadr(val));
    assign(val, UNBOUND);
    while (!is_list(argl) && NOT_THROWING)
	assign(argl, err_logo(APPLY_BAD_DATA, argl));
    if (NOT_THROWING && fun != NIL) {
	if (is_list(fun)) {		    /* template */
	    if (is_list(car(fun)) && cdr(fun) != NIL) {
		/* lambda form */
		formals = (FIXNUM)car(fun);
		numsave(tailcall);
		tailcall = 0;
		llocal((NODE *)formals);    /* bind the formals locally */
		numrestore(tailcall);
		for ( ;
		     formals && argl && NOT_THROWING;
		     formals = (FIXNUM)cdr((NODE *)formals),
		     assign(argl, cdr(argl)))
			setvalnode__caseobj(car((NODE *)formals), car(argl));
		assign(val, cdr(fun));
		goto macro_reval;
	    } else {		/* question-mark form */
		save(qm_list);
		assign(qm_list, argl);
		assign(list, fun);
		make_tree(list);
		if (list == NIL || !is_tree(list)) {
		    goto qm_failed;
		}
		assign(unev, tree__tree(list));
		save2(didnt_output_name,didnt_get_output);
		num2save(val_status,tailcall);
		newcont(qm_continue);
		val_status = 5;
		goto eval_sequence;

qm_continue:
		num2restore(val_status,tailcall);
		restore2(didnt_output_name,didnt_get_output);
		if (val_status < 4 && tailcall != 0) {
		    if (STOPPING || RUNNING) assign(output_node, UNBOUND);
		    if (stopping_flag == OUTPUT || STOPPING) {
			stopping_flag = RUN;
			assign(val, output_node);
			if (val != UNBOUND && val_status < 2) {
			    err_logo(DK_WHAT_UP,val);
			}
		    }
		}
qm_failed:
		restore(qm_list);
		goto fetch_cont;
	    }
	} else {    /* name of procedure to apply */
	    int min, max, n;
	    NODE *arg;
	    assign(fun, intern(fun));
	    if (procnode__caseobj(fun) == UNDEFINED && NOT_THROWING &&
		fun != Null_Word)
		    silent_load(fun, NULL);    /* try ./<fun>.lg */
	    if (procnode__caseobj(fun) == UNDEFINED && NOT_THROWING &&
		fun != Null_Word)
		    silent_load(fun, logolib); /* try <logolib>/<fun> */
	    proc = procnode__caseobj(fun);
	    while (proc == UNDEFINED && NOT_THROWING) {
		assign(val, err_logo(DK_HOW_UNREC, fun));
	    }
	    if (NOT_THROWING) {
		if (nodetype(proc) == CONS) {
		    min = getint(minargs__procnode(proc));
		    max = getint(maxargs__procnode(proc));
		} else {
		    if (getprimdflt(proc) < 0) {	    /* special form */
			err_logo(DK_HOW_UNREC, fun);    /* can't apply */
			goto fetch_cont;
		    } else {
			min = getprimmin(proc);
			max = getprimmax(proc);
		    }
		}
		for (n = 0, arg = argl; arg != NIL; n++, arg = cdr(arg));
		if (n < min) {
		    err_logo(NOT_ENOUGH, NIL);
		} else if (n > max && max >= 0) {
		    err_logo(TOO_MUCH, NIL);
		} else {
		    goto apply_dispatch;
		}
	    }
	}
    }
    goto fetch_cont;

all_done:
    tailcall = oldtailcall;
    ift_iff_flag = old_ift_iff;
    restore2(fun,ufun);
    reset_args(var);
    restore2(var,this_line);
    deref(argl);deref(unev);deref(stack);deref(catch_tag);deref(exp);
    return(val);
}
Пример #18
0
// (bool 'any) -> flg
any doBool(any x) {return isNil(EVAL(cadr(x)))? Nil : T;}
Пример #19
0
void
derivative_of_integral(void)
{
    push(cadr(p1));
}
Пример #20
0
void
eval_nroots(void)
{
	volatile int h, i, k, n;

	push(cadr(p1));
	eval();

	push(caddr(p1));
	eval();
	p2 = pop();
	if (p2 == symbol(NIL))
		guess();
	else
		push(p2);

	p2 = pop();
	p1 = pop();

	if (!ispoly(p1, p2))
		stop("nroots: polynomial?");

	// mark the stack

	h = tos;

	// get the coefficients

	push(p1);
	push(p2);
	n = coeff();
	if (n > YMAX)
		stop("nroots: degree?");

	// convert the coefficients to real and imaginary doubles

	for (i = 0; i < n; i++) {
		push(stack[h + i]);
		real();
		yyfloat();
		eval();
		p1 = pop();
		push(stack[h + i]);
		imag();
		yyfloat();
		eval();
		p2 = pop();
		if (!isdouble(p1) || !isdouble(p2))
			stop("nroots: coefficients?");
		c[i].r = p1->u.d;
		c[i].i = p2->u.d;
	}

	// pop the coefficients

	tos = h;

	// n is the number of coefficients, n = deg(p) + 1

	monic(n);

	for (k = n; k > 1; k--) {
		findroot(k);
		if (fabs(a.r) < DELTA)
			a.r = 0.0;
		if (fabs(a.i) < DELTA)
			a.i = 0.0;
		push_double(a.r);
		push_double(a.i);
		push(imaginaryunit);
		multiply();
		add();
		divpoly(k);
	}

	// now make n equal to the number of roots

	n = tos - h;

	if (n > 1) {
		sort_stack(n);
		p1 = alloc_tensor(n);
		p1->u.tensor->ndim = 1;
		p1->u.tensor->dim[0] = n;
		for (i = 0; i < n; i++)
			p1->u.tensor->elem[i] = stack[h + i];
		tos = h;
		push(p1);
	}
}
Пример #21
0
refObject devar(refObject type)
{ if (isCar(type, varHook))
  { return cadr(type); }
  else
  { return type; }}
Пример #22
0
void emitStatement(refObject term, set wraps)

//  PRE EMIT. Write an open brace if needed.

{ void preEmit(int hook)
  { if (isInSet(hook, wraps))
    { writeChar(target, '{'); }}

//  POST EMIT. Write a close brace if needed.

  void postEmit(int hook)
  { if (isInSet(hook, wraps))
    { writeChar(target, '}'); }}

//  Dispatch to an appropriate case based on TERM's outer hook.

   if (isPair(term))
   { switch (toHook(car(term)))

//  Write C code for a CASE clause.

    { case caseHook:
      { refObject subterm;
        preEmit(caseHook);
        term = cdr(term);
        writeFormat(target, "switch");
        writeChar(target, '(');
        emitExpression(car(term), 13);
        writeChar(target, ')');
        writeChar(target, '{');
        term = cdr(term);
        while (cdr(term) != nil)
        { emitLabels(car(term));
          term = cdr(term);
          subterm = car(term);
          if (isEffected(subterm))
          { emitStatement(subterm, withSet); }
          writeFormat(target, "break");
          writeChar(target, ';');
          term = cdr(term); }
        subterm = car(term);
        if (isEffected(subterm))
        { writeFormat(target, "default");
          writeChar(target, ':');
          emitStatement(subterm, withSet); }
        writeChar(target, '}');
        postEmit(caseHook);
        break; }

//  Write C code for an IF clause.

      case ifHook:
      { refObject subterm;
        preEmit(ifHook);
        term = cdr(term);
        while (true)
        { writeFormat(target, "if");
          writeChar(target, '(');
          emitExpression(car(term), 13);
          writeChar(target, ')');
          term = cdr(term);
          subterm = car(term);
          if (isEffected(subterm))
          { emitStatement(subterm, ifLastWithSet); }
          else
          { writeChar(target, ';'); }
          term = cdr(term);
          if (cdr(term) == nil)
          { subterm = car(term);
            if (isEffected(subterm))
            { writeFormat(target, "else");
              writeBlank(target);
              if (isCar(subterm, ifHook))
              { term = cdr(subterm); }
              else
              { emitStatement(subterm, lastWithSet);
                break; }}
            else
            { break; }}
          else
          { writeFormat(target, "else");
            writeBlank(target); }}
        postEmit(ifHook);
        break; }

//  Write C code for a LAST clause.

      case lastHook:
      { refObject subterm;
        preEmit(lastHook);
        term = cdr(term);
        while (term != nil)
        { subterm = car(term);
          if (isEffected(subterm))
          { emitStatement(subterm, withSet); }
          term = cdr(term); }
        postEmit(lastHook);
        break; }

//  Write C code for a WHILE clause.

      case whileHook:
      { preEmit(whileHook);
        term = cdr(term);
        writeFormat(target, "while");
        writeChar(target, '(');
        emitExpression(car(term), 13);
        writeChar(target, ')');
        term = cadr(term);
        if (isEffected(term))
        { emitStatement(term, lastWithSet); }
        else
        { writeChar(target, ';'); }
        postEmit(whileHook);
        break; }

//  Write C code for a WITH clause.

      case withHook:
      { refObject frame;
        preEmit(withHook);
        term = cdr(term);
        frame = car(term);
        term = cdr(term);
        if (frame == nil)
        { emitVariableDeclarations(term);
          emitFunctionDefinitions(true, term);
          emitVariableDefinitions(nil, term);
          term = car(lastPair(term));
          if (isEffected(term))
          { emitStatement(term, withSet); }}
        else
        { emitFrameDeclaration(frame, term);
          emitVariableDeclarations(term);
          emitFunctionDefinitions(true, term);
          emitFramePush(frame, frameLength(term));
          emitFrameInitialization(frame, term);
          emitVariableDefinitions(frame, term);
          term = car(lastPair(term));
          if (isEffected(term))
          { emitStatement(term, withSet); }
          emitFramePop(frame); }
        postEmit(withHook);
        break; }

//  Other TERMs become C expressions.

      default:
      { if (isEffected(term))
        { emitExpression(term, 13);
          writeChar(target, ';'); }
        break; }}}
  else
  { if (isEffected(term))
    { emitExpression(term, 13);
      writeChar(target, ';'); }}}
Пример #23
0
object *let_bindings(object *exp) {
    return cadr(exp);
}
Пример #24
0
//TODO check number of arguments given to builtins
object_t *eval(object_t *exp, object_t *env) {

    char comeback = 1;

    while(comeback) {
        comeback = 0;

        if(is_self_evaluating(exp)) {
            return exp;
        }

        if(list_begins_with(exp, quote_symbol)) {
            return cadr(exp);
        }

        // (define... )
        if(list_begins_with(exp, define_symbol)) {

            object_t *var = cadr(exp);

            // (define a b)
            if(issymbol(var)) {
                object_t *val = caddr(exp);
                return define_var(env, var, val);
            }

            // (define (a ...) ...) TODO use scheme macro
            if(ispair(var)) {
                object_t *name = car(cadr(exp)),
                    *formals = cdr(cadr(exp)),
                    *body = cddr(exp),
                    *lambda = cons(lambda_symbol,
                                      cons(formals, body));

                exp = cons(define_symbol,
                              cons(name, cons(lambda, empty_list)));
                comeback = 1;
                continue;
            }

            fprintf(stderr, "Syntax error.\n");
            exit(-1);
        }

        // (set! a b)
        if(list_begins_with(exp, set_symbol)) {
            object_t *var = cadr(exp);
            object_t *val = caddr(exp);
            return set_var(env, var, val);
        }

        // (if c a b)
        if(list_begins_with(exp, if_symbol)) {
            exp = eval_if(env, cadr(exp), caddr(exp), cadddr(exp));
            comeback = 1;
            continue;
        }

        // (cond ...)
        if(list_begins_with(exp, cond_symbol)) {
            object_t *tail = cons(void_symbol, empty_list);
            object_t *ifs = tail; //empty_list;
            object_t *rules = reverse_list(cdr(exp));

            while(!isemptylist(rules)) {
                object_t *rule = car(rules),
                    *condition = car(rule),
                    *consequence = cadr(rule);

                if(isemptylist(consequence)) {
                    consequence = cons(void_obj, empty_list);
                }

                ifs = cons(if_symbol,
                              cons(condition,
                                      cons(consequence,
                                              cons(ifs, empty_list))));

                rules = cdr(rules);
            }

            exp = ifs;

            comeback = 1;
            continue;
        }

        // (begin ...)
        if(list_begins_with(exp, begin_symbol)) {

            object_t *result = empty_list, *exps;

            for(exps = cdr(exp); ! isemptylist(exps); exps = cdr(exps)) {
                result = eval(car(exps), env);
            }

            return result;
        }

        if(list_begins_with(exp, lambda_symbol)) {
            object_t *fn = cons(begin_symbol,
                                    cdr(cdr(exp)));
            return make_compound_proc(empty_list, cadr(exp),
                                         fn,
                                         env);
        }

        // (let ...)
        if(list_begins_with(exp, let_symbol)) {
            //if(! issymbol(cadr(exp)))
            object_t *bindings = cadr(exp);
            object_t *body = cddr(exp);

            object_t *formals = empty_list;
            object_t *values = empty_list;

            while(!isemptylist(bindings)) {
                formals = cons(caar(bindings), formals);
                values = cons(cadr(car(bindings)), values);

                bindings = cdr(bindings);
            }

            exp = cons(cons(lambda_symbol, cons(formals, body)),
                          values);

            comeback = 1;
            continue;
        }

        if(issymbol(exp)) {
            return var_get_value(env, exp);
        }

        if(ispair(exp)) {
            object_t *exp_car = car(exp);
            object_t *fn = eval(exp_car, env); //var_get_value(env, car);
            if(!iscallable(fn)) {
                fprintf(stderr, "object_t is not callable\n");
                exit(-1);
            }

            object_t *args = cdr(exp);
            object_t *evaluated_args = evaluate_list(env, args, empty_list);

            if(isprimitiveproc(fn)) {
                return fn->value.prim_proc.fn(evaluated_args);
            } else if(iscompoundproc(fn)) {
                object_t *fn_formals = fn->value.compound_proc.formals;
                object_t *fn_body = fn->value.compound_proc.body;
                object_t *fn_env = fn->value.compound_proc.env;

                ARGS_EQ(evaluated_args, list_size(fn_formals));

                exp = fn_body;
                env = extend_environment(fn_formals, evaluated_args, fn_env);
                comeback = 1;
                continue;

            }
            assert(0);
        }

    }

    fprintf(stderr, "Unable to evaluate expression: \n");
    write(exp);
    exit(-1);
}
Пример #25
0
object *eval_environment(object *arguments) {
    return cadr(arguments);
}
Пример #26
0
static OBJ analyze_r(const struct analyze_t *arg)
{
	OBJ op;
	OBJ ret;
	struct analyze_t new_arg;

	new_arg = *arg;
	ret = OBJ_NULL;

	if (is_self_evaluating(new_arg.sexp))
		ret = new_arg.sexp;
	else if (is_variable(new_arg.sexp))
		ret = analyze_variable_cell(new_arg.sexp,new_arg.env,new_arg.macro,new_arg.params,new_arg.macro_expand_env);
	else if(obj_pairp(new_arg.sexp))
 	{
		if(obj_pairp(car(new_arg.sexp)))
		{
			new_arg.sexp = car(new_arg.sexp);
			op = fake_eval(&new_arg);
			new_arg = *arg;
		}
		else
			op = analyze_variable_value(car(new_arg.sexp),new_arg.env,new_arg.macro,new_arg.params,new_arg.macro_expand_env);
		if(op == OBJ_NULL) /* error handle---fixme!! */
			return OBJ_NULL;
		if(obj_corep(op))
		{
			switch(obj_core_type(op))
			{
			case DEFINE:
			case DEFINE_SYNTAX:
				new_arg.sexp = cdr(new_arg.sexp);
				ret = analyze_define(&new_arg);
				break;
			case SET:
				new_arg.sexp = cdr(new_arg.sexp);
				ret = analyze_set(&new_arg);
				break;
			case IF:
				ret = analyze_if(cdr(new_arg.sexp),new_arg.env,new_arg.tail);
				break;
			case QUOTE:
				ret = obj_make_quote(cadr(new_arg.sexp));
				break;
			case BEGIN:
				new_arg.sexp = cdr(new_arg.sexp);
				ret = analyze_begin(&new_arg);
				break;
			case LAMBDA:
				new_arg.sexp = cdr(new_arg.sexp);
				ret = analyze_lambda(&new_arg);
				break;
			case SYNTAX_RULES:
				ret = analyze_syntax_rules(cdr(new_arg.sexp),new_arg.env);
				break;
			default:
				fprintf(stderr,"unknown core tag\n");
			}
		}
		else if(obj_syntaxp(op))
		{
			OBJ params;
			OBJ data;
			OBJ patten;
			OBJ template;
			int match;

			match = 0;
			data = obj_syntax_data(op);
			while(obj_pairp(data))
			{
				patten = caar(data);
Пример #27
0
object *assignment_variable(object *exp) {
    return cadr(exp);
}
void
yypower(void)
{
	int n;

	p2 = pop();
	p1 = pop();

	// both base and exponent are rational numbers?

	if (isrational(p1) && isrational(p2)) {
		push(p1);
		push(p2);
		qpow();
		return;
	}

	// both base and exponent are either rational or double?

	if (isnum(p1) && isnum(p2)) {
		push(p1);
		push(p2);
		dpow();
		return;
	}

	if (istensor(p1)) {
		power_tensor();
		return;
	}

	if (p1 == symbol(E) && car(p2) == symbol(LOG)) {
		push(cadr(p2));
		return;
	}

	if (p1 == symbol(E) && isdouble(p2)) {
		push_double(exp(p2->u.d));
		return;
	}

	//	1 ^ a		->	1

	//	a ^ 0		->	1

	if (equal(p1, one) || iszero(p2)) {
		push(one);
		return;
	}

	//	a ^ 1		->	a

	if (equal(p2, one)) {
		push(p1);
		return;
	}

	//	(a * b) ^ c	->	(a ^ c) * (b ^ c)

	if (car(p1) == symbol(MULTIPLY)) {
		p1 = cdr(p1);
		push(car(p1));
		push(p2);
		power();
		p1 = cdr(p1);
		while (iscons(p1)) {
			push(car(p1));
			push(p2);
			power();
			multiply();
			p1 = cdr(p1);
		}
		return;
	}

	//	(a ^ b) ^ c	->	a ^ (b * c)

	if (car(p1) == symbol(POWER)) {
		push(cadr(p1));
		push(caddr(p1));
		push(p2);
		multiply();
		power();
		return;
	}

	//	(a + b) ^ n	->	(a + b) * (a + b) ...

	if (expanding && isadd(p1) && isnum(p2)) {
		push(p2);
		n = pop_integer();
        // this && n != 0x80000000 added by DDC
        // as it's not always the case that 0x80000000
        // is negative
		if (n > 1 && n != 0x80000000) {
			power_sum(n);
			return;
		}
	}

	//	sin(x) ^ 2n -> (1 - cos(x) ^ 2) ^ n

	if (trigmode == 1 && car(p1) == symbol(SIN) && iseveninteger(p2)) {
		push_integer(1);
		push(cadr(p1));
		cosine();
		push_integer(2);
		power();
		subtract();
		push(p2);
		push_rational(1, 2);
		multiply();
		power();
		return;
	}

	//	cos(x) ^ 2n -> (1 - sin(x) ^ 2) ^ n

	if (trigmode == 2 && car(p1) == symbol(COS) && iseveninteger(p2)) {
		push_integer(1);
		push(cadr(p1));
		sine();
		push_integer(2);
		power();
		subtract();
		push(p2);
		push_rational(1, 2);
		multiply();
		power();
		return;
	}

	// complex number? (just number, not expression)

	if (iscomplexnumber(p1)) {

		// integer power?

		// n will be negative here, positive n already handled

		if (isinteger(p2)) {

			//               /        \  n
			//         -n   |  a - ib  |
			// (a + ib)   = | -------- |
			//              |   2   2  |
			//               \ a + b  /

			push(p1);
			conjugate();
			p3 = pop();
			push(p3);
			push(p3);
			push(p1);
			multiply();
			divide();
			push(p2);
			negate();
			power();
			return;
		}

		// noninteger or floating power?

		if (isnum(p2)) {

#if 1			// use polar form
			push(p1);
			mag();
			push(p2);
			power();
			push_integer(-1);
			push(p1);
			arg();
			push(p2);
			multiply();
			push(symbol(PI));
			divide();
			power();
			multiply();

#else			// use exponential form
			push(p1);
			mag();
			push(p2);
			power();
			push(symbol(E));
			push(p1);
			arg();
			push(p2);
			multiply();
			push(imaginaryunit);
			multiply();
			power();
			multiply();
#endif
			return;
		}
	}

	if (simplify_polar())
		return;

	push_symbol(POWER);
	push(p1);
	push(p2);
	list(3);
}
Пример #29
0
object *definition_value(object *exp) {
    return is_symbol(cadr(exp)) ? caddr(exp) : make_lambda(cdadr(exp), cddr(exp));
}
Пример #30
0
object *lambda_parameters(object *exp) {
	return cadr(exp);
}