Пример #1
0
/** Start a write multiple blocks sequence.

    \param[in] blockNumber Address of first block in sequence.
    \param[in] eraseCount The number of blocks to be pre-erased.

    \note This function is used with writeData() and writeStop()
    for optimized multiple block writes.

    \return The value one, true, is returned for success and
    the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount)
{
#if SD_PROTECT_BLOCK_ZERO
    // don't allow write to first block
    if (blockNumber == 0)
    {
        error(SD_CARD_ERROR_WRITE_BLOCK_ZERO);
        goto fail;
    }
#endif  // SD_PROTECT_BLOCK_ZERO
    // send pre-erase count
    if (cardAcmd(ACMD23, eraseCount))
    {
        error(SD_CARD_ERROR_ACMD23);
        goto fail;
    }
    // use address if not SDHC card
    if (type() != SD_CARD_TYPE_SDHC)
    {
        blockNumber <<= 9;
    }
    if (cardCommand(CMD25, blockNumber))
    {
        error(SD_CARD_ERROR_CMD25);
        goto fail;
    }
    return true;

fail:
    chipSelectHigh();
    return false;
}
Пример #2
0
//-----------------------------------------------------------------------------
bool SdSpiCard::readStatus(uint8_t* status) {
  // retrun is R2 so read extra status byte.
  if (cardAcmd(ACMD13, 0) || spiReceive()) {
    error(SD_CARD_ERROR_ACMD13);
    goto fail;
  }
  if (!readData(status, 64)) {
    goto fail;
  }
  spiStop();
  return true;

fail:
  spiStop();
  return false;
}
Пример #3
0
/** Start a write multiple blocks sequence.
 *
 * \param[in] blockNumber Address of first block in sequence.
 * \param[in] eraseCount The number of blocks to be pre-erased.
 *
 * \note This function is used with writeData() and writeStop()
 * for optimized multiple block writes.
 *
 * \return The value one, true, is returned for success and
 * the value zero, false, is returned for failure.
 */
bool Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) {
  // send pre-erase count
  if (cardAcmd(ACMD23, eraseCount)) {
    error(SD_CARD_ERROR_ACMD23);
    goto fail;
  }
  // use address if not SDHC card
  if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
  if (cardCommand(CMD25, blockNumber)) {
    error(SD_CARD_ERROR_CMD25);
    goto fail;
  }
  chipSelectHigh();
  return true;

 fail:
  chipSelectHigh();
  return false;
}
Пример #4
0
//------------------------------------------------------------------------------
bool SdSpiCard::writeStart(uint32_t blockNumber, uint32_t eraseCount) {
  SD_TRACE("WS", blockNumber);
  // send pre-erase count
  if (cardAcmd(ACMD23, eraseCount)) {
    error(SD_CARD_ERROR_ACMD23);
    goto fail;
  }
  // use address if not SDHC card
  if (type() != SD_CARD_TYPE_SDHC) {
    blockNumber <<= 9;
  }
  if (cardCommand(CMD25, blockNumber)) {
    error(SD_CARD_ERROR_CMD25);
    goto fail;
  }
  return true;

fail:
  spiStop();
  return false;
}
Пример #5
0
/**
    Initialize an SD flash memory card.

    \param[in] sckRateID SPI clock rate selector. See setSckRate().
    \param[in] chipSelectPin SD chip select pin number.

    \return The value one, true, is returned for success and
    the value zero, false, is returned for failure.  The reason for failure
    can be determined by calling errorCode() and errorData().
*/
uint8_t Sd2Card::init(uint8_t chipSelectPin, uint8_t sckRateID, int8_t SPI_Port, int8_t cardDetectionPin, int8_t level)
{
    // Serial.println("> Sd2Card::init");

    errorCode_ = inBlock_ = partialBlockRead_ = type_ = 0;
    chipSelectPin_ = chipSelectPin;
    SPI_Port_ = SPI_Port;
    cardDetectionPin_ = cardDetectionPin;
    level_ = level;

    // 16-bit init start time allows over a minute
    uint16_t t0 = (uint16_t)millis();
    uint32_t arg;

    // set pin modes
    pinMode(chipSelectPin_, OUTPUT);
    chipSelectHigh();

    if (cardDetectionPin_ >= 0)
    {
        pinMode(cardDetectionPin_, INPUT_PULLUP);
    }
    //#ifndef USE_SPI_LIB
    //  pinMode(SPI_MISO_PIN, INPUT);
    //  pinMode(SPI_MOSI_PIN, OUTPUT);
    //  pinMode(SPI_SCK_PIN, OUTPUT);
    //#endif

    //#ifndef SOFTWARE_SPI
    //#ifndef USE_SPI_LIB
    //  // SS must be in output mode even it is not chip select
    //  pinMode(SS_PIN, OUTPUT);
    //  digitalWrite(SS_PIN, HIGH); // disable any SPI device using hardware SS pin
    //  // Enable SPI, Master, clock rate f_osc/128
    //  SPCR = (1 << SPE) | (1 << MSTR) | (1 << SPR1) | (1 << SPR0);
    //  // clear double speed
    //  SPSR &= ~(1 << SPI2X);
    //#else // USE_SPI_LIB

    /// @todo Add SPI port selection for LM4F and TM4C

    SPI_for_SD.begin();

#if defined(__LM4F120H5QR__) || defined(__TM4C1230C3PM__) || defined(__TM4C123GH6PM__) || defined(__TM4C129XNCZAD__) || defined(__TM4C1294NCPDT__)
    // LM4F and TM4C specific
    if (SPI_Port >= 0)
    {
        SPI_for_SD.setModule(SPI_Port);
    }
#endif

#ifdef SPI_CLOCK_DIV128
    // Serial.println("> SPI_Port 128");
    SPI_for_SD.setClockDivider(SPI_CLOCK_DIV128);
#else
    // Serial.println("> SPI_Port 255");
    SPI_for_SD.setClockDivider(255);
#endif

    //#endif // USE_SPI_LIB
    //#endif // SOFTWARE_SPI


    // Hardware card detection
    if (cardDetectionPin_ >= 0)
    {
        //        debugln("hardware card detection %i should be %i", digitalRead(cardDetectionPin_), level);
        if (digitalRead(cardDetectionPin_) != level_)
        {
            // Serial.println("*** hardware failure");
            error(SD_CARD_ERROR_CMD0);
            // I don't like goto but this is how it is implemented
            goto fail;
        }
    }

    // Software card detection

    // must supply min of 74 clock cycles with CS high.
    for (uint8_t i = 0; i < 10; i++)
    {
        spiSend(0xff);
    }

    chipSelectLow();

    // Serial.print("software card detection ");


    // command to go idle in SPI mode
    while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE)
    {
        if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT)
        {
            error(SD_CARD_ERROR_CMD0);
            // Serial.println("*** software failure");
            goto fail;
        }
    }
    // check SD version
    if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND))
    {
        type(SD_CARD_TYPE_SD1);
    }
    else
    {
        // only need last byte of r7 response
        for (uint8_t i = 0; i < 4; i++)
        {
            status_ = spiRec();
        }
        if (status_ != 0xaa)
        {
            error(SD_CARD_ERROR_CMD8);
            goto fail;
        }
        type(SD_CARD_TYPE_SD2);
    }
    // initialize card and send host supports SDHC if SD2
    arg = type() == SD_CARD_TYPE_SD2 ? 0x40000000 : 0;

    while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE)
    {
        // check for timeout
        if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT)
        {
            error(SD_CARD_ERROR_ACMD41);
            goto fail;
        }
    }
    // if SD2 read OCR register to check for SDHC card
    if (type() == SD_CARD_TYPE_SD2)
    {
        if (cardCommand(CMD58, 0))
        {
            error(SD_CARD_ERROR_CMD58);
            goto fail;
        }
        if ((spiRec() & 0xc0) == 0xc0)
        {
            type(SD_CARD_TYPE_SDHC);
        }
        // discard rest of ocr - contains allowed voltage range
        for (uint8_t i = 0; i < 3; i++)
        {
            spiRec();
        }
    }
    chipSelectHigh();

#ifndef SOFTWARE_SPI
    return setSckRate(sckRateID);
#else  // SOFTWARE_SPI
    return true;
#endif  // SOFTWARE_SPI

fail:
    chipSelectHigh();
    return false;
}
Пример #6
0
/**
 * Initialize an SD flash memory card.
 *
 * \param[in] sckRateID SPI clock rate selector. See setSckRate().
 * \param[in] chipSelectPin SD chip select pin number.
 *
 * \return The value one, true, is returned for success and
 * the value zero, false, is returned for failure.  The reason for failure
 * can be determined by calling errorCode() and errorData().
 */
uint8_t Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) {
  errorCode_ = inBlock_ = partialBlockRead_ = type_ = 0;

  // 16-bit init start time allows over a minute
  uint16_t t0 = (uint16_t)millis();
  uint32_t arg;

  SPI2CON = 0;

  DDPCONbits.JTAGEN = 0;

  AD1PCFG = 0xFFFF;

  chipSelectPin_ = chipSelectPin;

  pinMode(chipSelectPin_, OUTPUT);

  PORTSetPinsDigitalOut(prtSCK, bnSCK);
  PORTSetPinsDigitalOut(prtSDO, bnSDO);
  PORTSetPinsDigitalIn(prtSDI, bnSDI);
  
  // set pin modes
  chipSelectHigh();

  // must supply min of 74 clock cycles with CS high.
  for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);

  chipSelectLow();

  // command to go idle in SPI mode
  while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
    if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
      error(SD_CARD_ERROR_CMD0);
      goto fail;
    }
  }
  // check SD version
  if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) {
    type(SD_CARD_TYPE_SD1);
  } else {
    // only need last byte of r7 response
    for (uint8_t i = 0; i < 4; i++) status_ = spiRec();
    if (status_ != 0XAA) {
      error(SD_CARD_ERROR_CMD8);
      goto fail;
    }
    type(SD_CARD_TYPE_SD2);
  }
  // initialize card and send host supports SDHC if SD2
  arg = type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0;

  while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) {
    // check for timeout
    if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
      error(SD_CARD_ERROR_ACMD41);
      goto fail;
    }
  }
  // if SD2 read OCR register to check for SDHC card
  if (type() == SD_CARD_TYPE_SD2) {
    if (cardCommand(CMD58, 0)) {
      error(SD_CARD_ERROR_CMD58);
      goto fail;
    }
    if ((spiRec() & 0XC0) == 0XC0) type(SD_CARD_TYPE_SDHC);
    // discard rest of ocr - contains allowed voltage range
    for (uint8_t i = 0; i < 3; i++) spiRec();
  }
  chipSelectHigh();

#ifndef SOFTWARE_SPI
  return setSckRate(sckRateID);
#else  // SOFTWARE_SPI
  return true;
#endif  // SOFTWARE_SPI

 fail:
  chipSelectHigh();
  return false;
}
Пример #7
0
/**
 * Initialize an SD flash memory card.
 *
 * \param[in] sckRateID SPI clock rate selector. See setSckRate().
 * \param[in] chipSelectPin SD chip select pin number.
 *
 * \return The value one, true, is returned for success and
 * the value zero, false, is returned for failure.  The reason for failure
 * can be determined by calling errorCode() and errorData().
 */
uint8_t Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) {
  errorCode_ = inBlock_ = partialBlockRead_ = type_ = 0;
  chipSelectPin_ = chipSelectPin;
  // 16-bit init start time allows over a minute
  uint16_t t0 = (uint16_t)millis();
  uint32_t arg;

  // set pin modes
  pinMode(chipSelectPin_, OUTPUT);
  digitalWrite(chipSelectPin_, HIGH);
#ifndef USE_SPI_LIB
  pinMode(SPI_MISO_PIN, INPUT);
  pinMode(SPI_MOSI_PIN, OUTPUT);
  pinMode(SPI_SCK_PIN, OUTPUT);
#endif

#ifndef SOFTWARE_SPI
#ifndef USE_SPI_LIB
  // SS must be in output mode even it is not chip select
  pinMode(SS_PIN, OUTPUT);
  digitalWrite(SS_PIN, HIGH); // disable any SPI device using hardware SS pin
  // Enable SPI, Master, clock rate f_osc/128
  SPCR = (1 << SPE) | (1 << MSTR) | (1 << SPR1) | (1 << SPR0);
  // clear double speed
  SPSR &= ~(1 << SPI2X);
#else // USE_SPI_LIB
  SPI.begin();
  settings = SPISettings(250000, MSBFIRST, SPI_MODE0);
#endif // USE_SPI_LIB
#endif // SOFTWARE_SPI

  // must supply min of 74 clock cycles with CS high.
#ifdef USE_SPI_LIB
  SPI.beginTransaction(settings);
#endif
  for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);
#ifdef USE_SPI_LIB
  SPI.endTransaction();
#endif

  chipSelectLow();

  // command to go idle in SPI mode
  while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
    if (((uint16_t)(millis() - t0)) > SD_INIT_TIMEOUT) {
      error(SD_CARD_ERROR_CMD0);
      goto fail;
    }
  }
  // check SD version
  if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) {
    type(SD_CARD_TYPE_SD1);
  } else {
    // only need last byte of r7 response
    for (uint8_t i = 0; i < 4; i++) status_ = spiRec();
    if (status_ != 0XAA) {
      error(SD_CARD_ERROR_CMD8);
      goto fail;
    }
    type(SD_CARD_TYPE_SD2);
  }
  // initialize card and send host supports SDHC if SD2
  arg = type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0;

  while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) {
    // check for timeout
    if (((uint16_t)(millis() - t0)) > SD_INIT_TIMEOUT) {
      error(SD_CARD_ERROR_ACMD41);
      goto fail;
    }
  }
  // if SD2 read OCR register to check for SDHC card
  if (type() == SD_CARD_TYPE_SD2) {
    if (cardCommand(CMD58, 0)) {
      error(SD_CARD_ERROR_CMD58);
      goto fail;
    }
    if ((spiRec() & 0XC0) == 0XC0) type(SD_CARD_TYPE_SDHC);
    // discard rest of ocr - contains allowed voltage range
    for (uint8_t i = 0; i < 3; i++) spiRec();
  }
  chipSelectHigh();

#ifndef SOFTWARE_SPI
  return setSckRate(sckRateID);
#else  // SOFTWARE_SPI
  return true;
#endif  // SOFTWARE_SPI

 fail:
  chipSelectHigh();
  return false;
}
Пример #8
0
/**
 * Initialize an SD flash memory card.
 *
 * \return The value one, true, is returned for success and
 * the value zero, false, is returned for failure.  The reason for failure
 * can be determined by calling errorCode() and errorData().
 */
uint8_t Sd2Card::init() {
  errorCode_ = inBlock_ = partialBlockRead_ = type_ = 0;
  chipSelectPin_ = SD_CHIP_SELECT_PIN;
  // 16-bit init start time allows over a minute
  uint16_t t0 = (uint16_t)millis();
  uint32_t arg;

  // set pin modes
  pinMode(chipSelectPin_, OUTPUT);
  chipSelectHigh();
  pinMode(SPI_MISO_PIN, INPUT);
  pinMode(SPI_MOSI_PIN, OUTPUT);
  pinMode(SPI_SCK_PIN, OUTPUT);


  // must supply min of 74 clock cycles with CS high.
  for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);

  chipSelectLow();

  // command to go idle in SPI mode
  while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
    if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
      error(SD_CARD_ERROR_CMD0);
      goto fail;
    }
  }
  // check SD version
  if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) {
    type(SD_CARD_TYPE_SD1);
  } else {
    // only need last byte of r7 response
    for (uint8_t i = 0; i < 4; i++) status_ = spiRec();
    if (status_ != 0XAA) {
      error(SD_CARD_ERROR_CMD8);
      goto fail;
    }
    type(SD_CARD_TYPE_SD2);
  }
  // initialize card and send host supports SDHC if SD2
  arg = type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0;

  while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) {
    // check for timeout
    if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
      error(SD_CARD_ERROR_ACMD41);
      goto fail;
    }
  }
  // if SD2 read OCR register to check for SDHC card
  if (type() == SD_CARD_TYPE_SD2) {
    if (cardCommand(CMD58, 0)) {
      error(SD_CARD_ERROR_CMD58);
      goto fail;
    }
    if ((spiRec() & 0XC0) == 0XC0) type(SD_CARD_TYPE_SDHC);
    // discard rest of ocr - contains allowed voltage range
    for (uint8_t i = 0; i < 3; i++) spiRec();
  }
  chipSelectHigh();

  return true;

 fail:
  chipSelectHigh();
  return false;
}
Пример #9
0
uint8_t Sd2Card::init(HardwareSPI &SPIn) {
  errorCode_ = inBlock_ = partialBlockRead_ = type_ = 0;
  //chipSelectPin_ = chipSelectPin;
  // 16-bit init start time allows over a minute

  uint16_t t0 = (uint16_t)millis();
  uint32_t arg;


//  SPIn = s;
  // set pin modes
/*  pinMode(chipSelectPin_, OUTPUT);

  chipSelectHigh();
  pinMode(SPI_MISO_PIN, INPUT);
  pinMode(SPI_MOSI_PIN, OUTPUT);
  pinMode(SPI_SCK_PIN, OUTPUT);
*/

  // SS must be in output mode even it is not chip select
//  pinMode(SS_PIN, OUTPUT);
  // Enable SPI, Master, clock rate f_osc/128
//  SPCR = (1 << SPE) | (1 << MSTR) | (1 << SPR1) | (1 << SPR0);
  // clear double speed
//  SPSR &= ~(1 << SPI2X);

  // must supply min of 74 clock cycles with CS high.
  
  chipSelectHigh();
    for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);
  chipSelectLow();

  // command to go idle in SPI mode
  while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
    if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
		Serial.println("Error: CMD0");
		error(SD_CARD_ERROR_CMD0);
		goto fail;
    }
  }
  // check SD version
  if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) {
    type(SD_CARD_TYPE_SD1);
  } else {
    // only need last byte of r7 response
    for (uint8_t i = 0; i < 4; i++) status_ = spiRec();
    if (status_ != 0XAA) {
      error(SD_CARD_ERROR_CMD8);
	  Serial.println("Error: CMD8");
	  goto fail;
    }
    type(SD_CARD_TYPE_SD2);
  }
  // initialize card and send host supports SDHC if SD2
  arg = (type() == SD_CARD_TYPE_SD2) ? 0X40000000 : 0;

  while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) {
    // check for timeout
    if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
		Serial.println("Error: ACMD41");
		error(SD_CARD_ERROR_ACMD41);
		goto fail;
    }
  }
  // if SD2 read OCR register to check for SDHC card
  if (type() == SD_CARD_TYPE_SD2) {
    if (cardCommand(CMD58, 0)) {
		Serial.println("Error: CMD58");
		error(SD_CARD_ERROR_CMD58);
		goto fail;
    }
    if ((spiRec() & 0XC0) == 0XC0) type(SD_CARD_TYPE_SDHC);
    // discard rest of ocr - contains allowed voltage range
    for (uint8_t i = 0; i < 3; i++) spiRec();
  }
  chipSelectHigh();

//  return setSckRate(sckRateID);
  return true;

 fail:
  chipSelectHigh();
  Serial.println("Error: Sd2Card::init()");
  return false;
}
Пример #10
0
//==============================================================================
// SdSpiCard member functions
//------------------------------------------------------------------------------
bool SdSpiCard::begin(SdSpiDriver* spi, uint8_t csPin, SPISettings settings) {
  m_spiActive = false;
  m_errorCode = SD_CARD_ERROR_NONE;
  m_type = 0;
  m_spiDriver = spi;
  uint16_t t0 = curTimeMS();
  uint32_t arg;

  m_spiDriver->begin(csPin);
  m_spiDriver->setSpiSettings(SD_SCK_HZ(250000));
  spiStart();

  // must supply min of 74 clock cycles with CS high.
  spiUnselect();
  for (uint8_t i = 0; i < 10; i++) {
    spiSend(0XFF);
  }
  spiSelect();
  // command to go idle in SPI mode
  while (cardCommand(CMD0, 0) != R1_IDLE_STATE) {
    if (isTimedOut(t0, SD_INIT_TIMEOUT)) {
      error(SD_CARD_ERROR_CMD0);
      goto fail;
    }
  }
#if USE_SD_CRC
  if (cardCommand(CMD59, 1) != R1_IDLE_STATE) {
    error(SD_CARD_ERROR_CMD59);
    goto fail;
  }
#endif  // USE_SD_CRC
  // check SD version
  while (1) {
    if (cardCommand(CMD8, 0x1AA) == (R1_ILLEGAL_COMMAND | R1_IDLE_STATE)) {
      type(SD_CARD_TYPE_SD1);
      break;
    }
    for (uint8_t i = 0; i < 4; i++) {
      m_status = spiReceive();
    }
    if (m_status == 0XAA) {
      type(SD_CARD_TYPE_SD2);
      break;
    }
    if (isTimedOut(t0, SD_INIT_TIMEOUT)) {
      error(SD_CARD_ERROR_CMD8);
      goto fail;
    }
  }
  // initialize card and send host supports SDHC if SD2
  arg = type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0;

  while (cardAcmd(ACMD41, arg) != R1_READY_STATE) {
    // check for timeout
    if (isTimedOut(t0, SD_INIT_TIMEOUT)) {
      error(SD_CARD_ERROR_ACMD41);
      goto fail;
    }
  }
  // if SD2 read OCR register to check for SDHC card
  if (type() == SD_CARD_TYPE_SD2) {
    if (cardCommand(CMD58, 0)) {
      error(SD_CARD_ERROR_CMD58);
      goto fail;
    }
    if ((spiReceive() & 0XC0) == 0XC0) {
      type(SD_CARD_TYPE_SDHC);
    }
    // Discard rest of ocr - contains allowed voltage range.
    for (uint8_t i = 0; i < 3; i++) {
      spiReceive();
    }
  }
  spiStop();
  m_spiDriver->setSpiSettings(settings);
  return true;

fail:
  spiStop();
  return false;
}
Пример #11
0
//=============================================================================
bool SdioCard::begin() {
  uint32_t kHzSdClk;
  uint32_t arg;
  m_initDone = false;
  m_errorCode = SD_CARD_ERROR_NONE;
  m_highCapacity = false;
  m_version2 = false;

  // initialize controller.
  initSDHC();

  if (!cardCommand(CMD0_XFERTYP, 0)) {
    return sdError(SD_CARD_ERROR_CMD0);
  }
  // Try several times for case of reset delay.
  for (uint32_t i = 0; i < CMD8_RETRIES; i++) {
    if (cardCommand(CMD8_XFERTYP, 0X1AA)) {
      if (SDHC_CMDRSP0 != 0X1AA) {
        return sdError(SD_CARD_ERROR_CMD8);
      }
      m_version2 = true;
      break;
    }
  }
  arg = m_version2 ? 0X40300000 : 0x00300000;
  uint32_t m = micros();
  do {
    if (!cardAcmd(0, ACMD41_XFERTYP, arg) ||
       ((micros() - m) > BUSY_TIMEOUT_MICROS)) {
      return sdError(SD_CARD_ERROR_ACMD41);
    }
  } while ((SDHC_CMDRSP0 & 0x80000000) == 0);

  m_ocr = SDHC_CMDRSP0;
  if (SDHC_CMDRSP0 & 0x40000000) {
    // Is high capacity.
    m_highCapacity = true;
  }
  if (!cardCommand(CMD2_XFERTYP, 0)) {
    return sdError(SD_CARD_ERROR_CMD2);
  }
  if (!cardCommand(CMD3_XFERTYP, 0)) {
    return sdError(SD_CARD_ERROR_CMD3);
  }
  m_rca = SDHC_CMDRSP0 & 0xFFFF0000;

  if (!readReg16(CMD9_XFERTYP, &m_csd)) {
    return sdError(SD_CARD_ERROR_CMD9);
  }
  if (!readReg16(CMD10_XFERTYP, &m_cid)) {
    return sdError(SD_CARD_ERROR_CMD10);
  }
  if (!cardCommand(CMD7_XFERTYP, m_rca)) {
    return sdError(SD_CARD_ERROR_CMD7);
  }
  // Set card to bus width four.
  if (!cardAcmd(m_rca, ACMD6_XFERTYP, 2)) {
    return sdError(SD_CARD_ERROR_ACMD6);
  }
  // Set SDHC to bus width four.
  SDHC_PROCTL &= ~SDHC_PROCTL_DTW_MASK;
  SDHC_PROCTL |= SDHC_PROCTL_DTW(SDHC_PROCTL_DTW_4BIT);

  SDHC_WML = SDHC_WML_RDWML(FIFO_WML) | SDHC_WML_WRWML(FIFO_WML);

  // Determine if High Speed mode is supported and set frequency.
  uint8_t status[64];
  if (cardCMD6(0X00FFFFFF, status) && (2 & status[13]) &&
      cardCMD6(0X80FFFFF1, status) && (status[16] & 0XF) == 1) {
    kHzSdClk = 50000;
  } else {
    kHzSdClk = 25000;
  }
  // disable GPIO
  enableGPIO(false);

  // Set the SDHC SCK frequency.
  setSdclk(kHzSdClk);

  // enable GPIO
  enableGPIO(true);
  m_initDone = true;
  return true;
}
Пример #12
0
/**
 * Initialize an SD flash memory card.
 *
 * \param[in] sckRateID SPI clock rate selector. See setSckRate().
 * \param[in] chipSelectPin SD chip select pin number.
 *
 * \return The value one, true, is returned for success and
 * the value zero, false, is returned for failure.  The reason for failure
 * can be determined by calling errorCode() and errorData().
 */
bool Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) {
  errorCode_ = type_ = 0;
  chipSelectPin_ = chipSelectPin;
  // 16-bit init start time allows over a minute
  uint16_t t0 = (uint16_t)millis();
  uint32_t arg;

  // set pin modes
  pinMode(chipSelectPin_, OUTPUT);
  chipSelectHigh();
  pinMode(SPI_MISO_PIN, INPUT);
  pinMode(SPI_MOSI_PIN, OUTPUT);
  pinMode(SPI_SCK_PIN, OUTPUT);

  // SS must be in output mode even it is not chip select
  pinMode(SS_PIN, OUTPUT);
  // set SS high - may be chip select for another SPI device
#if SET_SPI_SS_HIGH
  digitalWrite(SS_PIN, HIGH);
#endif  // SET_SPI_SS_HIGH
  spiInit();
  // set SCK rate for initialization commands
  setSckRate(SPI_SD_INIT_RATE);

  // must supply min of 74 clock cycles with CS high.
  for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);

  // command to go idle in SPI mode
  while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
    if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
      error(SD_CARD_ERROR_CMD0);
      goto fail;
    }
  }
  // check SD version
  if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) {
    type(SD_CARD_TYPE_SD1);
  } else {
    // only need last byte of r7 response
    for (uint8_t i = 0; i < 4; i++) status_ = spiRec();
    if (status_ != 0XAA) {
      error(SD_CARD_ERROR_CMD8);
      goto fail;
    }
    type(SD_CARD_TYPE_SD2);
  }
  // initialize card and send host supports SDHC if SD2
  arg = type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0;

  while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) {
    // check for timeout
    if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
      error(SD_CARD_ERROR_ACMD41);
      goto fail;
    }
  }
  // if SD2 read OCR register to check for SDHC card
  if (type() == SD_CARD_TYPE_SD2) {
    if (cardCommand(CMD58, 0)) {
      error(SD_CARD_ERROR_CMD58);
      goto fail;
    }
    if ((spiRec() & 0XC0) == 0XC0) type(SD_CARD_TYPE_SDHC);
    // discard rest of ocr - contains allowed voltage range
    for (uint8_t i = 0; i < 3; i++) spiRec();
  }
  chipSelectHigh();

  return setSckRate(sckRateID);

 fail:
  chipSelectHigh();
  return false;
}
Пример #13
0
/**
 * Initialize an SD flash memory card.
 *
 * \param[in] sckRateID SPI clock rate selector. See setSckRate().
 * \param[in] chipSelectPin SD chip select pin number.
 *
 * \return The value one, true, is returned for success and
 * the value zero, false, is returned for failure.  The reason for failure
 * can be determined by calling errorCode() and errorData().
 */
uint8_t Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) {
  errorCode_ = inBlock_ = partialBlockRead_ = type_ = 0;
  chipSelectPin_ = chipSelectPin;
  // 16-bit init start time allows over a minute
  uint16_t t0 = (uint16_t)millis();
  uint32_t arg;

  // set pin modes
  pinMode(chipSelectPin_, OUTPUT);

  pinMode(SS_PIN, OUTPUT);
  digitalWrite(SS_PIN, HIGH); // disable any SPI device using hardware SS pin

  SPI.begin(chipSelectPin_);
  SPI.setFrequency(chipSelectPin_, 4000000);


  // must supply min of 74 clock cycles with CS high.
  for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);


  // command to go idle in SPI mode
  while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
    if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
      error(SD_CARD_ERROR_CMD0);
      goto fail;
    }
  }
  // check SD version
  if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) {
    type(SD_CARD_TYPE_SD1);
  } else {
    // only need last byte of r7 response
    for (uint8_t i = 0; i < 4; i++) status_ = spiRec();
    if (status_ != 0XAA) {
      error(SD_CARD_ERROR_CMD8);
      goto fail;
    }
    type(SD_CARD_TYPE_SD2);
  }
  // initialize card and send host supports SDHC if SD2
  arg = type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0;

  while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) {
    // check for timeout
    if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
      error(SD_CARD_ERROR_ACMD41);
      goto fail;
    }
  }
  // if SD2 read OCR register to check for SDHC card
  if (type() == SD_CARD_TYPE_SD2) {
    if (cardCommand(CMD58, 0)) {
      error(SD_CARD_ERROR_CMD58);
      goto fail;
    }
    if ((spiRec() & 0XC0) == 0XC0) type(SD_CARD_TYPE_SDHC);
    // discard rest of ocr - contains allowed voltage range
    for (uint8_t i = 0; i < 3; i++) spiRec();
  }


#ifndef SOFTWARE_SPI
  return setSckRate(sckRateID);
#else  // SOFTWARE_SPI
  return true;
#endif  // SOFTWARE_SPI

 fail:

  return false;
}
Пример #14
0
/**
 * Initialize a SD flash memory card.
 *
 * \param[in] slow Set SPI Frequency F_CPU/4 if true else F_CPU/2.
 *
 * \return The value one, true, is returned for success and
 * the value zero, false, is returned for failure. 
 */  
uint8_t Sd2Card::init(uint8_t slow)
{
  uint8_t r;
  errorCode_ = inBlock_ = partialBlockRead_ = type_ = 0;

  // set pin modes
  spiSSOutputMode();
  spiSSHigh();
  spiMISOInputMode();
  spiMOSIOutputMode();
  spiSCKOutputMode();
  
#ifndef SOFTWARE_SPI
  //Enable SPI, Master, clock rate f_osc/128
  SPCR = (1 << SPE) | (1 << MSTR) | (1 << SPR1) | (1 << SPR0);
#endif //SOFTWARE_SPI

  //must supply min of 74 clock cycles with CS high.
  for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);
  
  // next two lines prevent re-init hang by cards that were in partial read
  spiSSLow();
  for (uint16_t i = 0; i <= 512; i++) spiRec();
  
  // command to go idle in SPI mode
  for (uint8_t retry = 0; ; retry++) {
    if ((r = cardCommand(CMD0, 0)) ==  R1_IDLE_STATE) break;
    if (retry == 10) {
      error(SD_CARD_ERROR_CMD0, r);
      return false;
    }
  }
  // check SD version
  if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) {
    type(SD_CARD_TYPE_SD1);
  }
  else {
    // only need last byte of r7 response
    for(uint8_t i = 0; i < 4; i++) r = spiRec();
    if (r != 0XAA) {
      error(SD_CARD_ERROR_CMD8, r);
      return false;
    }
    type(SD_CARD_TYPE_SD2);
  }
  // initialize card and send host supports SDHC if SD2
  for (uint16_t t0 = millis();;) {
    r = cardAcmd(ACMD41, type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0);
    if (r == R1_READY_STATE) break;
    // timeout after 2 seconds
    if (((uint16_t)millis() - t0) > 2000) {
      error(SD_CARD_ERROR_ACMD41);
      return false;
    }
  }
  // if SD2 read OCR register to check for SDHC card
  if (type() == SD_CARD_TYPE_SD2) {
    if(cardCommand(CMD58, 0)) {
      error(SD_CARD_ERROR_CMD58);
      return false;
    }
    if ((spiRec() & 0XC0) == 0XC0) type(SD_CARD_TYPE_SDHC);
    // discard rest of ocr 
    for (uint8_t i = 0; i < 3; i++) spiRec();
  }
#ifndef SOFTWARE_SPI
  // set SPI frequency to f_OSC/4
  SPCR &= ~((1 << SPR1) | (1 << SPR0));
  // if !slow set SPI frequency to f_OSC/2
  if (!slow) SPSR |= (1 << SPI2X); 
#endif // SOFTWARE_SPI

  spiSSHigh();
  return true;
}