void bli_zdot( conj_t conj, int n, dcomplex* x, int incx, dcomplex* y, int incy, dcomplex* rho ) { #ifdef BLIS_ENABLE_CBLAS_INTERFACES if ( bli_is_conj( conj ) ) { cblas_zdotc_sub( n, x, incx, y, incy, rho ); } else // if ( !bli_is_conj( conj ) ) { cblas_zdotu_sub( n, x, incx, y, incy, rho ); } #else bli_zdot_in( conj, n, x, incx, y, incy, rho ); #endif }
void eblas_zdotc_sub(size_t iStart, size_t iStop, const complex* x, int incx, const complex* y, int incy, complex* ret, std::mutex* lock) { //Compute this thread's contribution: complex retSub; cblas_zdotc_sub(iStop-iStart, x+incx*iStart, incx, y+incy*iStart, incy, &retSub); //Accumulate over threads (need sync): lock->lock(); *ret += retSub; lock->unlock(); }
complex eblas_zdotc(int N, const complex* x, int incx, const complex* y, int incy) { complex ret = 0.; #ifdef MKL_PROVIDES_BLAS cblas_zdotc_sub(N, x, incx, y, incy, &ret); #else std::mutex lock; threadLaunch((N<100000) ? 1 : 0, eblas_zdotc_sub, N, x, incx, y, incy, &ret, &lock); #endif return ret; }
std::complex<double> BLAS<int, std::complex<double> >::DOT(const int n, const std::complex<double>* x, const int incx, const std::complex<double>* y, const int incy) const { #if defined(TEUCHOS_BLAS_APPLE_VECLIB_ERROR) std::complex<double> z; cblas_zdotc_sub(n,x,incx,y,incy,&z); return z; #elif defined(HAVE_COMPLEX_BLAS_PROBLEM) && defined(HAVE_FIXABLE_COMPLEX_BLAS_PROBLEM) std::complex<double> z; ZDOT_F77(&z, &n, x, &incx, y, &incy); return z; #else return ZDOT_F77(&n, x, &incx, y, &incy); #endif }
std::complex<double> HostVector<std::complex<double> >::Dot(const BaseVector<std::complex<double> > &x) const { assert(&x != NULL); const HostVector<std::complex<double> > *cast_x = dynamic_cast<const HostVector<std::complex<double> >*> (&x); assert(cast_x != NULL); assert(this->size_ == cast_x->size_); std::complex<double> res; cblas_zdotc_sub(this->size_, this->vec_, 1, cast_x->vec_, 1, &res); return res; }
void phi_dotc_sub(const int N, const Complex *X, const int incX, const Complex *Y, const int incY, Complex *dotc){ #ifndef NOBLAS #ifdef SINGLEPRECISION cblas_cdotc_sub(N,X,1,Y,1,dotc); #else cblas_zdotc_sub(N,X,1,Y,1,dotc); #endif #else int i; *dotc = 0; for(i = 0; i < N; ++i, X+=incX, Y+=incY){ *dotc += (*X)*conj(*Y); } #endif }
void test_dot (void) { const double flteps = 1e-4, dbleps = 1e-6; { int N = 1; float alpha = 0.0f; float X[] = { 0.733f }; float Y[] = { 0.825f }; int incX = 1; int incY = -1; float expected = 0.604725f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 1)"); }; { int N = 1; float alpha = 0.1f; float X[] = { 0.733f }; float Y[] = { 0.825f }; int incX = 1; int incY = -1; float expected = 0.704725f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 2)"); }; { int N = 1; float alpha = 1.0f; float X[] = { 0.733f }; float Y[] = { 0.825f }; int incX = 1; int incY = -1; float expected = 1.604725f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 3)"); }; { int N = 1; float alpha = 0.0f; float X[] = { -0.812f }; float Y[] = { -0.667f }; int incX = -1; int incY = 1; float expected = 0.541604f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 4)"); }; { int N = 1; float alpha = 0.1f; float X[] = { -0.812f }; float Y[] = { -0.667f }; int incX = -1; int incY = 1; float expected = 0.641604f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 5)"); }; { int N = 1; float alpha = 1.0f; float X[] = { -0.812f }; float Y[] = { -0.667f }; int incX = -1; int incY = 1; float expected = 1.541604f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 6)"); }; { int N = 1; float alpha = 0.0f; float X[] = { 0.481f }; float Y[] = { 0.523f }; int incX = -1; int incY = -1; float expected = 0.251563f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 7)"); }; { int N = 1; float alpha = 0.1f; float X[] = { 0.481f }; float Y[] = { 0.523f }; int incX = -1; int incY = -1; float expected = 0.351563f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 8)"); }; { int N = 1; float alpha = 1.0f; float X[] = { 0.481f }; float Y[] = { 0.523f }; int incX = -1; int incY = -1; float expected = 1.251563f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 9)"); }; { int N = 1; float X[] = { 0.785f }; float Y[] = { -0.7f }; int incX = 1; int incY = -1; float expected = -0.5495f; float f; f = cblas_sdot(N, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdot(case 10)"); }; { int N = 1; double X[] = { 0.79 }; double Y[] = { -0.679 }; int incX = 1; int incY = -1; double expected = -0.53641; double f; f = cblas_ddot(N, X, incX, Y, incY); gsl_test_rel(f, expected, dbleps, "ddot(case 11)"); }; { int N = 1; float X[] = { 0.474f, -0.27f }; float Y[] = { -0.144f, -0.392f }; int incX = 1; int incY = -1; float expected[2] = {-0.174096f, -0.146928f}; float f[2]; cblas_cdotu_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], flteps, "cdotu(case 12) real"); gsl_test_rel(f[1], expected[1], flteps, "cdotu(case 12) imag"); }; { int N = 1; float X[] = { 0.474f, -0.27f }; float Y[] = { -0.144f, -0.392f }; int incX = 1; int incY = -1; float expected[2] = {0.037584f, -0.224688f}; float f[2]; cblas_cdotc_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], flteps, "cdotc(case 13) real"); gsl_test_rel(f[1], expected[1], flteps, "cdotc(case 13) imag"); }; { int N = 1; double X[] = { -0.87, -0.631 }; double Y[] = { -0.7, -0.224 }; int incX = 1; int incY = -1; double expected[2] = {0.467656, 0.63658}; double f[2]; cblas_zdotu_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], dbleps, "zdotu(case 14) real"); gsl_test_rel(f[1], expected[1], dbleps, "zdotu(case 14) imag"); }; { int N = 1; double X[] = { -0.87, -0.631 }; double Y[] = { -0.7, -0.224 }; int incX = 1; int incY = -1; double expected[2] = {0.750344, -0.24682}; double f[2]; cblas_zdotc_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], dbleps, "zdotc(case 15) real"); gsl_test_rel(f[1], expected[1], dbleps, "zdotc(case 15) imag"); }; { int N = 1; float X[] = { -0.457f }; float Y[] = { 0.839f }; int incX = -1; int incY = 1; float expected = -0.383423f; float f; f = cblas_sdot(N, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdot(case 16)"); }; { int N = 1; double X[] = { 0.949 }; double Y[] = { -0.873 }; int incX = -1; int incY = 1; double expected = -0.828477; double f; f = cblas_ddot(N, X, incX, Y, incY); gsl_test_rel(f, expected, dbleps, "ddot(case 17)"); }; { int N = 1; float X[] = { 0.852f, -0.045f }; float Y[] = { 0.626f, -0.164f }; int incX = -1; int incY = 1; float expected[2] = {0.525972f, -0.167898f}; float f[2]; cblas_cdotu_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], flteps, "cdotu(case 18) real"); gsl_test_rel(f[1], expected[1], flteps, "cdotu(case 18) imag"); }; { int N = 1; float X[] = { 0.852f, -0.045f }; float Y[] = { 0.626f, -0.164f }; int incX = -1; int incY = 1; float expected[2] = {0.540732f, -0.111558f}; float f[2]; cblas_cdotc_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], flteps, "cdotc(case 19) real"); gsl_test_rel(f[1], expected[1], flteps, "cdotc(case 19) imag"); }; { int N = 1; double X[] = { -0.786, -0.341 }; double Y[] = { -0.271, -0.896 }; int incX = -1; int incY = 1; double expected[2] = {-0.09253, 0.796667}; double f[2]; cblas_zdotu_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], dbleps, "zdotu(case 20) real"); gsl_test_rel(f[1], expected[1], dbleps, "zdotu(case 20) imag"); }; { int N = 1; double X[] = { -0.786, -0.341 }; double Y[] = { -0.271, -0.896 }; int incX = -1; int incY = 1; double expected[2] = {0.518542, 0.611845}; double f[2]; cblas_zdotc_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], dbleps, "zdotc(case 21) real"); gsl_test_rel(f[1], expected[1], dbleps, "zdotc(case 21) imag"); }; { int N = 1; float X[] = { -0.088f }; float Y[] = { -0.165f }; int incX = -1; int incY = -1; float expected = 0.01452f; float f; f = cblas_sdot(N, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdot(case 22)"); }; { int N = 1; double X[] = { -0.434 }; double Y[] = { -0.402 }; int incX = -1; int incY = -1; double expected = 0.174468; double f; f = cblas_ddot(N, X, incX, Y, incY); gsl_test_rel(f, expected, dbleps, "ddot(case 23)"); }; { int N = 1; float X[] = { -0.347f, 0.899f }; float Y[] = { -0.113f, -0.858f }; int incX = -1; int incY = -1; float expected[2] = {0.810553f, 0.196139f}; float f[2]; cblas_cdotu_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], flteps, "cdotu(case 24) real"); gsl_test_rel(f[1], expected[1], flteps, "cdotu(case 24) imag"); }; { int N = 1; float X[] = { -0.347f, 0.899f }; float Y[] = { -0.113f, -0.858f }; int incX = -1; int incY = -1; float expected[2] = {-0.732131f, 0.399313f}; float f[2]; cblas_cdotc_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], flteps, "cdotc(case 25) real"); gsl_test_rel(f[1], expected[1], flteps, "cdotc(case 25) imag"); }; { int N = 1; double X[] = { -0.897, -0.204 }; double Y[] = { -0.759, 0.557 }; int incX = -1; int incY = -1; double expected[2] = {0.794451, -0.344793}; double f[2]; cblas_zdotu_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], dbleps, "zdotu(case 26) real"); gsl_test_rel(f[1], expected[1], dbleps, "zdotu(case 26) imag"); }; { int N = 1; double X[] = { -0.897, -0.204 }; double Y[] = { -0.759, 0.557 }; int incX = -1; int incY = -1; double expected[2] = {0.567195, -0.654465}; double f[2]; cblas_zdotc_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], dbleps, "zdotc(case 27) real"); gsl_test_rel(f[1], expected[1], dbleps, "zdotc(case 27) imag"); }; }
// // Overloaded function for dispatching to // * CBLAS backend, and // * complex<double> value-type. // inline std::complex<double> dotc( const int n, const std::complex<double>* x, const int incx, const std::complex<double>* y, const int incy ) { std::complex<double> result; cblas_zdotc_sub( n, x, incx, y, incy, &result ); return result; }
void WRAP_F77(acc_zdotc_sub)(const int *N, const void *X, const int *incX, const void *Y, const int *incY, void *dotc) { cblas_zdotc_sub(*N, X, *incX, Y, *incY, dotc); }
void WRAP_F77(veclib_zdotc)(const int *N, const double complex *X, const int *incX, const double complex *Y, const int *incY, double complex *dotu) { cblas_zdotc_sub(*N, X, *incX, Y, *incY, dotu); }
extern "C" magma_int_t magma_zlatrd2(char uplo, magma_int_t n, magma_int_t nb, magmaDoubleComplex *a, magma_int_t lda, double *e, magmaDoubleComplex *tau, magmaDoubleComplex *w, magma_int_t ldw, magmaDoubleComplex *da, magma_int_t ldda, magmaDoubleComplex *dw, magma_int_t lddw, magmaDoubleComplex *dwork, magma_int_t ldwork) { /* -- MAGMA (version 1.4.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver August 2013 Purpose ======= ZLATRD2 reduces NB rows and columns of a complex Hermitian matrix A to Hermitian tridiagonal form by an orthogonal similarity transformation Q' * A * Q, and returns the matrices V and W which are needed to apply the transformation to the unreduced part of A. If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a matrix, of which the upper triangle is supplied; if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a matrix, of which the lower triangle is supplied. This is an auxiliary routine called by ZHETRD2_GPU. It uses an accelerated HEMV that needs extra memory. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular N (input) INTEGER The order of the matrix A. NB (input) INTEGER The number of rows and columns to be reduced. A (input/output) COMPLEX_16 array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit: if UPLO = 'U', the last NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements above the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; if UPLO = 'L', the first NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements below the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. LDA (input) INTEGER The leading dimension of the array A. LDA >= (1,N). E (output) COMPLEX_16 array, dimension (N-1) If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal elements of the last NB columns of the reduced matrix; if UPLO = 'L', E(1:nb) contains the subdiagonal elements of the first NB columns of the reduced matrix. TAU (output) COMPLEX_16 array, dimension (N-1) The scalar factors of the elementary reflectors, stored in TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. See Further Details. W (output) COMPLEX_16 array, dimension (LDW,NB) The n-by-nb matrix W required to update the unreduced part of A. LDW (input) INTEGER The leading dimension of the array W. LDW >= max(1,N). Further Details =============== If UPLO = 'U', the matrix Q is represented as a product of elementary reflectors Q = H(n) H(n-1) . . . H(n-nb+1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), and tau in TAU(i-1). If UPLO = 'L', the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(nb). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), and tau in TAU(i). The elements of the vectors v together form the n-by-nb matrix V which is needed, with W, to apply the transformation to the unreduced part of the matrix, using a Hermitian rank-2k update of the form: A := A - V*W' - W*V'. The contents of A on exit are illustrated by the following examples with n = 5 and nb = 2: if UPLO = 'U': if UPLO = 'L': ( a a a v4 v5 ) ( d ) ( a a v4 v5 ) ( 1 d ) ( a 1 v5 ) ( v1 1 a ) ( d 1 ) ( v1 v2 a a ) ( d ) ( v1 v2 a a a ) where d denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and vi denotes an element of the vector defining H(i). ===================================================================== */ char uplo_[2] = {uplo, 0}; magma_int_t i; magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE; magmaDoubleComplex c_one = MAGMA_Z_ONE; magmaDoubleComplex c_zero = MAGMA_Z_ZERO; magmaDoubleComplex value = MAGMA_Z_ZERO; magma_int_t ione = 1; magma_int_t i_n, i_1, iw; magmaDoubleComplex alpha; magmaDoubleComplex *f; if (n <= 0) { return 0; } magma_queue_t stream; magma_queue_create( &stream ); magma_zmalloc_cpu( &f, n ); assert( f != NULL ); // TODO return error, or allocate outside zlatrd if (lapackf77_lsame(uplo_, "U")) { /* Reduce last NB columns of upper triangle */ for (i = n-1; i >= n - nb ; --i) { i_1 = i + 1; i_n = n - i - 1; iw = i - n + nb; if (i < n-1) { /* Update A(1:i,i) */ #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i_n, W(i, iw+1), &ldw); #endif blasf77_zgemv("No transpose", &i_1, &i_n, &c_neg_one, A(0, i+1), &lda, W(i, iw+1), &ldw, &c_one, A(0, i), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i_n, W(i, iw+1), &ldw); lapackf77_zlacgv(&i_n, A(i, i+1), &ldw); #endif blasf77_zgemv("No transpose", &i_1, &i_n, &c_neg_one, W(0, iw+1), &ldw, A(i, i+1), &lda, &c_one, A(0, i), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i_n, A(i, i+1), &ldw); #endif } if (i > 0) { /* Generate elementary reflector H(i) to annihilate A(1:i-2,i) */ alpha = *A(i-1, i); lapackf77_zlarfg(&i, &alpha, A(0, i), &ione, &tau[i - 1]); e[i-1] = MAGMA_Z_REAL( alpha ); MAGMA_Z_SET2REAL(*A(i-1, i), 1.); /* Compute W(1:i-1,i) */ // 1. Send the block reflector A(0:n-i-1,i) to the GPU magma_zsetvector( i, A(0, i), 1, dA(0, i), 1 ); #if (GPUSHMEM < 200) magma_zhemv(MagmaUpper, i, c_one, dA(0, 0), ldda, dA(0, i), ione, c_zero, dW(0, iw), ione); #else magmablas_zhemv2(MagmaUpper, i, c_one, dA(0, 0), ldda, dA(0, i), ione, c_zero, dW(0, iw), ione, dwork, ldwork); #endif // 2. Start putting the result back (asynchronously) magma_zgetmatrix_async( i, 1, dW(0, iw), lddw, W(0, iw) /*test*/, ldw, stream ); if (i < n-1) { blasf77_zgemv(MagmaConjTransStr, &i, &i_n, &c_one, W(0, iw+1), &ldw, A(0, i), &ione, &c_zero, W(i+1, iw), &ione); } // 3. Here is where we need it // TODO find the right place magma_queue_sync( stream ); if (i < n-1) { blasf77_zgemv("No transpose", &i, &i_n, &c_neg_one, A(0, i+1), &lda, W(i+1, iw), &ione, &c_one, W(0, iw), &ione); blasf77_zgemv(MagmaConjTransStr, &i, &i_n, &c_one, A(0, i+1), &lda, A(0, i), &ione, &c_zero, W(i+1, iw), &ione); blasf77_zgemv("No transpose", &i, &i_n, &c_neg_one, W(0, iw+1), &ldw, W(i+1, iw), &ione, &c_one, W(0, iw), &ione); } blasf77_zscal(&i, &tau[i - 1], W(0, iw), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) cblas_zdotc_sub( i, W(0,iw), ione, A(0,i), ione, &value ); #else value = cblas_zdotc( i, W(0,iw), ione, A(0,i), ione ); #endif alpha = tau[i - 1] * -0.5f * value; blasf77_zaxpy(&i, &alpha, A(0, i), &ione, W(0, iw), &ione); } } } else { /* Reduce first NB columns of lower triangle */ for (i = 0; i < nb; ++i) { /* Update A(i:n,i) */ i_n = n - i; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i, W(i, 0), &ldw); #endif blasf77_zgemv("No transpose", &i_n, &i, &c_neg_one, A(i, 0), &lda, W(i, 0), &ldw, &c_one, A(i, i), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i, W(i, 0), &ldw); lapackf77_zlacgv(&i, A(i ,0), &lda); #endif blasf77_zgemv("No transpose", &i_n, &i, &c_neg_one, W(i, 0), &ldw, A(i, 0), &lda, &c_one, A(i, i), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i, A(i, 0), &lda); #endif if (i < n-1) { /* Generate elementary reflector H(i) to annihilate A(i+2:n,i) */ i_n = n - i - 1; alpha = *A(i+1, i); lapackf77_zlarfg(&i_n, &alpha, A(min(i+2,n-1), i), &ione, &tau[i]); e[i] = MAGMA_Z_REAL( alpha ); MAGMA_Z_SET2REAL(*A(i+1, i), 1.); /* Compute W(i+1:n,i) */ // 1. Send the block reflector A(i+1:n,i) to the GPU magma_zsetvector( i_n, A(i+1, i), 1, dA(i+1, i), 1 ); #if (GPUSHMEM < 200) magma_zhemv(MagmaLower, i_n, c_one, dA(i+1, i+1), ldda, dA(i+1, i), ione, c_zero, dW(i+1, i), ione); #else magmablas_zhemv2('L', i_n, c_one, dA(i+1, i+1), ldda, dA(i+1, i), ione, c_zero, dW(i+1, i), ione, dwork, ldwork); #endif // 2. Start putting the result back (asynchronously) magma_zgetmatrix_async( i_n, 1, dW(i+1, i), lddw, W(i+1, i), ldw, stream ); blasf77_zgemv(MagmaConjTransStr, &i_n, &i, &c_one, W(i+1, 0), &ldw, A(i+1, i), &ione, &c_zero, W(0, i), &ione); blasf77_zgemv("No transpose", &i_n, &i, &c_neg_one, A(i+1, 0), &lda, W(0, i), &ione, &c_zero, f, &ione); blasf77_zgemv(MagmaConjTransStr, &i_n, &i, &c_one, A(i+1, 0), &lda, A(i+1, i), &ione, &c_zero, W(0, i), &ione); // 3. Here is where we need it magma_queue_sync( stream ); if (i!=0) blasf77_zaxpy(&i_n, &c_one, f, &ione, W(i+1, i), &ione); blasf77_zgemv("No transpose", &i_n, &i, &c_neg_one, W(i+1, 0), &ldw, W(0, i), &ione, &c_one, W(i+1, i), &ione); blasf77_zscal(&i_n, &tau[i], W(i+1,i), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) cblas_zdotc_sub( i_n, W(i+1,i), ione, A(i+1,i), ione, &value ); #else value = cblas_zdotc( i_n, W(i+1,i), ione, A(i+1,i), ione ); #endif alpha = tau[i] * -0.5f * value; blasf77_zaxpy(&i_n, &alpha, A(i+1, i), &ione, W(i+1,i), &ione); } } } magma_free_cpu(f); magma_queue_destroy( stream ); return 0; } /* zlatrd */
void F77_zdotc(const int *N, const void *X, const int *incX, const void *Y, const int *incY,void *dotc) { cblas_zdotc_sub(*N, X, *incX, Y, *incY, dotc); return; }
/** Purpose ------- ZLATRD2 reduces NB rows and columns of a complex Hermitian matrix A to Hermitian tridiagonal form by an orthogonal similarity transformation Q' * A * Q, and returns the matrices V and W which are needed to apply the transformation to the unreduced part of A. If UPLO = MagmaUpper, ZLATRD reduces the last NB rows and columns of a matrix, of which the upper triangle is supplied; if UPLO = MagmaLower, ZLATRD reduces the first NB rows and columns of a matrix, of which the lower triangle is supplied. This is an auxiliary routine called by ZHETRD2_GPU. It uses an accelerated HEMV that needs extra memory. Arguments --------- @param[in] uplo magma_uplo_t Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored: - = MagmaUpper: Upper triangular - = MagmaLower: Lower triangular @param[in] n INTEGER The order of the matrix A. @param[in] nb INTEGER The number of rows and columns to be reduced. @param[in,out] A COMPLEX_16 array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = MagmaUpper, the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit: - if UPLO = MagmaUpper, the last NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements above the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; - if UPLO = MagmaLower, the first NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements below the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. @param[in] lda INTEGER The leading dimension of the array A. LDA >= (1,N). @param[out] e COMPLEX_16 array, dimension (N-1) If UPLO = MagmaUpper, E(n-nb:n-1) contains the superdiagonal elements of the last NB columns of the reduced matrix; if UPLO = MagmaLower, E(1:nb) contains the subdiagonal elements of the first NB columns of the reduced matrix. @param[out] tau COMPLEX_16 array, dimension (N-1) The scalar factors of the elementary reflectors, stored in TAU(n-nb:n-1) if UPLO = MagmaUpper, and in TAU(1:nb) if UPLO = MagmaLower. See Further Details. @param[out] W COMPLEX_16 array, dimension (LDW,NB) The n-by-nb matrix W required to update the unreduced part of A. @param[in] ldw INTEGER The leading dimension of the array W. LDW >= max(1,N). Further Details --------------- If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary reflectors Q = H(n) H(n-1) . . . H(n-nb+1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), and tau in TAU(i-1). If UPLO = MagmaLower, the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(nb). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), and tau in TAU(i). The elements of the vectors v together form the n-by-nb matrix V which is needed, with W, to apply the transformation to the unreduced part of the matrix, using a Hermitian rank-2k update of the form: A := A - V*W' - W*V'. The contents of A on exit are illustrated by the following examples with n = 5 and nb = 2: if UPLO = MagmaUpper: if UPLO = MagmaLower: ( a a a v4 v5 ) ( d ) ( a a v4 v5 ) ( 1 d ) ( a 1 v5 ) ( v1 1 a ) ( d 1 ) ( v1 v2 a a ) ( d ) ( v1 v2 a a a ) where d denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and vi denotes an element of the vector defining H(i). @ingroup magma_zheev_aux ********************************************************************/ extern "C" magma_int_t magma_zlatrd2(magma_uplo_t uplo, magma_int_t n, magma_int_t nb, magmaDoubleComplex *A, magma_int_t lda, double *e, magmaDoubleComplex *tau, magmaDoubleComplex *W, magma_int_t ldw, magmaDoubleComplex *dA, magma_int_t ldda, magmaDoubleComplex *dW, magma_int_t lddw, magmaDoubleComplex *dwork, magma_int_t ldwork) { #define A(i, j) (A + (j)*lda + (i)) #define W(i, j) (W + (j)*ldw + (i)) #define dA(i, j) (dA + (j)*ldda + (i)) #define dW(i, j) (dW + (j)*lddw + (i)) magma_int_t i; magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE; magmaDoubleComplex c_one = MAGMA_Z_ONE; magmaDoubleComplex c_zero = MAGMA_Z_ZERO; magmaDoubleComplex value = MAGMA_Z_ZERO; magma_int_t ione = 1; magma_int_t i_n, i_1, iw; magmaDoubleComplex alpha; magmaDoubleComplex *f; if (n <= 0) { return 0; } magma_queue_t stream; magma_queue_create( &stream ); magma_zmalloc_cpu( &f, n ); assert( f != NULL ); // TODO return error, or allocate outside zlatrd if (uplo == MagmaUpper) { /* Reduce last NB columns of upper triangle */ for (i = n-1; i >= n - nb; --i) { i_1 = i + 1; i_n = n - i - 1; iw = i - n + nb; if (i < n-1) { /* Update A(1:i,i) */ #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i_n, W(i, iw+1), &ldw); #endif blasf77_zgemv("No transpose", &i_1, &i_n, &c_neg_one, A(0, i+1), &lda, W(i, iw+1), &ldw, &c_one, A(0, i), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i_n, W(i, iw+1), &ldw); lapackf77_zlacgv(&i_n, A(i, i+1), &ldw); #endif blasf77_zgemv("No transpose", &i_1, &i_n, &c_neg_one, W(0, iw+1), &ldw, A(i, i+1), &lda, &c_one, A(0, i), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i_n, A(i, i+1), &ldw); #endif } if (i > 0) { /* Generate elementary reflector H(i) to annihilate A(1:i-2,i) */ alpha = *A(i-1, i); lapackf77_zlarfg(&i, &alpha, A(0, i), &ione, &tau[i - 1]); e[i-1] = MAGMA_Z_REAL( alpha ); *A(i-1,i) = MAGMA_Z_MAKE( 1, 0 ); /* Compute W(1:i-1,i) */ // 1. Send the block reflector A(0:n-i-1,i) to the GPU magma_zsetvector( i, A(0, i), 1, dA(0, i), 1 ); //#if (GPUSHMEM < 200) //magma_zhemv(MagmaUpper, i, c_one, dA(0, 0), ldda, // dA(0, i), ione, c_zero, dW(0, iw), ione); //#else magmablas_zhemv_work(MagmaUpper, i, c_one, dA(0, 0), ldda, dA(0, i), ione, c_zero, dW(0, iw), ione, dwork, ldwork); //#endif // 2. Start putting the result back (asynchronously) magma_zgetmatrix_async( i, 1, dW(0, iw), lddw, W(0, iw) /*test*/, ldw, stream ); if (i < n-1) { blasf77_zgemv(MagmaConjTransStr, &i, &i_n, &c_one, W(0, iw+1), &ldw, A(0, i), &ione, &c_zero, W(i+1, iw), &ione); } // 3. Here is where we need it // TODO find the right place magma_queue_sync( stream ); if (i < n-1) { blasf77_zgemv("No transpose", &i, &i_n, &c_neg_one, A(0, i+1), &lda, W(i+1, iw), &ione, &c_one, W(0, iw), &ione); blasf77_zgemv(MagmaConjTransStr, &i, &i_n, &c_one, A(0, i+1), &lda, A(0, i), &ione, &c_zero, W(i+1, iw), &ione); blasf77_zgemv("No transpose", &i, &i_n, &c_neg_one, W(0, iw+1), &ldw, W(i+1, iw), &ione, &c_one, W(0, iw), &ione); } blasf77_zscal(&i, &tau[i - 1], W(0, iw), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) cblas_zdotc_sub( i, W(0,iw), ione, A(0,i), ione, &value ); #else value = cblas_zdotc( i, W(0,iw), ione, A(0,i), ione ); #endif alpha = tau[i - 1] * -0.5f * value; blasf77_zaxpy(&i, &alpha, A(0, i), &ione, W(0, iw), &ione); } } } else { /* Reduce first NB columns of lower triangle */ for (i = 0; i < nb; ++i) { /* Update A(i:n,i) */ i_n = n - i; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i, W(i, 0), &ldw); #endif blasf77_zgemv("No transpose", &i_n, &i, &c_neg_one, A(i, 0), &lda, W(i, 0), &ldw, &c_one, A(i, i), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i, W(i, 0), &ldw); lapackf77_zlacgv(&i, A(i, 0), &lda); #endif blasf77_zgemv("No transpose", &i_n, &i, &c_neg_one, W(i, 0), &ldw, A(i, 0), &lda, &c_one, A(i, i), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i, A(i, 0), &lda); #endif if (i < n-1) { /* Generate elementary reflector H(i) to annihilate A(i+2:n,i) */ i_n = n - i - 1; alpha = *A(i+1, i); lapackf77_zlarfg(&i_n, &alpha, A(min(i+2,n-1), i), &ione, &tau[i]); e[i] = MAGMA_Z_REAL( alpha ); *A(i+1,i) = MAGMA_Z_MAKE( 1, 0 ); /* Compute W(i+1:n,i) */ // 1. Send the block reflector A(i+1:n,i) to the GPU magma_zsetvector( i_n, A(i+1, i), 1, dA(i+1, i), 1 ); //#if (GPUSHMEM < 200) //magma_zhemv(MagmaLower, i_n, c_one, dA(i+1, i+1), ldda, dA(i+1, i), ione, c_zero, // dW(i+1, i), ione); //#else magmablas_zhemv_work(MagmaLower, i_n, c_one, dA(i+1, i+1), ldda, dA(i+1, i), ione, c_zero, dW(i+1, i), ione, dwork, ldwork); //#endif // 2. Start putting the result back (asynchronously) magma_zgetmatrix_async( i_n, 1, dW(i+1, i), lddw, W(i+1, i), ldw, stream ); blasf77_zgemv(MagmaConjTransStr, &i_n, &i, &c_one, W(i+1, 0), &ldw, A(i+1, i), &ione, &c_zero, W(0, i), &ione); blasf77_zgemv("No transpose", &i_n, &i, &c_neg_one, A(i+1, 0), &lda, W(0, i), &ione, &c_zero, f, &ione); blasf77_zgemv(MagmaConjTransStr, &i_n, &i, &c_one, A(i+1, 0), &lda, A(i+1, i), &ione, &c_zero, W(0, i), &ione); // 3. Here is where we need it magma_queue_sync( stream ); if (i != 0) blasf77_zaxpy(&i_n, &c_one, f, &ione, W(i+1, i), &ione); blasf77_zgemv("No transpose", &i_n, &i, &c_neg_one, W(i+1, 0), &ldw, W(0, i), &ione, &c_one, W(i+1, i), &ione); blasf77_zscal(&i_n, &tau[i], W(i+1,i), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) cblas_zdotc_sub( i_n, W(i+1,i), ione, A(i+1,i), ione, &value ); #else value = cblas_zdotc( i_n, W(i+1,i), ione, A(i+1,i), ione ); #endif alpha = tau[i] * -0.5f * value; blasf77_zaxpy(&i_n, &alpha, A(i+1, i), &ione, W(i+1,i), &ione); } } } magma_free_cpu(f); magma_queue_destroy( stream ); return 0; } /* magma_zlatrd */
// ---------------------------------------- int main( int argc, char** argv ) { TESTING_INIT(); //real_Double_t t_m, t_c, t_f; magma_int_t ione = 1; magmaDoubleComplex *A, *B; double error_cblas, error_fblas, error_inline; magma_int_t ISEED[4] = {0,0,0,1}; magma_int_t i, j, k, m, n, size, maxn, ld; // complex x for magma, cblas, fortran, inline blas respectively magmaDoubleComplex x2_m, x2_c, x2_f, x2_i; // real x for magma, cblas, fortran, inline blas respectively double x_m, x_c, x_f, x_i; MAGMA_UNUSED( x_c ); MAGMA_UNUSED( x_f ); MAGMA_UNUSED( x2_c ); MAGMA_UNUSED( x2_f ); MAGMA_UNUSED( x2_m ); magma_opts opts; opts.parse_opts( argc, argv ); opts.tolerance = max( 100., opts.tolerance ); double tol = opts.tolerance * lapackf77_dlamch("E"); gTol = tol; magma_int_t inc[] = { -2, -1, 1, 2 }; //{ 1 }; //{ -1, 1 }; magma_int_t ninc = sizeof(inc)/sizeof(*inc); magma_int_t maxinc = 0; for( i=0; i < ninc; ++i ) { maxinc = max( maxinc, abs(inc[i]) ); } printf( "!! Calling these CBLAS and Fortran BLAS sometimes crashes (segfaults), which !!\n" "!! is why we use wrappers. It does not necesarily indicate a bug in MAGMA. !!\n" "!! If MAGMA_WITH_MKL or __APPLE__ are defined, known failures are skipped. !!\n" "\n" ); // tell user about disabled functions #ifndef HAVE_CBLAS printf( "n/a: HAVE_CBLAS not defined, so no cblas functions tested.\n\n" ); #endif #if defined(MAGMA_WITH_MKL) printf( "n/a: cblas_zdotc, cblas_zdotu, blasf77_zdotc, and blasf77_zdotu are disabled with MKL, due to segfaults.\n\n" ); #endif #if defined(__APPLE__) printf( "n/a: blasf77_zdotc and blasf77_zdotu are disabled on MacOS, due to segfaults.\n\n" ); #endif printf( "%% Error w.r.t. Error w.r.t. Error w.r.t.\n" "%% M N K incx incy Function CBLAS Fortran BLAS inline\n" "%%====================================================================================\n" ); for( int itest = 0; itest < opts.ntest; ++itest ) { if ( itest > 0 ) { printf( "%%----------------------------------------------------------------------\n" ); } m = opts.msize[itest]; n = opts.nsize[itest]; k = opts.ksize[itest]; // allocate matrices // over-allocate so they can be any combination of // {m,n,k} * {abs(incx), abs(incy)} by // {m,n,k} * {abs(incx), abs(incy)} maxn = max( max( m, n ), k ) * maxinc; ld = max( 1, maxn ); size = ld*maxn; TESTING_MALLOC_CPU( A, magmaDoubleComplex, size ); TESTING_MALLOC_CPU( B, magmaDoubleComplex, size ); // initialize matrices lapackf77_zlarnv( &ione, ISEED, &size, A ); lapackf77_zlarnv( &ione, ISEED, &size, B ); // ----- test DZASUM for( int iincx = 0; iincx < ninc; ++iincx ) { magma_int_t incx = inc[iincx]; for( int iincy = 0; iincy < ninc; ++iincy ) { magma_int_t incy = inc[iincy]; // get one-norm of column j of A if ( incx > 0 && incx == incy ) { // positive, no incy error_cblas = 0; error_fblas = 0; error_inline = 0; for( j=0; j < k; ++j ) { x_m = magma_cblas_dzasum( m, A(0,j), incx ); #ifdef HAVE_CBLAS x_c = cblas_dzasum( m, A(0,j), incx ); error_cblas = max( error_cblas, fabs(x_m - x_c) / fabs(m*x_c) ); #else x_c = 0; error_cblas = SKIPPED_FLAG; #endif x_f = blasf77_dzasum( &m, A(0,j), &incx ); error_fblas = max( error_fblas, fabs(x_m - x_f) / fabs(m*x_f) ); // inline implementation x_i = 0; for( i=0; i < m; ++i ) { x_i += MAGMA_Z_ABS1( *A(i*incx,j) ); // |real(Aij)| + |imag(Aij)| } error_inline = max( error_inline, fabs(x_m - x_i) / fabs(m*x_i) ); //printf( "dzasum xm %.8e, xc %.8e, xf %.8e, xi %.8e\n", x_m, x_c, x_f, x_i ); } output( "dzasum", m, n, k, incx, incy, error_cblas, error_fblas, error_inline ); } } } printf( "\n" ); // ----- test DZNRM2 // get two-norm of column j of A for( int iincx = 0; iincx < ninc; ++iincx ) { magma_int_t incx = inc[iincx]; for( int iincy = 0; iincy < ninc; ++iincy ) { magma_int_t incy = inc[iincy]; if ( incx > 0 && incx == incy ) { // positive, no incy error_cblas = 0; error_fblas = 0; error_inline = 0; for( j=0; j < k; ++j ) { x_m = magma_cblas_dznrm2( m, A(0,j), incx ); #ifdef HAVE_CBLAS x_c = cblas_dznrm2( m, A(0,j), incx ); error_cblas = max( error_cblas, fabs(x_m - x_c) / fabs(m*x_c) ); #else x_c = 0; error_cblas = SKIPPED_FLAG; #endif x_f = blasf77_dznrm2( &m, A(0,j), &incx ); error_fblas = max( error_fblas, fabs(x_m - x_f) / fabs(m*x_f) ); // inline implementation (poor -- doesn't scale) x_i = 0; for( i=0; i < m; ++i ) { x_i += real( *A(i*incx,j) ) * real( *A(i*incx,j) ) + imag( *A(i*incx,j) ) * imag( *A(i*incx,j) ); // same: real( conj( *A(i*incx,j) ) * *A(i*incx,j) ); } x_i = sqrt( x_i ); error_inline = max( error_inline, fabs(x_m - x_i) / fabs(m*x_i) ); //printf( "dznrm2 xm %.8e, xc %.8e, xf %.8e, xi %.8e\n", x_m, x_c, x_f, x_i ); } output( "dznrm2", m, n, k, incx, incy, error_cblas, error_fblas, error_inline ); } } } printf( "\n" ); // ----- test ZDOTC // dot columns, Aj^H Bj for( int iincx = 0; iincx < ninc; ++iincx ) { magma_int_t incx = inc[iincx]; for( int iincy = 0; iincy < ninc; ++iincy ) { magma_int_t incy = inc[iincy]; error_cblas = 0; error_fblas = 0; error_inline = 0; for( j=0; j < k; ++j ) { // MAGMA implementation, not just wrapper x2_m = magma_cblas_zdotc( m, A(0,j), incx, B(0,j), incy ); // crashes with MKL 11.1.2, ILP64 #if defined(HAVE_CBLAS) && ! defined(MAGMA_WITH_MKL) #ifdef COMPLEX cblas_zdotc_sub( m, A(0,j), incx, B(0,j), incy, &x2_c ); #else x2_c = cblas_zdotc( m, A(0,j), incx, B(0,j), incy ); #endif error_cblas = max( error_cblas, fabs(x2_m - x2_c) / fabs(m*x2_c) ); #else x2_c = MAGMA_Z_ZERO; error_cblas = SKIPPED_FLAG; #endif // crashes with MKL 11.2.3 and MacOS 10.9 #if (! defined(COMPLEX) || ! defined(MAGMA_WITH_MKL)) && ! defined(__APPLE__) x2_f = blasf77_zdotc( &m, A(0,j), &incx, B(0,j), &incy ); error_fblas = max( error_fblas, fabs(x2_m - x2_f) / fabs(m*x2_f) ); #else x2_f = MAGMA_Z_ZERO; error_fblas = SKIPPED_FLAG; #endif // inline implementation x2_i = MAGMA_Z_ZERO; magma_int_t A_offset = (incx > 0 ? 0 : (-n + 1)*incx); magma_int_t B_offset = (incy > 0 ? 0 : (-n + 1)*incy); for( i=0; i < m; ++i ) { x2_i += conj( *A(A_offset + i*incx,j) ) * *B(B_offset + i*incy,j); } error_inline = max( error_inline, fabs(x2_m - x2_i) / fabs(m*x2_i) ); //printf( "zdotc xm %.8e + %.8ei, xc %.8e + %.8ei, xf %.8e + %.8ei, xi %.8e + %.8ei\n", // real(x2_m), imag(x2_m), // real(x2_c), imag(x2_c), // real(x2_f), imag(x2_f), // real(x2_i), imag(x2_i) ); } output( "zdotc", m, n, k, incx, incy, error_cblas, error_fblas, error_inline ); } } printf( "\n" ); // ----- test ZDOTU // dot columns, Aj^T * Bj for( int iincx = 0; iincx < ninc; ++iincx ) { magma_int_t incx = inc[iincx]; for( int iincy = 0; iincy < ninc; ++iincy ) { magma_int_t incy = inc[iincy]; error_cblas = 0; error_fblas = 0; error_inline = 0; for( j=0; j < k; ++j ) { // MAGMA implementation, not just wrapper x2_m = magma_cblas_zdotu( m, A(0,j), incx, B(0,j), incy ); // crashes with MKL 11.1.2, ILP64 #if defined(HAVE_CBLAS) && ! defined(MAGMA_WITH_MKL) #ifdef COMPLEX cblas_zdotu_sub( m, A(0,j), incx, B(0,j), incy, &x2_c ); #else x2_c = cblas_zdotu( m, A(0,j), incx, B(0,j), incy ); #endif error_cblas = max( error_cblas, fabs(x2_m - x2_c) / fabs(m*x2_c) ); #else x2_c = MAGMA_Z_ZERO; error_cblas = SKIPPED_FLAG; #endif // crashes with MKL 11.2.3 and MacOS 10.9 #if (! defined(COMPLEX) || ! defined(MAGMA_WITH_MKL)) && ! defined(__APPLE__) x2_f = blasf77_zdotu( &m, A(0,j), &incx, B(0,j), &incy ); error_fblas = max( error_fblas, fabs(x2_m - x2_f) / fabs(m*x2_f) ); #else x2_f = MAGMA_Z_ZERO; error_fblas = SKIPPED_FLAG; #endif // inline implementation x2_i = MAGMA_Z_ZERO; magma_int_t A_offset = (incx > 0 ? 0 : (-n + 1)*incx); magma_int_t B_offset = (incy > 0 ? 0 : (-n + 1)*incy); for( i=0; i < m; ++i ) { x2_i += *A(A_offset + i*incx,j) * *B(B_offset + i*incy,j); } error_inline = max( error_inline, fabs(x2_m - x2_i) / fabs(m*x2_i) ); //printf( "zdotu xm %.8e + %.8ei, xc %.8e + %.8ei, xf %.8e + %.8ei, xi %.8e + %.8ei\n", // real(x2_m), imag(x2_m), // real(x2_c), imag(x2_c), // real(x2_f), imag(x2_f), // real(x2_i), imag(x2_i) ); } output( "zdotu", m, n, k, incx, incy, error_cblas, error_fblas, error_inline ); } } // cleanup TESTING_FREE_CPU( A ); TESTING_FREE_CPU( B ); fflush( stdout ); } // itest, incx, incy opts.cleanup(); TESTING_FINALIZE(); return gStatus; }
complex double zdotc_(int *N, void *CX, int *INCX, void *CY, int *INCY) { complex double dotc; cblas_zdotc_sub(*N, CX, *INCX, CY, *INCY, &dotc); return dotc; }
// ---------------------------------------- int main( int argc, char** argv ) { TESTING_INIT(); //real_Double_t t_m, t_c, t_f; magma_int_t ione = 1; magmaDoubleComplex *A, *B; double diff, error; magma_int_t ISEED[4] = {0,0,0,1}; magma_int_t m, n, k, size, maxn, ld; magmaDoubleComplex x2_m, x2_c; // complex x for magma, cblas/fortran blas respectively double x_m, x_c; // x for magma, cblas/fortran blas respectively magma_opts opts; parse_opts( argc, argv, &opts ); opts.tolerance = max( 100., opts.tolerance ); double tol = opts.tolerance * lapackf77_dlamch("E"); gTol = tol; printf( "!! Calling these CBLAS and Fortran BLAS sometimes crashes (segfault), which !!\n" "!! is why we use wrappers. It does not necesarily indicate a bug in MAGMA. !!\n" "\n" "Diff compares MAGMA wrapper to CBLAS and BLAS function; should be exactly 0.\n" "Error compares MAGMA implementation to CBLAS and BLAS function; should be ~ machine epsilon.\n" "\n" ); double total_diff = 0.; double total_error = 0.; int inc[] = { 1 }; //{ -2, -1, 1, 2 }; //{ 1 }; //{ -1, 1 }; int ninc = sizeof(inc)/sizeof(*inc); for( int itest = 0; itest < opts.ntest; ++itest ) { m = opts.msize[itest]; n = opts.nsize[itest]; k = opts.ksize[itest]; for( int iincx = 0; iincx < ninc; ++iincx ) { magma_int_t incx = inc[iincx]; for( int iincy = 0; iincy < ninc; ++iincy ) { magma_int_t incy = inc[iincy]; printf("=========================================================================\n"); printf( "m=%d, n=%d, k=%d, incx = %d, incy = %d\n", (int) m, (int) n, (int) k, (int) incx, (int) incy ); printf( "Function MAGMA CBLAS BLAS Diff Error\n" " msec msec msec\n" ); // allocate matrices // over-allocate so they can be any combination of // {m,n,k} * {abs(incx), abs(incy)} by // {m,n,k} * {abs(incx), abs(incy)} maxn = max( max( m, n ), k ) * max( abs(incx), abs(incy) ); ld = max( 1, maxn ); size = ld*maxn; magma_zmalloc_pinned( &A, size ); assert( A != NULL ); magma_zmalloc_pinned( &B, size ); assert( B != NULL ); // initialize matrices lapackf77_zlarnv( &ione, ISEED, &size, A ); lapackf77_zlarnv( &ione, ISEED, &size, B ); printf( "Level 1 BLAS ----------------------------------------------------------\n" ); // ----- test DZASUM // get one-norm of column j of A if ( incx > 0 && incx == incy ) { // positive, no incy diff = 0; error = 0; for( int j = 0; j < k; ++j ) { x_m = magma_cblas_dzasum( m, A(0,j), incx ); x_c = cblas_dzasum( m, A(0,j), incx ); diff += fabs( x_m - x_c ); x_c = blasf77_dzasum( &m, A(0,j), &incx ); error += fabs( (x_m - x_c) / (m*x_c) ); } output( "dzasum", diff, error ); total_diff += diff; total_error += error; } // ----- test DZNRM2 // get two-norm of column j of A if ( incx > 0 && incx == incy ) { // positive, no incy diff = 0; error = 0; for( int j = 0; j < k; ++j ) { x_m = magma_cblas_dznrm2( m, A(0,j), incx ); x_c = cblas_dznrm2( m, A(0,j), incx ); diff += fabs( x_m - x_c ); x_c = blasf77_dznrm2( &m, A(0,j), &incx ); error += fabs( (x_m - x_c) / (m*x_c) ); } output( "dznrm2", diff, error ); total_diff += diff; total_error += error; } // ----- test ZDOTC // dot columns, Aj^H Bj diff = 0; error = 0; for( int j = 0; j < k; ++j ) { // MAGMA implementation, not just wrapper x2_m = magma_cblas_zdotc( m, A(0,j), incx, B(0,j), incy ); // crashes on MKL 11.1.2, ILP64 #if ! defined( MAGMA_WITH_MKL ) #ifdef COMPLEX cblas_zdotc_sub( m, A(0,j), incx, B(0,j), incy, &x2_c ); #else x2_c = cblas_zdotc( m, A(0,j), incx, B(0,j), incy ); #endif error += fabs( x2_m - x2_c ) / fabs( m*x2_c ); #endif // crashes on MacOS 10.9 #if ! defined( __APPLE__ ) x2_c = blasf77_zdotc( &m, A(0,j), &incx, B(0,j), &incy ); error += fabs( x2_m - x2_c ) / fabs( m*x2_c ); #endif } output( "zdotc", diff, error ); total_diff += diff; total_error += error; total_error += error; // ----- test ZDOTU // dot columns, Aj^T * Bj diff = 0; error = 0; for( int j = 0; j < k; ++j ) { // MAGMA implementation, not just wrapper x2_m = magma_cblas_zdotu( m, A(0,j), incx, B(0,j), incy ); // crashes on MKL 11.1.2, ILP64 #if ! defined( MAGMA_WITH_MKL ) #ifdef COMPLEX cblas_zdotu_sub( m, A(0,j), incx, B(0,j), incy, &x2_c ); #else x2_c = cblas_zdotu( m, A(0,j), incx, B(0,j), incy ); #endif error += fabs( x2_m - x2_c ) / fabs( m*x2_c ); #endif // crashes on MacOS 10.9 #if ! defined( __APPLE__ ) x2_c = blasf77_zdotu( &m, A(0,j), &incx, B(0,j), &incy ); error += fabs( x2_m - x2_c ) / fabs( m*x2_c ); #endif } output( "zdotu", diff, error ); total_diff += diff; total_error += error; // tell user about disabled functions #if defined( MAGMA_WITH_MKL ) printf( "cblas_zdotc and cblas_zdotu disabled with MKL (segfaults)\n" ); #endif #if defined( __APPLE__ ) printf( "blasf77_zdotc and blasf77_zdotu disabled on MacOS (segfaults)\n" ); #endif // cleanup magma_free_pinned( A ); magma_free_pinned( B ); fflush( stdout ); }}} // itest, incx, incy // TODO use average error? printf( "sum diffs = %8.2g, MAGMA wrapper compared to CBLAS and Fortran BLAS; should be exactly 0.\n" "sum errors = %8.2e, MAGMA implementation compared to CBLAS and Fortran BLAS; should be ~ machine epsilon.\n\n", total_diff, total_error ); if ( total_diff != 0. ) { printf( "some tests failed diff == 0.; see above.\n" ); } else { printf( "all tests passed diff == 0.\n" ); } TESTING_FINALIZE(); int status = (total_diff != 0.); return status; }
extern "C" double magma_zlatrd_mgpu(magma_int_t num_gpus, char uplo, magma_int_t n0, magma_int_t n, magma_int_t nb, magma_int_t nb0, magmaDoubleComplex *a, magma_int_t lda, double *e, magmaDoubleComplex *tau, magmaDoubleComplex *w, magma_int_t ldw, magmaDoubleComplex **da, magma_int_t ldda, magma_int_t offset, magmaDoubleComplex **dw, magma_int_t lddw, magmaDoubleComplex *dwork[MagmaMaxGPUs], magma_int_t ldwork, magma_int_t k, magmaDoubleComplex *dx[MagmaMaxGPUs], magmaDoubleComplex *dy[MagmaMaxGPUs], magmaDoubleComplex *work, magma_queue_t stream[][10], double *times) { /* -- MAGMA (version 1.4.1) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver December 2013 Purpose ======= ZLATRD reduces NB rows and columns of a complex Hermitian matrix A to Hermitian tridiagonal form by an orthogonal similarity transformation Q' * A * Q, and returns the matrices V and W which are needed to apply the transformation to the unreduced part of A. If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a matrix, of which the upper triangle is supplied; if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a matrix, of which the lower triangle is supplied. This is an auxiliary routine called by ZHETRD. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular N (input) INTEGER The order of the matrix A. NB (input) INTEGER The number of rows and columns to be reduced. A (input/output) COMPLEX_16 array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit: if UPLO = 'U', the last NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements above the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; if UPLO = 'L', the first NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements below the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. LDA (input) INTEGER The leading dimension of the array A. LDA >= (1,N). E (output) COMPLEX_16 array, dimension (N-1) If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal elements of the last NB columns of the reduced matrix; if UPLO = 'L', E(1:nb) contains the subdiagonal elements of the first NB columns of the reduced matrix. TAU (output) COMPLEX_16 array, dimension (N-1) The scalar factors of the elementary reflectors, stored in TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. See Further Details. W (output) COMPLEX_16 array, dimension (LDW,NB) The n-by-nb matrix W required to update the unreduced part of A. LDW (input) INTEGER The leading dimension of the array W. LDW >= max(1,N). Further Details =============== If UPLO = 'U', the matrix Q is represented as a product of elementary reflectors Q = H(n) H(n-1) . . . H(n-nb+1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), and tau in TAU(i-1). If UPLO = 'L', the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(nb). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), and tau in TAU(i). The elements of the vectors v together form the n-by-nb matrix V which is needed, with W, to apply the transformation to the unreduced part of the matrix, using a Hermitian rank-2k update of the form: A := A - V*W' - W*V'. The contents of A on exit are illustrated by the following examples with n = 5 and nb = 2: if UPLO = 'U': if UPLO = 'L': ( a a a v4 v5 ) ( d ) ( a a v4 v5 ) ( 1 d ) ( a 1 v5 ) ( v1 1 a ) ( d 1 ) ( v1 v2 a a ) ( d ) ( v1 v2 a a a ) where d denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and vi denotes an element of the vector defining H(i). ===================================================================== */ char uplo_[2] = {uplo, 0}; double mv_time = 0.0; magma_int_t i; #ifndef MAGMABLAS_ZHEMV_MGPU magma_int_t loffset = nb0*((offset/nb0)/num_gpus); #endif magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE; magmaDoubleComplex c_one = MAGMA_Z_ONE; magmaDoubleComplex c_zero = MAGMA_Z_ZERO; magmaDoubleComplex value = MAGMA_Z_ZERO; magma_int_t id, idw, i_one = 1; //magma_int_t kk; magma_int_t ione = 1; magma_int_t i_n, i_1, iw; magmaDoubleComplex alpha; magmaDoubleComplex *dx2[MagmaMaxGPUs]; magmaDoubleComplex *f = (magmaDoubleComplex *)malloc(n*sizeof(magmaDoubleComplex )); if (n <= 0) { return 0; } //#define PROFILE_SYMV #ifdef PROFILE_SYMV magma_event_t start, stop; float etime; magma_timestr_t cpu_start, cpu_end; magma_setdevice(0); magma_event_create( &start ); magma_event_create( &stop ); #endif if (lapackf77_lsame(uplo_, "U")) { /* Reduce last NB columns of upper triangle */ for (i = n-1; i >= n - nb ; --i) { i_1 = i + 1; i_n = n - i - 1; iw = i - n + nb; if (i < n-1) { /* Update A(1:i,i) */ magmaDoubleComplex wii = *W(i, iw+1); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i_one, &wii, &ldw); #endif wii = -wii; blasf77_zaxpy(&i_1, &wii, A(0, i+1), &i_one, A(0, i), &ione); wii = *A(i, i+1); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i_one, &wii, &ldw); #endif wii = -wii; blasf77_zaxpy(&i_1, &wii, W(0, iw+1), &i_one, A(0, i), &ione); } if (i > 0) { /* Generate elementary reflector H(i) to annihilate A(1:i-2,i) */ alpha = *A(i-1, i); lapackf77_zlarfg(&i, &alpha, A(0, i), &ione, &tau[i - 1]); e[i-1] = MAGMA_Z_REAL( alpha ); *A(i-1,i) = MAGMA_Z_MAKE( 1, 0 ); for( id=0; id<num_gpus; id++ ) { magma_setdevice(id); dx2[id] = dW1(id, 0, iw); magma_zsetvector_async( n, A(0,i), 1, dW1(id, 0, iw), 1, stream[id][0]); #ifndef MAGMABLAS_ZHEMV_MGPU magma_zsetvector_async( i, A(0,i), 1, dx[id], 1, stream[id][0] ); #endif } magmablas_zhemv_mgpu(num_gpus, k, 'U', i, nb0, c_one, da, ldda, 0, dx2, ione, c_zero, dy, ione, dwork, ldwork, work, W(0, iw), stream ); if (i < n-1) { blasf77_zgemv(MagmaConjTransStr, &i, &i_n, &c_one, W(0, iw+1), &ldw, A(0, i), &ione, &c_zero, W(i+1, iw), &ione); } /* overlap update */ if( i < n-1 && i-1 >= n - nb ) { magma_int_t im1_1 = i_1 - 1; magma_int_t im1 = i-1; /* Update A(1:i,i) */ #if defined(PRECISION_z) || defined(PRECISION_c) magma_int_t im1_n = i_n + 1; lapackf77_zlacgv(&im1_n, W(im1, iw+1), &ldw); #endif blasf77_zgemv("No transpose", &im1_1, &i_n, &c_neg_one, A(0, i+1), &lda, W(im1, iw+1), &ldw, &c_one, A(0, i-1), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&im1_n, W(im1, iw+1), &ldw); lapackf77_zlacgv(&im1_n, A(im1, i +1), &lda); #endif blasf77_zgemv("No transpose", &im1_1, &i_n, &c_neg_one, W(0, iw+1), &ldw, A(im1, i+1), &lda, &c_one, A(0, i-1), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&im1_n, A(im1, i+1), &lda); #endif } // 3. Here is where we need it // TODO find the right place magmablas_zhemv_sync(num_gpus, k, i, work, W(0, iw), stream ); if (i < n-1) { blasf77_zgemv("No transpose", &i, &i_n, &c_neg_one, A(0, i+1), &lda, W(i+1, iw), &ione, &c_one, W(0, iw), &ione); blasf77_zgemv(MagmaConjTransStr, &i, &i_n, &c_one, A(0, i+1), &lda, A(0, i), &ione, &c_zero, W(i+1, iw), &ione); blasf77_zgemv("No transpose", &i, &i_n, &c_neg_one, W(0, iw+1), &ldw, W(i+1, iw), &ione, &c_one, W(0, iw), &ione); } blasf77_zscal(&i, &tau[i - 1], W(0, iw), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) cblas_zdotc_sub( i, W(0,iw), ione, A(0,i), ione, &value ); #else value = cblas_zdotc( i, W(0,iw), ione, A(0,i), ione ); #endif alpha = tau[i - 1] * -.5f * value; blasf77_zaxpy(&i, &alpha, A(0, i), &ione, W(0, iw), &ione); for( id=0; id<num_gpus; id++ ) { magma_setdevice(id); if( k > 1 ) { magma_zsetvector_async( n, W(0,iw), 1, dW(id, 0, iw), 1, stream[id][1] ); } else { magma_zsetvector_async( n, W(0,iw), 1, dW(id, 0, iw), 1, stream[id][0] ); } } } } } else { /* Reduce first NB columns of lower triangle */ for (i = 0; i < nb; ++i) { /* Update A(i:n,i) */ i_n = n - i; idw = ((offset+i)/nb)%num_gpus; if( i > 0 ) { trace_cpu_start( 0, "gemv", "gemv" ); magmaDoubleComplex wii = *W(i, i-1); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i_one, &wii, &ldw); #endif wii = -wii; blasf77_zaxpy( &i_n, &wii, A(i, i-1), &ione, A(i, i), &ione); wii = *A(i, i-1); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i_one, &wii, &lda); #endif wii = -wii; blasf77_zaxpy( &i_n, &wii, W(i, i-1), &ione, A(i, i), &ione); } if (i < n-1) { /* Generate elementary reflector H(i) to annihilate A(i+2:n,i) */ i_n = n - i - 1; trace_cpu_start( 0, "larfg", "larfg" ); alpha = *A(i+1, i); #ifdef PROFILE_SYMV cpu_start = get_current_time(); #endif lapackf77_zlarfg(&i_n, &alpha, A(min(i+2,n-1), i), &ione, &tau[i]); #ifdef PROFILE_SYMV cpu_end = get_current_time(); times[0] += GetTimerValue(cpu_start,cpu_end)/1000.0; #endif e[i] = MAGMA_Z_REAL( alpha ); *A(i+1,i) = MAGMA_Z_MAKE( 1, 0 ); trace_cpu_end( 0 ); /* Compute W(i+1:n,i) */ // 1. Send the block reflector A(i+1:n,i) to the GPU //trace_gpu_start( idw, 0, "comm", "comm1" ); #ifndef MAGMABLAS_ZHEMV_MGPU magma_setdevice(idw); magma_zsetvector( i_n, A(i+1,i), 1, dA(idw, i+1, i), 1 ); #endif for( id=0; id<num_gpus; id++ ) { magma_setdevice(id); trace_gpu_start( id, 0, "comm", "comm" ); #ifdef MAGMABLAS_ZHEMV_MGPU dx2[id] = dW1(id, 0, i)-offset; #else dx2[id] = dx[id]; magma_zsetvector( i_n, A(i+1,i), 1, dx[id], 1 ); #endif magma_zsetvector_async( n, A(0,i), 1, dW1(id, 0, i), 1, stream[id][0] ); trace_gpu_end( id, 0 ); } /* mat-vec on multiple GPUs */ #ifdef PROFILE_SYMV magma_setdevice(0); magma_event_record(start, stream[0][0]); #endif magmablas_zhemv_mgpu(num_gpus, k, 'L', i_n, nb0, c_one, da, ldda, offset+i+1, dx2, ione, c_zero, dy, ione, dwork, ldwork, work, W(i+1,i), stream ); #ifdef PROFILE_SYMV magma_setdevice(0); magma_event_record(stop, stream[0][0]); #endif trace_cpu_start( 0, "gemv", "gemv" ); blasf77_zgemv(MagmaConjTransStr, &i_n, &i, &c_one, W(i+1, 0), &ldw, A(i+1, i), &ione, &c_zero, W(0, i), &ione); blasf77_zgemv("No transpose", &i_n, &i, &c_neg_one, A(i+1, 0), &lda, W(0, i), &ione, &c_zero, f, &ione); blasf77_zgemv(MagmaConjTransStr, &i_n, &i, &c_one, A(i+1, 0), &lda, A(i+1, i), &ione, &c_zero, W(0, i), &ione); trace_cpu_end( 0 ); /* overlap update */ if( i > 0 && i+1 < n ) { magma_int_t ip1 = i+1; trace_cpu_start( 0, "gemv", "gemv" ); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i, W(ip1, 0), &ldw); #endif blasf77_zgemv("No transpose", &i_n, &i, &c_neg_one, A(ip1, 0), &lda, W(ip1, 0), &ldw, &c_one, A(ip1, ip1), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i, W(ip1, 0), &ldw); lapackf77_zlacgv(&i, A(ip1 ,0), &lda); #endif blasf77_zgemv("No transpose", &i_n, &i, &c_neg_one, W(ip1, 0), &ldw, A(ip1, 0), &lda, &c_one, A(ip1, ip1), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_zlacgv(&i, A(ip1, 0), &lda); #endif trace_cpu_end( 0 ); } /* synchronize */ magmablas_zhemv_sync(num_gpus, k, i_n, work, W(i+1,i), stream ); #ifdef PROFILE_SYMV cudaEventElapsedTime(&etime, start, stop); mv_time += (etime/1000.0); times[1+(i_n/(n0/10))] += (etime/1000.0); #endif trace_cpu_start( 0, "axpy", "axpy" ); if (i!=0) blasf77_zaxpy(&i_n, &c_one, f, &ione, W(i+1, i), &ione); blasf77_zgemv("No transpose", &i_n, &i, &c_neg_one, W(i+1, 0), &ldw, W(0, i), &ione, &c_one, W(i+1, i), &ione); blasf77_zscal(&i_n, &tau[i], W(i+1,i), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) cblas_zdotc_sub( i_n, W(i+1,i), ione, A(i+1,i), ione, &value ); #else value = cblas_zdotc( i_n, W(i+1,i), ione, A(i+1,i), ione ); #endif alpha = tau[i]* -.5f * value; blasf77_zaxpy(&i_n, &alpha, A(i+1, i), &ione, W(i+1,i), &ione); trace_cpu_end( 0 ); for( id=0; id<num_gpus; id++ ) { magma_setdevice(id); if( k > 1 ) { magma_zsetvector_async( n, W(0,i), 1, dW(id, 0, i), 1, stream[id][1] ); } else { magma_zsetvector_async( n, W(0,i), 1, dW(id, 0, i), 1, stream[id][0] ); } } } } } #ifdef PROFILE_SYMV magma_setdevice(0); magma_event_destory( start ); magma_event_destory( stop ); #endif for( id=0; id<num_gpus; id++ ) { magma_setdevice(id); if( k > 1) magma_queue_sync(stream[id][1]); } free(f); return mv_time; } /* zlatrd_ */