Пример #1
0
static char* test_spi_stream_read_rx_packet(void) {
  
  CircularBuffer* mybuf = cbuffer_new();

  uint32_t my_pkt_expected[10] = {0xBEEF, 5, 1, 2, 3, 4, 5, 0xDEADBEEF, 0xDEADBEEF, -1};
  uint32_t my_pkt_expected_2[10] = {0xBEEF, 7, 1, 2, 3, 4, 5, 1, 2, -1};
  add_checksum(my_pkt_expected, 10);
  add_checksum(my_pkt_expected_2, 10);

  uint32_t my_data[7] = {1, 2, 3, 4, 5, 1, 2};

  // read with non-full buffer
  int ret = spi_stream_read_rx_packet(my_pkt_expected, mybuf);
  mu_assert_eq("okay1", ret, 1);
  mu_assert_eq("data1", memcmp(my_data, mybuf->data, 5 * sizeof(uint32_t)), 0);
  mybuf->tail = 0;

  // read with full buffer
  ret = spi_stream_read_rx_packet(my_pkt_expected_2, mybuf);
  mu_assert_eq("okay2", ret, 1);
  mu_assert_eq("data2", memcmp(my_data, mybuf->data, 7 * sizeof(uint32_t)), 0);

  // overflowing local buffer
  mybuf->tail = IO_BUFFER_SIZE - 5;
  mu_assert_eq("its too small", cbuffer_freespace(mybuf), 4);
  ret = spi_stream_read_rx_packet(my_pkt_expected_2, mybuf);
  mu_assert_eq("overflow err", ret, 0);
  mu_assert_eq("unmodified", cbuffer_freespace(mybuf), 4);

  return 0;
}
Пример #2
0
static char* test_cbuffer_freespace(void) {
  CircularBuffer* mybuf = cbuffer_new();
  mybuf->tail = IO_BUFFER_SIZE - 5;
  mu_assert_eq("freespace", cbuffer_freespace(mybuf), 4);
  mu_assert_eq("size", cbuffer_size(mybuf), IO_BUFFER_SIZE - 5);
  for (int i = 1; i < 5; ++i) {
    cbuffer_push_back(mybuf, i);
    mu_assert_eq("freespace", cbuffer_freespace(mybuf), 4 - i);
  }

  cbuffer_free(mybuf);

  return 0;
}
Пример #3
0
int main() {
  xil_printf("Master SPI oRSC echo test\n");
  // initialize stdout.
  init_platform();

  tx_buffer = cbuffer_new();
  rx_buffer = cbuffer_new();

  vme_stream = vmestream_initialize_mem(
          rx_buffer, tx_buffer, 
          (uint32_t*)ORSC_2_PC_SIZE,
          (uint32_t*)PC_2_ORSC_SIZE,
          (uint32_t*)ORSC_2_PC_DATA,
          (uint32_t*)PC_2_ORSC_DATA,
          VMERAMSIZE);

  //printf("Master SPI oRSC echo test\n");

  while (1) {
      // transfer data
      vmestream_transfer_data(vme_stream);
      // now echo the data
      while (cbuffer_size(rx_buffer) && cbuffer_freespace(tx_buffer)) {
          cbuffer_push_back(tx_buffer, cbuffer_pop_front(rx_buffer));
      }
  }

  return 0;
}
Пример #4
0
static char* test_cbuffer_new(void) {
  CircularBuffer* mybuf = cbuffer_new();
  mu_assert_eq("size", cbuffer_size(mybuf), 0);
  mu_assert_eq("pos", mybuf->pos, 0);
  mu_assert_eq("freespace", cbuffer_freespace(mybuf), IO_BUFFER_SIZE - 1);
  mu_assert_eq("init is zero", (mybuf->data[0]), 0);

  cbuffer_free(mybuf);

  return 0;
}
Пример #5
0
/*
 * Make sure cbuffer_fd_read handles the edge case where cbuffer->tail returns
 * to the front of buffer->data
 */
static char* test_cbuffer_fd_read_edge(void) {
  int pipefd[2];
  pipe(pipefd);

  fcntl(pipefd[0], F_SETFL, fcntl(pipefd[0], F_GETFL) | O_NONBLOCK);

  int in = pipefd[1];
  int out = pipefd[0];

  CircularBuffer* mybuf = cbuffer_new();

  // completely fill buffer
  while (cbuffer_freespace(mybuf) > 0) {
    mu_assert_eq("mybuf overflow", cbuffer_push_back(mybuf, 0xDEADBEEF), 0);
  }
  mu_assert_eq("mybuf still has free space", cbuffer_freespace(mybuf), 0);

  // clear a single space in the cbuffer
  // free space should be at the front of cbuffer->data
  cbuffer_deletefront(mybuf, 1);

  uint32_t inbuf[] = {0xCAFEBABE};
  write(in, inbuf, sizeof(uint32_t));

  // read a single word into the free slot in the buffer
  mu_assert_eq("Could not read data", cbuffer_read_fd(mybuf, out, 1), 1);

  // check the content of the cbuffer
  while (cbuffer_size(mybuf) > 1) {
    mu_assert_eq("Content should be 0xDEADBEEF",
        cbuffer_pop_front(mybuf), 0xDEADBEEF);
  }
  mu_assert_eq("Content should be 0xCAFEBABE",
      cbuffer_pop_front(mybuf), 0xCAFEBABE);

  cbuffer_free(mybuf);
  return 0;
}
Пример #6
0
static char* test_cbuffer_fd_full(void) {
  // make sure we can stop reading if our read buffer is full
  // make pipes 
  int pipefd[2];
  pipe(pipefd);

  // make txpipe nonblocking, so we can check if it's empty.
  fcntl(pipefd[0], F_SETFL, fcntl(pipefd[0], F_GETFL) | O_NONBLOCK);

  int in = pipefd[1];
  int out = pipefd[0];

  CircularBuffer* frombuf = cbuffer_new();
  for (int i = 0; i < 200; ++i) {
    cbuffer_push_back(frombuf, i);
  }
  mu_assert_eq("from size", cbuffer_size(frombuf), 200);

  CircularBuffer* tobuf = cbuffer_new();
  tobuf->pos = IO_BUFFER_SIZE - 100;
  tobuf->tail = IO_BUFFER_SIZE - 100;

  ssize_t written = cbuffer_write_fd(frombuf, in, 200);
  mu_assert_eq("wrote to pipe", written, 200);
  mu_assert_eq("from size after", cbuffer_size(frombuf), 0);
  tobuf->tail += IO_BUFFER_SIZE - 100;
  mu_assert_eq("to freespace", cbuffer_freespace(tobuf), 99);
  ssize_t read = cbuffer_read_fd(tobuf, out, 200);
  ssize_t exp = 99;
  mu_assert_eq("read from pipe", (int)read, (int)exp);

  cbuffer_free(frombuf);
  cbuffer_free(tobuf);

  return 0;
}
Пример #7
0
int main() {

  xil_printf("Master SPI oRSC echo test\n");

  // initialize stdout.
  init_platform();

  tx_buffer = cbuffer_new();
  rx_buffer = cbuffer_new();

  spi_stream = spi_stream_init(
      tx_buffer, rx_buffer, 
      DoSpiTransfer, // callback which triggers a SPI transfer
      0);

  int Status;
  XSpi_Config *ConfigPtr;	/* Pointer to Configuration data */

  /*
   * Initialize the SPI driver so that it is  ready to use.
   */
  ConfigPtr = XSpi_LookupConfig(SPI_DEVICE_ID);
  if (ConfigPtr == NULL) {
    xil_printf ("Error: could not lookup SPI configuration\n");
    return XST_DEVICE_NOT_FOUND;
  }

  Status = XSpi_CfgInitialize(&SpiInstance, ConfigPtr,
      ConfigPtr->BaseAddress);
  if (Status != XST_SUCCESS) {
    xil_printf("Error: could not initialize the SPI device\n");
    return XST_FAILURE;
  }

  Status = XSpi_SelfTest(&SpiInstance);
  if (Status != XST_SUCCESS) {
    xil_printf("Error: The SPI self test failed.\n");
    return XST_FAILURE;
  }

  /*
   * Connect the Spi device to the interrupt subsystem such that
   * interrupts can occur. This function is application specific.
   */
  Status = SpiSetupIntrSystem(&IntcInstance, &SpiInstance, SPI_IRPT_INTR);
  if (Status != XST_SUCCESS) {
    xil_printf("Error: Could not setup interrupt system.\n");
    return XST_FAILURE;
  }

  /*
   * Set the Spi device as a master.
   */
  Status = XSpi_SetOptions(&SpiInstance, XSP_MASTER_OPTION);
  if (Status != XST_SUCCESS) {
    xil_printf("Error: Could not set as master\n");
    return XST_FAILURE;
  }

  // Go!
  XSpi_Start(&SpiInstance);

  // Note: to disable interrupt, do: XIntc_Disconnect(&IntcInstance,
  // SPI_IRPT_INTR);

  u32 expected_rx = 0;
  u32 current_tx = 0;

  while (1) {
    // fill up the transmit buffer
    while (cbuffer_freespace(tx_buffer)) {
      cbuffer_push_back(tx_buffer, current_tx++);
    }
    // check to make sure the received buffer is what we expect
    while (cbuffer_size(rx_buffer)) {
      u32 front = cbuffer_value_at(rx_buffer, 0);
      if (front != expected_rx) {
        //xil_printf("Error: expected %lx, got %lx!\n", expected_rx, front);
        xil_printf("Error: data value\n");
      }
      expected_rx++;
      cbuffer_deletefront(rx_buffer, 1);
    }
  }

  return 0;
}
Пример #8
0
/**
 * Overload buffer test
 */
static char *test_buf()
{
    // local application buffers
    CircularBuffer *tx1 = cbuffer_new();
    CircularBuffer *rx1 = cbuffer_new();
    CircularBuffer *tx2 = cbuffer_new();
    CircularBuffer *rx2 = cbuffer_new();

    VMEStream *test1 = vmestream_initialize(tx1, rx1, 32);
    VMEStream *test2 = malloc(sizeof(VMEStream));
    test2->input = tx2;
    test2->output = rx2;

    test2->rx_size = test1->tx_size;
    test2->tx_size = test1->rx_size;
    test2->rx_data = test1->tx_data;
    test2->tx_data = test1->rx_data;
    test2->MAXRAM  = test1->MAXRAM;


    cbuffer_push_back(rx2, 0xDEADBEEF);
    for (int i = 0; i < 510; i++) {
        cbuffer_push_back(rx2, 0xBEEFCAFE);
    }
    cbuffer_push_back(tx1, 0xBEEFCAFE + 1);
    cbuffer_push_back(tx1, 0xBEEFCAFE + 2);
    cbuffer_push_back(tx1, 0xBEEFCAFE + 3);
    cbuffer_push_back(tx1, 0xBEEFCAFE + 4);

    mu_assert("Error: rx2 should have no space left", 
        cbuffer_freespace(rx2) == 0);
    // sanity check
    mu_assert_eq("Error: output size != 4", cbuffer_size(tx1), 4);

    // do several transfers
    vmestream_transfer_data(test1);
    vmestream_transfer_data(test2);
    vmestream_transfer_data(test1);
    vmestream_transfer_data(test2);

    // no data should have been transferred
    mu_assert_eq("Error: tx_size != 4", *(test1->tx_size), 4);
    mu_assert("Error: rx2.pop != 0xDEADBEEF", 0xDEADBEEF == cbuffer_pop_front(rx2));
    cbuffer_pop_front(rx2);
    cbuffer_pop_front(rx2);

    // popping off rx2 should have freed 3 words, but not enough to transfer all
    // four
    vmestream_transfer_data(test1);
    vmestream_transfer_data(test2);

    mu_assert_eq("Error: tx_size != 4", *(test1->tx_size), 4);
    mu_assert("Errrr: rx2.pop not 0xBEEFCAFE", 0xBEEFCAFE == cbuffer_pop_front(rx2));

    cbuffer_pop_front(rx2);
    // now there is enough room for all the limbo data to be transferred to rx2
    vmestream_transfer_data(test1);
    vmestream_transfer_data(test2);

    mu_assert("Error: tx_size != 0", *(test1->tx_size) == 0);
    mu_assert("Error: tx1 not empty", 0 == cbuffer_size(tx1));
    for (int i = 0; i < 4; ++i) {
      mu_assert_eq("Unexpected data transferred", 
          cbuffer_value_at(rx2, cbuffer_size(rx2) - 4 + i), 0xBEEFCAFE + i + 1);
    }


    // free memory
    vmestream_destroy(test1);
    free(test2);
    cbuffer_free(tx1);
    cbuffer_free(rx1);
    cbuffer_free(tx2);
    cbuffer_free(rx2);

    return 0;
}
Пример #9
0
int main(void) {

  LOG_INFO("UART CTP FE echo test\n");

  init_platform();

  tx_buffer = cbuffer_new();
  rx_buffer = cbuffer_new();

  int Status;
  u16 DeviceId = UARTLITE_DEVICE_ID;     

  /*
   * Initialize the UartLite driver so that it's ready to use.
   */
  Status = XUartLite_Initialize(&UartLite, DeviceId);
  if (Status != XST_SUCCESS) {
    LOG_ERROR ("Error: could not initialize UART\n");
      return XST_FAILURE;
  }

  XUartLite_ResetFifos(&UartLite);

  /*
   * Perform a self-test to ensure that the hardware was built correctly.
   */
  Status = XUartLite_SelfTest(&UartLite);
  if (Status != XST_SUCCESS) {
    LOG_ERROR ("Error: self test failed\n");
      return XST_FAILURE;
  }

  /*
   * Connect the UartLite to the interrupt subsystem such that interrupts can
   * occur. This function is application specific.
   */
  Status = SetupInterruptSystem(&UartLite);
  if (Status != XST_SUCCESS) {
    LOG_ERROR ("Error: could not setup interrupts\n");
      return XST_FAILURE;
  }

  /*
   * Setup the handlers for the UartLite that will be called from the
   * interrupt context when data has been sent and received, specify a
   * pointer to the UartLite driver instance as the callback reference so
   * that the handlers are able to access the instance data.
   */
  XUartLite_SetSendHandler(&UartLite, SendHandler, &UartLite);
  XUartLite_SetRecvHandler(&UartLite, RecvHandler, &UartLite);

  /*
   * Enable the interrupt of the UartLite so that interrupts will occur.
   */
  XUartLite_EnableInterrupt(&UartLite);

  // bootstrap the READ
  LOG_DEBUG("Bootstrapping READ\n");
  XUartLite_Recv(&UartLite, (u8*)&rx_tmp_buffer, sizeof(uint32_t));

  LOG_INFO("Starting loop\n");

  /*  
  LOG_DEBUG("Sending 'wtf!'\n");
  currently_sending = 1;
  char help[4] = "wtf!";
  unsigned int ret = XUartLite_Send(&UartLite, (u8*)help, 4);
  LOG_DEBUG("WTF send complete return: %x\n", ret);
  */

  /* echo received data forever */
  unsigned int heartbeat = 0;
  while (1) {
    if (heartbeat++ % (1 << 8)) {
      //LOG_DEBUG("bump %x\n", heartbeat);
    }
    while (cbuffer_size(rx_buffer) && cbuffer_freespace(tx_buffer)) {
      uint32_t data = cbuffer_pop_front(rx_buffer);
      //LOG_DEBUG("Echoing data word %x\n", data);
      cbuffer_push_back(tx_buffer, data);
    }
    if (!currently_sending && cbuffer_size(tx_buffer)) {
      LOG_DEBUG("\nREINT SEND\n");
      currently_sending = 1;

      /* 
      if (XUartLite_IsSending(&UartLite)) {
        LOG_DEBUG("UART STAT: sending\n");
      } else {
        LOG_DEBUG("UART STAT: idle\n");
      }
      */

      unsigned int to_send = cbuffer_contiguous_data_size(tx_buffer) * sizeof(uint32_t);
      u8* output_ptr = (u8*)&(tx_buffer->data[tx_buffer->pos]);
      //LOG_DEBUG("REINIT %x\n", to_send);
      //LOG_DEBUG("SENDADDR %x\n", output_ptr);
      XUartLite_Send(&UartLite, output_ptr, to_send);
    }
  }

}