Пример #1
0
// Initialize batch queues and worker threads.
void
as_batch_init()
{
	if (cf_atomic32_incr(&g_batch_init) != 1) {
		return;
	}

	cf_info(AS_BATCH, "Initialize %d batch worker threads.", g_config.n_batch_threads);
	g_batch_queue = cf_queue_create(sizeof(batch_transaction), true);
	int max = g_config.n_batch_threads;

	for (int i = 0; i < max; i++) {
		pthread_create(&g_batch_threads[i], 0, batch_process_queue, (void*)g_batch_queue);
	}
}
Пример #2
0
int
cl_cluster_scan_init(cl_cluster* asc)
{
	// We do this lazily, during the first scan request, so make sure it's only
	// done once.
	if (cf_atomic32_incr(&asc->scan_initialized) > 1 || asc->scan_q) {
		return 0;
	}

	if (cf_debug_enabled()) {
		LOG("[DEBUG] cl_cluster_scan_init: creating %d threads\n", NUM_SCAN_THREADS);
	}

	// Create dispatch queue.
	asc->scan_q = cf_queue_create(sizeof(cl_scan_task), true);

	// Create thread pool.
	for (int i = 0; i < NUM_SCAN_THREADS; i++) {
		pthread_create(&asc->scan_threads[i], 0, cl_scan_worker, (void*)asc);
	}

	return 0;
}
Пример #3
0
void
latency_add(latency* l, uint64_t elapsed_ms)
{
	int index = latency_getindex(l, elapsed_ms);
	cf_atomic32_incr(&l->buckets[index]);
}
Пример #4
0
int
as_proxy_shipop(cf_node dst, write_request *wr)
{
	as_partition_id pid = as_partition_getid(wr->keyd);

	if (dst == 0) {
		cf_crash(AS_PROXY, "the destination should never be zero");
	}

	// Create a fabric message, fill it out.
	msg *m = as_fabric_msg_get(M_TYPE_PROXY);
	if (!m)	{
		return -1;
	}

	uint32_t tid = cf_atomic32_incr(&g_proxy_tid);

	msg_set_uint32(m, PROXY_FIELD_OP, PROXY_OP_REQUEST);
	msg_set_uint32(m, PROXY_FIELD_TID, tid);
	msg_set_buf(m, PROXY_FIELD_DIGEST, (void *) &wr->keyd, sizeof(cf_digest), MSG_SET_COPY);
	msg_set_buf(m, PROXY_FIELD_AS_PROTO, (void *) wr->msgp, as_proto_size_get(&wr->msgp->proto), MSG_SET_HANDOFF_MALLOC);
	msg_set_uint64(m, PROXY_FIELD_CLUSTER_KEY, as_paxos_get_cluster_key());
	msg_set_uint32(m, PROXY_FIELD_TIMEOUT_MS, wr->msgp->msg.transaction_ttl);
	wr->msgp = 0;

	// If it is shipped op.
	uint32_t info = 0;
	info |= PROXY_INFO_SHIPPED_OP;
	msg_set_uint32(m, PROXY_FIELD_INFO, info);

	cf_detail_digest(AS_PROXY, &wr->keyd, "SHIPPED_OP %s->WINNER msg %p Proxy Sent to %"PRIx64" %p tid(%d)",
			wr->proxy_msg ? "NONORIG" : "ORIG", m, dst, wr, tid);

	// Fill out a retransmit structure, insert into the retransmit hash.
	msg_incr_ref(m);
	proxy_request pr;
	pr.start_time  = wr->start_time;
	pr.end_time    = (wr->end_time != 0) ? wr->end_time : pr.start_time + g_config.transaction_max_ns;
	cf_rc_reserve(wr);
	pr.wr          = wr;
	pr.fab_msg     = m;
	pr.xmit_ms     = cf_getms() + g_config.transaction_retry_ms;
	pr.retry_interval_ms = g_config.transaction_retry_ms;
	pr.dest        = dst;
	pr.pid         = pid;
	pr.fd_h        = NULL;
	pr.batch_shared = NULL;
	pr.batch_index = 0;

	if (0 != shash_put(g_proxy_hash, &tid, &pr)) {
		cf_info(AS_PROXY, " shash_put failed, need cleanup code");
		return -1;
	}

	// Send to the remote node.
	int rv = as_fabric_send(dst, m, AS_FABRIC_PRIORITY_MEDIUM);
	if (rv != 0) {
		cf_detail(AS_PROXY, "SHIPPED_OP ORIG [Digest %"PRIx64"] Failed with %d", *(uint64_t *)&wr->keyd, rv);
		as_fabric_msg_put(m);
	}

	wr->shipped_op_initiator = true;
	cf_atomic_int_incr(&g_config.ldt_proxy_initiate);

	return 0;
}
Пример #5
0
// Make a request to another node.
//
// Note: there's a cheat here. 'as_msg' is used in a raw form, and includes
// structured data (version - type - nfields - sz ...) which should be made more
// wire-protocol-friendly.
int
as_proxy_divert(cf_node dst, as_transaction *tr, as_namespace *ns, uint64_t cluster_key)
{
	cf_detail(AS_PROXY, "proxy divert");

	cf_atomic_int_incr(&g_config.stat_proxy_reqs);
	if (tr->msgp && (tr->msgp->msg.info1 & AS_MSG_INFO1_XDR)) {
		cf_atomic_int_incr(&g_config.stat_proxy_reqs_xdr);
	}
	as_partition_id pid = as_partition_getid(tr->keyd);

	if (dst == 0) {
		// Get the list of replicas.
		dst = as_partition_getreplica_read(ns, pid);
	}

	// Create a fabric message, fill it out.
	msg *m = as_fabric_msg_get(M_TYPE_PROXY);
	if (!m)	{
		return -1;
	}

	uint32_t tid = cf_atomic32_incr(&g_proxy_tid);

	msg_set_uint32(m, PROXY_FIELD_OP, PROXY_OP_REQUEST);
	msg_set_uint32(m, PROXY_FIELD_TID, tid);
	msg_set_buf(m, PROXY_FIELD_DIGEST, (void *) &tr->keyd, sizeof(cf_digest), MSG_SET_COPY);
	msg_set_type msettype = tr->batch_shared ? MSG_SET_COPY : MSG_SET_HANDOFF_MALLOC;
	msg_set_buf(m, PROXY_FIELD_AS_PROTO, (void *) tr->msgp, as_proto_size_get(&tr->msgp->proto), msettype);
	msg_set_uint64(m, PROXY_FIELD_CLUSTER_KEY, cluster_key);
	msg_set_uint32(m, PROXY_FIELD_TIMEOUT_MS, tr->msgp->msg.transaction_ttl);

	tr->msgp = 0;

	cf_debug_digest(AS_PROXY, &tr->keyd, "proxy_divert: fab_msg %p dst %"PRIx64, m, dst);

	// Fill out a retransmit structure, insert into the retransmit hash.
	msg_incr_ref(m);
	proxy_request pr;
	pr.start_time = tr->start_time;
	pr.end_time = (tr->end_time != 0) ? tr->end_time : pr.start_time + g_config.transaction_max_ns;
	pr.fd_h = tr->proto_fd_h;
	tr->proto_fd_h = 0;
	pr.fab_msg = m;
	pr.xmit_ms = cf_getms() + g_config.transaction_retry_ms;
	pr.retry_interval_ms = g_config.transaction_retry_ms;
	pr.dest = dst;
	pr.pid = pid;
	pr.ns = ns;
	pr.wr = NULL;
	pr.batch_shared = tr->batch_shared;
	pr.batch_index = tr->batch_index;

	if (0 != shash_put(g_proxy_hash, &tid, &pr)) {
		cf_debug(AS_PROXY, " shash_put failed, need cleanup code");
		return -1;
	}

	// Send to the remote node.
	int rv = as_fabric_send(dst, m, AS_FABRIC_PRIORITY_MEDIUM);
	if (rv != 0) {
		cf_debug(AS_PROXY, "as_proxy_divert: returned error %d", rv);
		as_fabric_msg_put(m);
	}

	cf_atomic_int_incr(&g_config.proxy_initiate);

	return 0;
}
Пример #6
0
//Same as do_the_full_monte, but only till the command is sent to the node.
//Most of the code is duplicated. Bad.
int
cl_do_async_monte(cl_cluster *asc, int info1, int info2, const char *ns, const char *set, const cl_object *key,
			const cf_digest *digest, cl_bin **values, cl_operator operator, cl_operation **operations, 
			int *n_values, uint32_t *cl_gen, const cl_write_parameters *cl_w_p, uint64_t *trid, void *udata)

{
	cl_async_work	*workitem = NULL;

	uint8_t		wr_stack_buf[STACK_BUF_SZ];
	uint8_t		*wr_buf = wr_stack_buf;
	size_t		wr_buf_sz = sizeof(wr_stack_buf);
	int        	progress_timeout_ms;
	uint64_t 	deadline_ms;
	uint64_t	starttime, endtime;
	bool 		network_error;
	int 		fd = -1;
	int		rv = CITRUSLEAF_FAIL_CLIENT;	//Assume that this is a failure;

	// as_msg 		msg;
	cf_digest	d_ret;
	cl_cluster_node	*node = 0;

#if ONEASYNCFD
	if (shash_get_size(g_cl_async_hashtab) >= g_async_h_szlimit) {
		//cf_error("Async hashtab is full. Cannot insert any more elements");
		return CITRUSLEAF_FAIL_ASYNCQ_FULL;
	}
#else
	//If the async buffer is at the max limit, do not entertain more requests.
	if (cf_queue_sz(g_cl_async_q) >= cf_atomic32_get(g_async_q_szlimit)) {
		//cf_error("Async buffer is full. Cannot insert any more elements");
		return CITRUSLEAF_FAIL_ASYNCQ_FULL;
	}
#endif

	//Allocate memory for work item that will be added to the async work list

	if (cf_queue_sz(g_cl_workitems_freepool_q) > 0) {
		cf_queue_pop(g_cl_workitems_freepool_q, &workitem, CF_QUEUE_FOREVER);
	} else {
		workitem = malloc(sizeof(cl_async_work));
		if (workitem == NULL) {
			return CITRUSLEAF_FAIL_CLIENT;
		}
	}

	//Compile the write buffer to be sent to the cluster
	if (n_values && ( values || operations) ){
		cl_compile(info1, info2, 0, ns, set, key, digest, values?*values:NULL, operator, operations?*operations:NULL,
				*n_values , &wr_buf, &wr_buf_sz, cl_w_p, &d_ret, *trid,NULL,NULL, 0 /*udf_type*/);
	}else{
		cl_compile(info1, info2, 0, ns, set, key, digest, 0, 0, 0, 0, &wr_buf, &wr_buf_sz, cl_w_p, &d_ret, *trid,NULL,NULL, 0 /*udf_type*/);
	}	

	deadline_ms = 0;
	progress_timeout_ms = 0;
	if (cl_w_p && cl_w_p->timeout_ms) {
		deadline_ms = cf_getms() + cl_w_p->timeout_ms;
		// policy: if asking for a long timeout, give enough time to try twice
		if (cl_w_p->timeout_ms > 700) {
			progress_timeout_ms = cl_w_p->timeout_ms / 2;
		}
		else {
			progress_timeout_ms = cl_w_p->timeout_ms;
		}
	}
	else {
		progress_timeout_ms = g_async_nw_progress_timeout;
	}

	//Initialize the async work unit
	workitem->trid = *trid;
	workitem->deadline = deadline_ms;
	workitem->starttime = cf_getms();
	workitem->udata = udata;

    as_msg *msgp;
    // Hate special cases, but we have to clear the verify bit on delete verify
    if ( (info2 & CL_MSG_INFO2_DELETE) && (info1 & CL_MSG_INFO1_VERIFY))
    {
        msgp = (as_msg *)wr_buf;
        msgp->m.info1 &= ~CL_MSG_INFO1_VERIFY;
    }
    
    if (asc->compression_stat.compression_threshold > 0 
     && wr_buf_sz > (size_t)asc->compression_stat.compression_threshold)
    {
        /* Compression is enabled.
         * Packet size is above threshold.
         * Compress the data
         */
        uint8_t *compressed_buf = NULL;
        size_t compressed_buf_sz = 0;

        // Contstruct packet for compressed data.
        cf_packet_compression (wr_buf, wr_buf_sz, &compressed_buf, &compressed_buf_sz);
        if (compressed_buf)
        {
            // If original packet size is > 16k, cl_compile had allocated memory for it.
            // Free that memory.
            // cf_packet_compression will allocate memory for compressed packet
            if (wr_buf != wr_stack_buf) {
                free(wr_buf);
            }
             // Update stats.
            citrusleaf_cluster_put_compression_stat(asc, wr_buf_sz, compressed_buf_sz);	
            wr_buf =  compressed_buf;
            wr_buf_sz = compressed_buf_sz;
            //memcpy (wr_buf, compressed_buf, compressed_buf_sz);
            //wr_buf_sz = compressed_buf_sz;
            //free (compressed_buf);
        }
        //else compression failed, continue with uncompressed packet
        else
        {
            // Set compression stat
            citrusleaf_cluster_put_compression_stat(asc, wr_buf_sz, wr_buf_sz);	
        }
    }

	int try = 0;
	// retry request based on the write_policy
	do {
		network_error = false;
		try++;
#ifdef DEBUG		
		if (try > 1) {
			cf_debug("request retrying try %d tid %zu", try, (uint64_t)pthread_self());
		}
#endif        

		// Get an FD from a cluster. First get the probable node for the given digest.
		node = cl_cluster_node_get(asc, ns, &d_ret, info2 & CL_MSG_INFO2_WRITE ? true : false);
		if (!node) {
#ifdef DEBUG
			cf_debug("warning: no healthy nodes in cluster, retrying");
#endif
			usleep(10000);	//Sleep for 10ms
			goto Retry;
		}

		// Now get the dedicated async FD of this node
		starttime = cf_getms();
		fd = cl_cluster_node_fd_get(node, true);
		endtime = cf_getms();
		if ((endtime - starttime) > 10) {
			cf_debug("Time to get FD for a node (>10ms)=%"PRIu64, (endtime - starttime));
		}
		if (fd == -1) {
#ifdef DEBUG			
			cf_debug("warning: node %s has no async file descriptors, retrying transaction (tid %zu)",node->name,(uint64_t)pthread_self() );
#endif			
			usleep(1000);
			goto Retry;
		}

		// Send the command to the node
		starttime = cf_getms();
		rv = cf_socket_write_timeout(fd, wr_buf, wr_buf_sz, deadline_ms, progress_timeout_ms);
		endtime = cf_getms();
		if ((endtime - starttime) > 10) {
			cf_debug("Time to write to the socket (>10ms)=%"PRIu64, (endtime - starttime));
		}
		if (rv != 0) {
			cf_debug("Citrusleaf: write timeout or error when writing header to server - %d fd %d errno %d (tid %zu)",
					rv,fd,errno,(uint64_t)pthread_self());
			if (rv != ETIMEDOUT)
				network_error = true;
			goto Retry;
		}
		goto Ok;

Retry:
		if (network_error == true) {
			/* 
			 * In case of Async work (for XDS), it may be extreme to
			 * dun a node in case of network error. We just cleanup
			 * things and retry to connect to the remote cluster.
			 * The network error may be a transient one. As this is a
			 * network error, its is better to wait for some significant
			 * time before retrying.
			 */
			sleep(1);	//Sleep for 1sec
#if ONEASYNCFD
//Do not close the FD
#else
			cf_error("async sender: Closing the fd %d because of network error", fd);
			cf_close(fd);
			fd = -1;
#endif
		}

		if (fd != -1) {
			cf_error("async sender: Closing the fd %d because of retry", fd);
			cf_close(fd);
			fd = -1;
		}

		if (node) {
			cl_cluster_node_put(node); 
			node = 0; 
		}

		if (deadline_ms && (deadline_ms < cf_getms() ) ) {
#ifdef DEBUG            
			cf_debug("async sender: out of time : deadline %"PRIu64" now %"PRIu64, deadline_ms, cf_getms());
#endif            
			rv = CITRUSLEAF_FAIL_TIMEOUT;
			goto Error;
		}
	} while ( (cl_w_p == 0) || (cl_w_p->w_pol == CL_WRITE_RETRY) );

Error:	
#ifdef DEBUG	
	cf_debug("exiting with failure: network_error %d wpol %d timeleft %d rv %d",
			(int)network_error, (int)(cl_w_p ? cl_w_p->w_pol : 0), 
			(int)(deadline_ms - cf_getms() ), rv );
#endif	

	if (wr_buf != wr_stack_buf) {
		free(wr_buf);
	}

#if ONEASYNCFD
	//Do not close the FD
#else
	//If it is a network error, the fd would be closed and set to -1.
	//So, we reach this place with a valid FD in case of timeout.
	if (fd != -1) {
		cf_error("async sender: Closing the fd %d because of timeout", fd);
		cf_close(fd);
	}
#endif

	return(rv);
Ok:
	/*
	 * We cannot release the node here as the asyc FD associated
	 * with this node may get closed. We should do it only when
	 * we got back the ack for the async command that we just did.
	 */

	//As we sent the command successfully, add it to the async work list
	workitem->node = node;
	workitem->fd = fd;
	//We are storing only the pointer to the workitem
#if ONEASYNCFD
	if (shash_put_unique(g_cl_async_hashtab, trid, &workitem) != SHASH_OK) {
		//This should always succeed.
		cf_error("Unable to add unique entry into the hash table");
	}
	cf_queue_push(node->asyncwork_q, &workitem);	//Also put in the node's q
#else
	cf_queue_push(g_cl_async_q, &workitem);
#endif

	if (wr_buf != wr_stack_buf) {
		free(wr_buf);
	}

	rv = CITRUSLEAF_OK;
	return rv;

}

int citrusleaf_async_reinit(int size_limit, unsigned int num_receiver_threads)
{
	// int num_threads;

	if (0 == cf_atomic32_get(g_async_initialized)) {
		cf_error("Async client not initialized cannot reinit");
		return -1;
	}
	
	if (num_receiver_threads > MAX_ASYNC_RECEIVER_THREADS) {
			//Limit the threads to the max value even if caller asks for it
			num_receiver_threads = MAX_ASYNC_RECEIVER_THREADS;
	}

	// If number of thread is increased create more threads
	if (num_receiver_threads > g_async_num_threads) {
		unsigned int i;
		for (i = g_async_num_threads; i < num_receiver_threads; i++) {
			pthread_create(&g_async_reciever[i], 0, async_receiver_fn, NULL);
		}
	}
	else {
		// else just reset the number the async threads will kill themselves
		cf_atomic32_set(&g_async_num_threads, num_receiver_threads);
	}

	cf_atomic32_set(&g_async_q_szlimit , size_limit);
	return ( 0 );

}
int citrusleaf_async_init(int size_limit, int num_receiver_threads, cl_async_fail_cb fail_cb_fn, cl_async_success_cb success_cb_fn)
{
	int i, num_threads;

	//Make sure that we do the initialization only once
	if (1 == cf_atomic32_incr(&g_async_initialized)) {

		// Start the receiver threads
		num_threads = num_receiver_threads;
		if (num_threads > MAX_ASYNC_RECEIVER_THREADS) {
			//Limit the threads to the max value even if caller asks for it
			num_threads = MAX_ASYNC_RECEIVER_THREADS;
		}

#if ONEASYNCFD
		g_async_h_szlimit = size_limit * 3;	//Max number of elements in the hash table
		g_async_h_buckets = g_async_h_szlimit/10;//Number of buckets in the hash table

		if (shash_create(&g_cl_async_hashtab, async_trid_hash, sizeof(uint64_t), sizeof(cl_async_work *),
					g_async_h_buckets, SHASH_CR_MT_BIGLOCK) != SHASH_OK) {
			cf_error("Failed to initialize the async work hastable");
			cf_atomic32_decr(&g_async_initialized);
			return -1;
		}
#else
		// create work queue
		g_async_q_szlimit = size_limit;
		if ((g_cl_async_q = cf_queue_create(sizeof(cl_async_work *), true)) == NULL) {
			cf_error("Failed to initialize the async work queue");
			cf_atomic32_decr(&g_async_initialized);
			return -1;
		}

		for (i=0; i<num_threads; i++) {
			pthread_create(&g_async_reciever[i], 0, async_receiver_fn, NULL);
		}
		g_async_num_threads = num_threads;
#endif

		if ((g_cl_workitems_freepool_q = cf_queue_create(sizeof(cl_async_work *), true)) == NULL) {
			cf_error("Failed to create memory pool for workitems");
			return -1;
		}

		g_fail_cb_fn = fail_cb_fn;
		g_success_cb_fn = success_cb_fn;

		// Initialize the stats
		g_async_stats.retries = 0;
		g_async_stats.dropouts = 0;

	}
	
	return(0);	
}
Пример #7
0
static void* 
async_receiver_fn(void *thdata)
{
	int 		rv = -1;
	bool 		network_error = false;
	cl_async_work	*workitem = NULL;
	// cl_async_work	*tmpworkitem = NULL;
	as_msg 		msg;
	cf_queue	*q_to_use = NULL;
	cl_cluster_node	*thisnode = NULL;

	uint8_t		rd_stack_buf[STACK_BUF_SZ];	
	uint8_t		*rd_buf = rd_stack_buf;
	size_t		rd_buf_sz = 0;

	uint64_t	acktrid;
	// uint64_t	starttime, endtime;
	int		progress_timeout_ms;
	unsigned int 	thread_id = cf_atomic32_incr(&g_thread_count);

	if (thdata == NULL) {
		q_to_use = g_cl_async_q;
	} else {
		thisnode = (cl_cluster_node *)thdata;
		q_to_use = thisnode->asyncwork_q;
	}
    
	//Infinite loop which keeps picking work items from the list and try to find the end result 
	while(1) {
		network_error = false;
#if ONEASYNCFD
		if(thisnode->dunned == true) {
			do {
				rv = cf_queue_pop(thisnode->asyncwork_q, &workitem, CF_QUEUE_NOWAIT);
				if (rv == CF_QUEUE_OK) {
					cl_cluster_node_put(thisnode);
					free(workitem);
				}
			} while (rv == CF_QUEUE_OK);

			//We want to delete all the workitems of this node
			shash_reduce_delete(g_cl_async_hashtab, cl_del_node_asyncworkitems, thisnode);
			break;
		}
#endif
		//This call will block if there is no element in the queue
		cf_queue_pop(q_to_use, &workitem, CF_QUEUE_FOREVER);
		//TODO: What if the node gets dunned while this pop call is blocked ?
#if ONEASYNCFD
		//cf_debug("Elements remaining in this node's queue=%d, Hash table size=%d",
		//		cf_queue_sz(thisnode->asyncwork_q), shash_get_size(g_cl_async_hashtab));
#endif

		// If we have no progress in 50ms, we should move to the next workitem 
		// and revisit this workitem at a later stage
		progress_timeout_ms = DEFAULT_PROGRESS_TIMEOUT;

		// Read into this fine cl_msg, which is the short header
		rv = cf_socket_read_timeout(workitem->fd, (uint8_t *) &msg, sizeof(as_msg), workitem->deadline, progress_timeout_ms);
		if (rv) {
#if DEBUG
			cf_debug("Citrusleaf: error when reading header from server - rv %d fd %d", rv, workitem->fd);
#endif
			if (rv != ETIMEDOUT) {
				cf_error("Citrusleaf: error when reading header from server - rv %d fd %d",rv,workitem->fd);
				network_error = true;
				goto Error;
			} else {
				goto Retry;
			}

		}
#ifdef DEBUG_VERBOSE
		dump_buf("read header from cluster", (uint8_t *) &msg, sizeof(cl_msg));
#endif
		cl_proto_swap(&msg.proto);
		cl_msg_swap_header(&msg.m);

		// second read for the remainder of the message 
		rd_buf_sz =  msg.proto.sz  - msg.m.header_sz;
		if (rd_buf_sz > 0) {
			if (rd_buf_sz > sizeof(rd_stack_buf)) {
				rd_buf = malloc(rd_buf_sz);
				if (!rd_buf) {
					cf_error("malloc fail: trying %zu",rd_buf_sz);
					rv = -1; 
					goto Error; 
				}
			}

			rv = cf_socket_read_timeout(workitem->fd, rd_buf, rd_buf_sz, workitem->deadline, progress_timeout_ms);
			if (rv) {
				//We already read some part of the message before but failed to read the
				//remaining data for whatever reason (network error or timeout). We cannot
				//reread as we already read partial data. Declare this as error.
				cf_error("Timeout after reading the header but before reading the body");
				goto Error;
			}
#ifdef DEBUG_VERBOSE
			dump_buf("read body from cluster", rd_buf, rd_buf_sz);
#endif	
		}

		rv = CITRUSLEAF_OK;
		goto Ok;

Retry:
		//We are trying to postpone the reading
		if (workitem->deadline && workitem->deadline < cf_getms()) {
			cf_error("async receiver: out of time : deadline %"PRIu64" now %"PRIu64,
					workitem->deadline, cf_getms());
			//cf_error("async receiver: Workitem missed the final deadline");
			rv = CITRUSLEAF_FAIL_TIMEOUT;
			goto Error;
		} else {
			//We have time. Push the element back to the queue to be considered later
			cf_queue_push(q_to_use, &workitem);
		}

		//If we allocated memory in this loop, release it.
		if (rd_buf && (rd_buf != rd_stack_buf)) {
			free(rd_buf);
		}

		cf_atomic_int_incr(&g_async_stats.retries);

		continue;

Error:
		if (network_error == true) {
			/* 
			 * In case of Async work (for XDS), it may be extreme to
			 * dun a node in case of network error. We just cleanup
			 * things and retry to connect to the remote cluster.
			 * The network error may be a transient one.
			 */
		} 

#if ONEASYNCFD
//Do not close FD
#else
		//We do not know the state of FD. It may have pending data to be read.
		//We cannot reuse the FD. So, close it to be on safe side.
		cf_error("async receiver: Closing the fd %d because of error", workitem->fd);
		cf_close(workitem->fd);
		workitem->fd = -1;
#endif
		cf_atomic_int_incr(&g_async_stats.dropouts);
		//Continue down with what we do during an Ok

		//Inform the caller that there is no response from the server for this workitem.
		//No response does not mean that the work is not done. The work might be 
		//successfully completed on the server side, we just didnt get response for it.
		if (g_fail_cb_fn) {
			g_fail_cb_fn(workitem->udata, rv, workitem->starttime);
		}
Ok:
		//rd_buf may not be there during an error condition.
		if (rd_buf && (rv == CITRUSLEAF_OK)) {
			//As of now, async functionality is there only for put call.
			//In put call, we do not get anything back other than the trid field.
			//So, just pass variable to get back the trid and ignore others.
			if (0 != cl_parse(&msg.m, rd_buf, rd_buf_sz, NULL, NULL, NULL, &acktrid, NULL)) {
				rv = CITRUSLEAF_FAIL_UNKNOWN;
			}
			else {
				rv = msg.m.result_code;
				if (workitem->trid != acktrid) {
#if ONEASYNCFD
					//It is likely that we may get response for a different trid.
					//Just delete the correct one from the queue 
					//put back the current workitem back in the queue.
					shash_get(g_cl_async_hashtab, &acktrid, &tmpworkitem);
					cf_queue_delete(q_to_use, &tmpworkitem, true);
					cf_queue_push(q_to_use, &workitem);
					//From now on workitem will be the one for which we got ack
					workitem = tmpworkitem;
#endif
#ifdef DEBUG
					cf_debug("Got reply for a different trid. Expected=%"PRIu64" Got=%"PRIu64" FD=%d",
							workitem->trid, acktrid, workitem->fd);
#endif
				}
			}

			if (g_success_cb_fn) {
				g_success_cb_fn(workitem->udata, rv, workitem->starttime);
			}
		}

		//Remember to put back the FD into the pool, if it is re-usable.
		if (workitem->fd != -1) {
			cl_cluster_node_fd_put(workitem->node, workitem->fd, true);
		}
		//Also decrement the reference count for this node
		cl_cluster_node_put(workitem->node);

#if ONEASYNCFD
		//Delete the item from the global hashtable
		if (shash_delete(g_cl_async_hashtab, &workitem->trid) != SHASH_OK)
		{
#if DEBUG
			cf_debug("Failure while trying to delete trid=%"PRIu64" from hashtable", workitem->trid);
#endif
		}
#endif

		//Push it back into the free pool. If the attempt fails, free it.
		if (cf_queue_push(g_cl_workitems_freepool_q, &workitem) == -1) {
			free(workitem);
		}

		//If we allocated memory in this loop, release it.
		if (rd_buf && (rd_buf != rd_stack_buf)) {
			free(rd_buf);
		}

		// Kick this thread out if its ID is greater than total
		if (thread_id > cf_atomic32_get(g_async_num_threads)) {
			cf_atomic32_decr(&g_thread_count);
			return NULL;
		}
	}//The infnite loop

	return NULL;
}