Пример #1
0
  void Ukf::correct(const Measurement &measurement)
  {
    FB_DEBUG("---------------------- Ukf::correct ----------------------\n" <<
             "State is:\n" << state_ <<
             "\nMeasurement is:\n" << measurement.measurement_ <<
             "\nMeasurement covariance is:\n" << measurement.covariance_ << "\n");

    // In our implementation, it may be that after we call predict once, we call correct
    // several times in succession (multiple measurements with different time stamps). In
    // that event, the sigma points need to be updated to reflect the current state.
    if(!uncorrected_)
    {
      // Take the square root of a small fraction of the estimateErrorCovariance_ using LL' decomposition
      weightedCovarSqrt_ = ((STATE_SIZE + lambda_) * estimateErrorCovariance_).llt().matrixL();

      // Compute sigma points

      // First sigma point is the current state
      sigmaPoints_[0] = state_;

      // Next STATE_SIZE sigma points are state + weightedCovarSqrt_[ith column]
      // STATE_SIZE sigma points after that are state - weightedCovarSqrt_[ith column]
      for(size_t sigmaInd = 0; sigmaInd < STATE_SIZE; ++sigmaInd)
      {
        sigmaPoints_[sigmaInd + 1] = state_ + weightedCovarSqrt_.col(sigmaInd);
        sigmaPoints_[sigmaInd + 1 + STATE_SIZE] = state_ - weightedCovarSqrt_.col(sigmaInd);
      }
    }

    // We don't want to update everything, so we need to build matrices that only update
    // the measured parts of our state vector

    // First, determine how many state vector values we're updating
    std::vector<size_t> updateIndices;
    for (size_t i = 0; i < measurement.updateVector_.size(); ++i)
    {
      if (measurement.updateVector_[i])
      {
        // Handle nan and inf values in measurements
        if (std::isnan(measurement.measurement_(i)))
        {
          FB_DEBUG("Value at index " << i << " was nan. Excluding from update.\n");
        }
        else if (std::isinf(measurement.measurement_(i)))
        {
          FB_DEBUG("Value at index " << i << " was inf. Excluding from update.\n");
        }
        else
        {
          updateIndices.push_back(i);
        }
      }
    }

    FB_DEBUG("Update indices are:\n" << updateIndices << "\n");

    size_t updateSize = updateIndices.size();

    // Now set up the relevant matrices
    Eigen::VectorXd stateSubset(updateSize);                             // x (in most literature)
    Eigen::VectorXd measurementSubset(updateSize);                       // z
    Eigen::MatrixXd measurementCovarianceSubset(updateSize, updateSize); // R
    Eigen::MatrixXd stateToMeasurementSubset(updateSize, STATE_SIZE);    // H
    Eigen::MatrixXd kalmanGainSubset(STATE_SIZE, updateSize);            // K
    Eigen::VectorXd innovationSubset(updateSize);                        // z - Hx
    Eigen::VectorXd predictedMeasurement(updateSize);
    Eigen::VectorXd sigmaDiff(updateSize);
    Eigen::MatrixXd predictedMeasCovar(updateSize, updateSize);
    Eigen::MatrixXd crossCovar(STATE_SIZE, updateSize);

    std::vector<Eigen::VectorXd> sigmaPointMeasurements(sigmaPoints_.size(), Eigen::VectorXd(updateSize));

    stateSubset.setZero();
    measurementSubset.setZero();
    measurementCovarianceSubset.setZero();
    stateToMeasurementSubset.setZero();
    kalmanGainSubset.setZero();
    innovationSubset.setZero();
    predictedMeasurement.setZero();
    predictedMeasCovar.setZero();
    crossCovar.setZero();

    // Now build the sub-matrices from the full-sized matrices
    for (size_t i = 0; i < updateSize; ++i)
    {
      measurementSubset(i) = measurement.measurement_(updateIndices[i]);
      stateSubset(i) = state_(updateIndices[i]);

      for (size_t j = 0; j < updateSize; ++j)
      {
        measurementCovarianceSubset(i, j) = measurement.covariance_(updateIndices[i], updateIndices[j]);
      }

      // Handle negative (read: bad) covariances in the measurement. Rather
      // than exclude the measurement or make up a covariance, just take
      // the absolute value.
      if (measurementCovarianceSubset(i, i) < 0)
      {
        FB_DEBUG("WARNING: Negative covariance for index " << i <<
                 " of measurement (value is" << measurementCovarianceSubset(i, i) <<
                 "). Using absolute value...\n");

        measurementCovarianceSubset(i, i) = ::fabs(measurementCovarianceSubset(i, i));
      }

      // If the measurement variance for a given variable is very
      // near 0 (as in e-50 or so) and the variance for that
      // variable in the covariance matrix is also near zero, then
      // the Kalman gain computation will blow up. Really, no
      // measurement can be completely without error, so add a small
      // amount in that case.
      if (measurementCovarianceSubset(i, i) < 1e-9)
      {
        measurementCovarianceSubset(i, i) = 1e-9;

        FB_DEBUG("WARNING: measurement had very small error covariance for index " <<
                 updateIndices[i] <<
                 ". Adding some noise to maintain filter stability.\n");
      }
    }

    // The state-to-measurement function, h, will now be a measurement_size x full_state_size
    // matrix, with ones in the (i, i) locations of the values to be updated
    for (size_t i = 0; i < updateSize; ++i)
    {
      stateToMeasurementSubset(i, updateIndices[i]) = 1;
    }

    FB_DEBUG("Current state subset is:\n" << stateSubset <<
             "\nMeasurement subset is:\n" << measurementSubset <<
             "\nMeasurement covariance subset is:\n" << measurementCovarianceSubset <<
             "\nState-to-measurement subset is:\n" << stateToMeasurementSubset << "\n");

    // (1) Generate sigma points, use them to generate a predicted measurement
    for(size_t sigmaInd = 0; sigmaInd < sigmaPoints_.size(); ++sigmaInd)
    {
      sigmaPointMeasurements[sigmaInd] = stateToMeasurementSubset * sigmaPoints_[sigmaInd];
      predictedMeasurement += stateWeights_[sigmaInd] * sigmaPointMeasurements[sigmaInd];
    }

    // (2) Use the sigma point measurements and predicted measurement to compute a predicted
    // measurement covariance matrix P_zz and a state/measurement cross-covariance matrix P_xz.
    for(size_t sigmaInd = 0; sigmaInd < sigmaPoints_.size(); ++sigmaInd)
    {
      sigmaDiff = sigmaPointMeasurements[sigmaInd] - predictedMeasurement;
      predictedMeasCovar += covarWeights_[sigmaInd] * (sigmaDiff * sigmaDiff.transpose());
      crossCovar += covarWeights_[sigmaInd] * ((sigmaPoints_[sigmaInd] - state_) * sigmaDiff.transpose());
    }

    // (3) Compute the Kalman gain, making sure to use the actual measurement covariance: K = P_xz * (P_zz + R)^-1
    Eigen::MatrixXd invInnovCov  = (predictedMeasCovar + measurementCovarianceSubset).inverse();
    kalmanGainSubset = crossCovar * invInnovCov;

    // (4) Apply the gain to the difference between the actual and predicted measurements: x = x + K(z - z_hat)
    innovationSubset = (measurementSubset - predictedMeasurement);

    // (5) Check Mahalanobis distance of innovation
    if (checkMahalanobisThreshold(innovationSubset, invInnovCov, measurement.mahalanobisThresh_))
    {
      // Wrap angles in the innovation
      for (size_t i = 0; i < updateSize; ++i)
      {
        if (updateIndices[i] == StateMemberRoll || updateIndices[i] == StateMemberPitch || updateIndices[i] == StateMemberYaw)
        {
          while (innovationSubset(i) < -PI)
          {
            innovationSubset(i) += TAU;
          }

          while (innovationSubset(i) > PI)
          {
            innovationSubset(i) -= TAU;
          }
        }
      }

      state_ = state_ + kalmanGainSubset * innovationSubset;

      // (6) Compute the new estimate error covariance P = P - (K * P_zz * K')
      estimateErrorCovariance_ = estimateErrorCovariance_.eval() - (kalmanGainSubset * predictedMeasCovar * kalmanGainSubset.transpose());

      wrapStateAngles();

      // Mark that we need to re-compute sigma points for successive corrections
      uncorrected_ = false;

      FB_DEBUG("Predicated measurement covariance is:\n" << predictedMeasCovar <<
               "\nCross covariance is:\n" << crossCovar <<
               "\nKalman gain subset is:\n" << kalmanGainSubset <<
               "\nInnovation:\n" << innovationSubset <<
               "\nCorrected full state is:\n" << state_ <<
               "\nCorrected full estimate error covariance is:\n" << estimateErrorCovariance_ <<
               "\n\n---------------------- /Ukf::correct ----------------------\n");
    }
  }
Пример #2
0
  void Ekf::correct(const Measurement &measurement)
  {
    FB_DEBUG("---------------------- Ekf::correct ----------------------\n" <<
             "State is:\n" << state_ << "\n"
             "Topic is:\n" << measurement.topicName_ << "\n"
             "Measurement is:\n" << measurement.measurement_ << "\n"
             "Measurement topic name is:\n" << measurement.topicName_ << "\n\n"
             "Measurement covariance is:\n" << measurement.covariance_ << "\n");

    // We don't want to update everything, so we need to build matrices that only update
    // the measured parts of our state vector. Throughout prediction and correction, we
    // attempt to maximize efficiency in Eigen.

    // First, determine how many state vector values we're updating
    std::vector<size_t> updateIndices;
    for (size_t i = 0; i < measurement.updateVector_.size(); ++i)
    {
      if (measurement.updateVector_[i])
      {
        // Handle nan and inf values in measurements
        if (std::isnan(measurement.measurement_(i)))
        {
          FB_DEBUG("Value at index " << i << " was nan. Excluding from update.\n");
        }
        else if (std::isinf(measurement.measurement_(i)))
        {
          FB_DEBUG("Value at index " << i << " was inf. Excluding from update.\n");
        }
        else
        {
          updateIndices.push_back(i);
        }
      }
    }

    FB_DEBUG("Update indices are:\n" << updateIndices << "\n");

    size_t updateSize = updateIndices.size();

    // Now set up the relevant matrices
    Eigen::VectorXd stateSubset(updateSize);                              // x (in most literature)
    Eigen::VectorXd measurementSubset(updateSize);                        // z
    Eigen::MatrixXd measurementCovarianceSubset(updateSize, updateSize);  // R
    Eigen::MatrixXd stateToMeasurementSubset(updateSize, state_.rows());  // H
    Eigen::MatrixXd kalmanGainSubset(state_.rows(), updateSize);          // K
    Eigen::VectorXd innovationSubset(updateSize);                         // z - Hx

    stateSubset.setZero();
    measurementSubset.setZero();
    measurementCovarianceSubset.setZero();
    stateToMeasurementSubset.setZero();
    kalmanGainSubset.setZero();
    innovationSubset.setZero();

    // Now build the sub-matrices from the full-sized matrices
    for (size_t i = 0; i < updateSize; ++i)
    {
      measurementSubset(i) = measurement.measurement_(updateIndices[i]);
      stateSubset(i) = state_(updateIndices[i]);

      for (size_t j = 0; j < updateSize; ++j)
      {
        measurementCovarianceSubset(i, j) = measurement.covariance_(updateIndices[i], updateIndices[j]);
      }

      // Handle negative (read: bad) covariances in the measurement. Rather
      // than exclude the measurement or make up a covariance, just take
      // the absolute value.
      if (measurementCovarianceSubset(i, i) < 0)
      {
        FB_DEBUG("WARNING: Negative covariance for index " << i <<
                 " of measurement (value is" << measurementCovarianceSubset(i, i) <<
                 "). Using absolute value...\n");

        measurementCovarianceSubset(i, i) = ::fabs(measurementCovarianceSubset(i, i));
      }

      // If the measurement variance for a given variable is very
      // near 0 (as in e-50 or so) and the variance for that
      // variable in the covariance matrix is also near zero, then
      // the Kalman gain computation will blow up. Really, no
      // measurement can be completely without error, so add a small
      // amount in that case.
      if (measurementCovarianceSubset(i, i) < 1e-9)
      {
        FB_DEBUG("WARNING: measurement had very small error covariance for index " << updateIndices[i] <<
                 ". Adding some noise to maintain filter stability.\n");

        measurementCovarianceSubset(i, i) = 1e-9;
      }
    }

    // The state-to-measurement function, h, will now be a measurement_size x full_state_size
    // matrix, with ones in the (i, i) locations of the values to be updated
    for (size_t i = 0; i < updateSize; ++i)
    {
      stateToMeasurementSubset(i, updateIndices[i]) = 1;
    }

    FB_DEBUG("Current state subset is:\n" << stateSubset <<
             "\nMeasurement subset is:\n" << measurementSubset <<
             "\nMeasurement covariance subset is:\n" << measurementCovarianceSubset <<
             "\nState-to-measurement subset is:\n" << stateToMeasurementSubset << "\n");

    // (1) Compute the Kalman gain: K = (PH') / (HPH' + R)
    Eigen::MatrixXd pht = estimateErrorCovariance_ * stateToMeasurementSubset.transpose();
    Eigen::MatrixXd hphrInv  = (stateToMeasurementSubset * pht + measurementCovarianceSubset).inverse();
    kalmanGainSubset.noalias() = pht * hphrInv;

    innovationSubset = (measurementSubset - stateSubset);

    // Wrap angles in the innovation
    for (size_t i = 0; i < updateSize; ++i)
    {
      if (updateIndices[i] == StateMemberRoll  ||
          updateIndices[i] == StateMemberPitch ||
          updateIndices[i] == StateMemberYaw)
      {
        while (innovationSubset(i) < -PI)
        {
          innovationSubset(i) += TAU;
        }

        while (innovationSubset(i) > PI)
        {
          innovationSubset(i) -= TAU;
        }
      }
    }
    
    // (2) Check Mahalanobis distance between mapped measurement and state.
    if (checkMahalanobisThreshold(innovationSubset, hphrInv, measurement.mahalanobisThresh_))
    {
      // (3) Apply the gain to the difference between the state and measurement: x = x + K(z - Hx)
      state_.noalias() += kalmanGainSubset * innovationSubset;

      // (4) Update the estimate error covariance using the Joseph form: (I - KH)P(I - KH)' + KRK'
      Eigen::MatrixXd gainResidual = identity_;
      gainResidual.noalias() -= kalmanGainSubset * stateToMeasurementSubset;
      estimateErrorCovariance_ = gainResidual * estimateErrorCovariance_ * gainResidual.transpose();
      estimateErrorCovariance_.noalias() += kalmanGainSubset *
                                            measurementCovarianceSubset *
                                            kalmanGainSubset.transpose();

      // Handle wrapping of angles
      wrapStateAngles();

      FB_DEBUG("Kalman gain subset is:\n" << kalmanGainSubset <<
               "\nInnovation is:\n" << innovationSubset <<
               "\nCorrected full state is:\n" << state_ <<
               "\nCorrected full estimate error covariance is:\n" << estimateErrorCovariance_ <<
               "\n\n---------------------- /Ekf::correct ----------------------\n");
    }
  }