int f2c_chpr2(char* uplo, integer* N, complex* alpha, complex* X, integer* incX, complex* Y, integer* incY, complex* Ap) { chpr2_(uplo, N, alpha, X, incX, Y, incY, Ap); return 0; }
void chpr2(char uplo, int n, complex *alpha, complex *x, int incx, complex *y, int incy, complex *a ) { chpr2_( &uplo, &n, alpha, x, &incx, y, &incy, a ); }
/* Subroutine */ int chpgst_(integer *itype, char *uplo, integer *n, complex * ap, complex *bp, integer *info, ftnlen uplo_len) { /* System generated locals */ integer i__1, i__2, i__3, i__4; real r__1, r__2; complex q__1, q__2, q__3; /* Local variables */ static integer j, k, j1, k1, jj, kk; static complex ct; static real ajj; static integer j1j1; static real akk; static integer k1k1; static real bjj, bkk; extern /* Subroutine */ int chpr2_(char *, integer *, complex *, complex * , integer *, complex *, integer *, complex *, ftnlen); extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer *, complex *, integer *); extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int chpmv_(char *, integer *, complex *, complex * , complex *, integer *, complex *, complex *, integer *, ftnlen), caxpy_(integer *, complex *, complex *, integer *, complex *, integer *), ctpmv_(char *, char *, char *, integer *, complex *, complex *, integer *, ftnlen, ftnlen, ftnlen); static logical upper; extern /* Subroutine */ int ctpsv_(char *, char *, char *, integer *, complex *, complex *, integer *, ftnlen, ftnlen, ftnlen), csscal_( integer *, real *, complex *, integer *), xerbla_(char *, integer *, ftnlen); /* -- LAPACK routine (version 3.0) -- */ /* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */ /* Courant Institute, Argonne National Lab, and Rice University */ /* September 30, 1994 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CHPGST reduces a complex Hermitian-definite generalized */ /* eigenproblem to standard form, using packed storage. */ /* If ITYPE = 1, the problem is A*x = lambda*B*x, */ /* and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H) */ /* If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or */ /* B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L. */ /* B must have been previously factorized as U**H*U or L*L**H by CPPTRF. */ /* Arguments */ /* ========= */ /* ITYPE (input) INTEGER */ /* = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H); */ /* = 2 or 3: compute U*A*U**H or L**H*A*L. */ /* UPLO (input) CHARACTER */ /* = 'U': Upper triangle of A is stored and B is factored as */ /* U**H*U; */ /* = 'L': Lower triangle of A is stored and B is factored as */ /* L*L**H. */ /* N (input) INTEGER */ /* The order of the matrices A and B. N >= 0. */ /* AP (input/output) COMPLEX array, dimension (N*(N+1)/2) */ /* On entry, the upper or lower triangle of the Hermitian matrix */ /* A, packed columnwise in a linear array. The j-th column of A */ /* is stored in the array AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */ /* On exit, if INFO = 0, the transformed matrix, stored in the */ /* same format as A. */ /* BP (input) COMPLEX array, dimension (N*(N+1)/2) */ /* The triangular factor from the Cholesky factorization of B, */ /* stored in the same format as A, as returned by CPPTRF. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --bp; --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, "U", (ftnlen)1, (ftnlen)1); if (*itype < 1 || *itype > 3) { *info = -1; } else if (! upper && ! lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) { *info = -2; } else if (*n < 0) { *info = -3; } if (*info != 0) { i__1 = -(*info); xerbla_("CHPGST", &i__1, (ftnlen)6); return 0; } if (*itype == 1) { if (upper) { /* Compute inv(U')*A*inv(U) */ /* J1 and JJ are the indices of A(1,j) and A(j,j) */ jj = 0; i__1 = *n; for (j = 1; j <= i__1; ++j) { j1 = jj + 1; jj += j; /* Compute the j-th column of the upper triangle of A */ i__2 = jj; i__3 = jj; r__1 = ap[i__3].r; ap[i__2].r = r__1, ap[i__2].i = 0.f; i__2 = jj; bjj = bp[i__2].r; ctpsv_(uplo, "Conjugate transpose", "Non-unit", &j, &bp[1], & ap[j1], &c__1, (ftnlen)1, (ftnlen)19, (ftnlen)8); i__2 = j - 1; q__1.r = -1.f, q__1.i = -0.f; chpmv_(uplo, &i__2, &q__1, &ap[1], &bp[j1], &c__1, &c_b1, &ap[ j1], &c__1, (ftnlen)1); i__2 = j - 1; r__1 = 1.f / bjj; csscal_(&i__2, &r__1, &ap[j1], &c__1); i__2 = jj; i__3 = jj; i__4 = j - 1; cdotc_(&q__3, &i__4, &ap[j1], &c__1, &bp[j1], &c__1); q__2.r = ap[i__3].r - q__3.r, q__2.i = ap[i__3].i - q__3.i; q__1.r = q__2.r / bjj, q__1.i = q__2.i / bjj; ap[i__2].r = q__1.r, ap[i__2].i = q__1.i; /* L10: */ } } else { /* Compute inv(L)*A*inv(L') */ /* KK and K1K1 are the indices of A(k,k) and A(k+1,k+1) */ kk = 1; i__1 = *n; for (k = 1; k <= i__1; ++k) { k1k1 = kk + *n - k + 1; /* Update the lower triangle of A(k:n,k:n) */ i__2 = kk; akk = ap[i__2].r; i__2 = kk; bkk = bp[i__2].r; /* Computing 2nd power */ r__1 = bkk; akk /= r__1 * r__1; i__2 = kk; ap[i__2].r = akk, ap[i__2].i = 0.f; if (k < *n) { i__2 = *n - k; r__1 = 1.f / bkk; csscal_(&i__2, &r__1, &ap[kk + 1], &c__1); r__1 = akk * -.5f; ct.r = r__1, ct.i = 0.f; i__2 = *n - k; caxpy_(&i__2, &ct, &bp[kk + 1], &c__1, &ap[kk + 1], &c__1) ; i__2 = *n - k; q__1.r = -1.f, q__1.i = -0.f; chpr2_(uplo, &i__2, &q__1, &ap[kk + 1], &c__1, &bp[kk + 1] , &c__1, &ap[k1k1], (ftnlen)1); i__2 = *n - k; caxpy_(&i__2, &ct, &bp[kk + 1], &c__1, &ap[kk + 1], &c__1) ; i__2 = *n - k; ctpsv_(uplo, "No transpose", "Non-unit", &i__2, &bp[k1k1], &ap[kk + 1], &c__1, (ftnlen)1, (ftnlen)12, ( ftnlen)8); } kk = k1k1; /* L20: */ } } } else { if (upper) { /* Compute U*A*U' */ /* K1 and KK are the indices of A(1,k) and A(k,k) */ kk = 0; i__1 = *n; for (k = 1; k <= i__1; ++k) { k1 = kk + 1; kk += k; /* Update the upper triangle of A(1:k,1:k) */ i__2 = kk; akk = ap[i__2].r; i__2 = kk; bkk = bp[i__2].r; i__2 = k - 1; ctpmv_(uplo, "No transpose", "Non-unit", &i__2, &bp[1], &ap[ k1], &c__1, (ftnlen)1, (ftnlen)12, (ftnlen)8); r__1 = akk * .5f; ct.r = r__1, ct.i = 0.f; i__2 = k - 1; caxpy_(&i__2, &ct, &bp[k1], &c__1, &ap[k1], &c__1); i__2 = k - 1; chpr2_(uplo, &i__2, &c_b1, &ap[k1], &c__1, &bp[k1], &c__1, & ap[1], (ftnlen)1); i__2 = k - 1; caxpy_(&i__2, &ct, &bp[k1], &c__1, &ap[k1], &c__1); i__2 = k - 1; csscal_(&i__2, &bkk, &ap[k1], &c__1); i__2 = kk; /* Computing 2nd power */ r__2 = bkk; r__1 = akk * (r__2 * r__2); ap[i__2].r = r__1, ap[i__2].i = 0.f; /* L30: */ } } else { /* Compute L'*A*L */ /* JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1) */ jj = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { j1j1 = jj + *n - j + 1; /* Compute the j-th column of the lower triangle of A */ i__2 = jj; ajj = ap[i__2].r; i__2 = jj; bjj = bp[i__2].r; i__2 = jj; r__1 = ajj * bjj; i__3 = *n - j; cdotc_(&q__2, &i__3, &ap[jj + 1], &c__1, &bp[jj + 1], &c__1); q__1.r = r__1 + q__2.r, q__1.i = q__2.i; ap[i__2].r = q__1.r, ap[i__2].i = q__1.i; i__2 = *n - j; csscal_(&i__2, &bjj, &ap[jj + 1], &c__1); i__2 = *n - j; chpmv_(uplo, &i__2, &c_b1, &ap[j1j1], &bp[jj + 1], &c__1, & c_b1, &ap[jj + 1], &c__1, (ftnlen)1); i__2 = *n - j + 1; ctpmv_(uplo, "Conjugate transpose", "Non-unit", &i__2, &bp[jj] , &ap[jj], &c__1, (ftnlen)1, (ftnlen)19, (ftnlen)8); jj = j1j1; /* L40: */ } } } return 0; /* End of CHPGST */ } /* chpgst_ */
/* Subroutine */ int chptrd_(char *uplo, integer *n, complex *ap, real *d__, real *e, complex *tau, integer *info) { /* System generated locals */ integer i__1, i__2, i__3; real r__1; complex q__1, q__2, q__3, q__4; /* Local variables */ integer i__, i1, ii, i1i1; complex taui; extern /* Subroutine */ int chpr2_(char *, integer *, complex *, complex * , integer *, complex *, integer *, complex *); complex alpha; extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer *, complex *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int chpmv_(char *, integer *, complex *, complex * , complex *, integer *, complex *, complex *, integer *), caxpy_(integer *, complex *, complex *, integer *, complex *, integer *); logical upper; extern /* Subroutine */ int clarfg_(integer *, complex *, complex *, integer *, complex *), xerbla_(char *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CHPTRD reduces a complex Hermitian matrix A stored in packed form to */ /* real symmetric tridiagonal form T by a unitary similarity */ /* transformation: Q**H * A * Q = T. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input/output) COMPLEX array, dimension (N*(N+1)/2) */ /* On entry, the upper or lower triangle of the Hermitian matrix */ /* A, packed columnwise in a linear array. The j-th column of A */ /* is stored in the array AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */ /* On exit, if UPLO = 'U', the diagonal and first superdiagonal */ /* of A are overwritten by the corresponding elements of the */ /* tridiagonal matrix T, and the elements above the first */ /* superdiagonal, with the array TAU, represent the unitary */ /* matrix Q as a product of elementary reflectors; if UPLO */ /* = 'L', the diagonal and first subdiagonal of A are over- */ /* written by the corresponding elements of the tridiagonal */ /* matrix T, and the elements below the first subdiagonal, with */ /* the array TAU, represent the unitary matrix Q as a product */ /* of elementary reflectors. See Further Details. */ /* D (output) REAL array, dimension (N) */ /* The diagonal elements of the tridiagonal matrix T: */ /* D(i) = A(i,i). */ /* E (output) REAL array, dimension (N-1) */ /* The off-diagonal elements of the tridiagonal matrix T: */ /* E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */ /* TAU (output) COMPLEX array, dimension (N-1) */ /* The scalar factors of the elementary reflectors (see Further */ /* Details). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* If UPLO = 'U', the matrix Q is represented as a product of elementary */ /* reflectors */ /* Q = H(n-1) . . . H(2) H(1). */ /* Each H(i) has the form */ /* H(i) = I - tau * v * v' */ /* where tau is a complex scalar, and v is a complex vector with */ /* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP, */ /* overwriting A(1:i-1,i+1), and tau is stored in TAU(i). */ /* If UPLO = 'L', the matrix Q is represented as a product of elementary */ /* reflectors */ /* Q = H(1) H(2) . . . H(n-1). */ /* Each H(i) has the form */ /* H(i) = I - tau * v * v' */ /* where tau is a complex scalar, and v is a complex vector with */ /* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP, */ /* overwriting A(i+2:n,i), and tau is stored in TAU(i). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ --tau; --e; --d__; --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } if (*info != 0) { i__1 = -(*info); xerbla_("CHPTRD", &i__1); return 0; } /* Quick return if possible */ if (*n <= 0) { return 0; } if (upper) { /* Reduce the upper triangle of A. */ /* I1 is the index in AP of A(1,I+1). */ i1 = *n * (*n - 1) / 2 + 1; i__1 = i1 + *n - 1; i__2 = i1 + *n - 1; r__1 = ap[i__2].r; ap[i__1].r = r__1, ap[i__1].i = 0.f; for (i__ = *n - 1; i__ >= 1; --i__) { /* Generate elementary reflector H(i) = I - tau * v * v' */ /* to annihilate A(1:i-1,i+1) */ i__1 = i1 + i__ - 1; alpha.r = ap[i__1].r, alpha.i = ap[i__1].i; clarfg_(&i__, &alpha, &ap[i1], &c__1, &taui); i__1 = i__; e[i__1] = alpha.r; if (taui.r != 0.f || taui.i != 0.f) { /* Apply H(i) from both sides to A(1:i,1:i) */ i__1 = i1 + i__ - 1; ap[i__1].r = 1.f, ap[i__1].i = 0.f; /* Compute y := tau * A * v storing y in TAU(1:i) */ chpmv_(uplo, &i__, &taui, &ap[1], &ap[i1], &c__1, &c_b2, &tau[ 1], &c__1); /* Compute w := y - 1/2 * tau * (y'*v) * v */ q__3.r = -.5f, q__3.i = -0.f; q__2.r = q__3.r * taui.r - q__3.i * taui.i, q__2.i = q__3.r * taui.i + q__3.i * taui.r; cdotc_(&q__4, &i__, &tau[1], &c__1, &ap[i1], &c__1); q__1.r = q__2.r * q__4.r - q__2.i * q__4.i, q__1.i = q__2.r * q__4.i + q__2.i * q__4.r; alpha.r = q__1.r, alpha.i = q__1.i; caxpy_(&i__, &alpha, &ap[i1], &c__1, &tau[1], &c__1); /* Apply the transformation as a rank-2 update: */ /* A := A - v * w' - w * v' */ q__1.r = -1.f, q__1.i = -0.f; chpr2_(uplo, &i__, &q__1, &ap[i1], &c__1, &tau[1], &c__1, &ap[ 1]); } i__1 = i1 + i__ - 1; i__2 = i__; ap[i__1].r = e[i__2], ap[i__1].i = 0.f; i__1 = i__ + 1; i__2 = i1 + i__; d__[i__1] = ap[i__2].r; i__1 = i__; tau[i__1].r = taui.r, tau[i__1].i = taui.i; i1 -= i__; /* L10: */ } d__[1] = ap[1].r; } else { /* Reduce the lower triangle of A. II is the index in AP of */ /* A(i,i) and I1I1 is the index of A(i+1,i+1). */ ii = 1; r__1 = ap[1].r; ap[1].r = r__1, ap[1].i = 0.f; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { i1i1 = ii + *n - i__ + 1; /* Generate elementary reflector H(i) = I - tau * v * v' */ /* to annihilate A(i+2:n,i) */ i__2 = ii + 1; alpha.r = ap[i__2].r, alpha.i = ap[i__2].i; i__2 = *n - i__; clarfg_(&i__2, &alpha, &ap[ii + 2], &c__1, &taui); i__2 = i__; e[i__2] = alpha.r; if (taui.r != 0.f || taui.i != 0.f) { /* Apply H(i) from both sides to A(i+1:n,i+1:n) */ i__2 = ii + 1; ap[i__2].r = 1.f, ap[i__2].i = 0.f; /* Compute y := tau * A * v storing y in TAU(i:n-1) */ i__2 = *n - i__; chpmv_(uplo, &i__2, &taui, &ap[i1i1], &ap[ii + 1], &c__1, & c_b2, &tau[i__], &c__1); /* Compute w := y - 1/2 * tau * (y'*v) * v */ q__3.r = -.5f, q__3.i = -0.f; q__2.r = q__3.r * taui.r - q__3.i * taui.i, q__2.i = q__3.r * taui.i + q__3.i * taui.r; i__2 = *n - i__; cdotc_(&q__4, &i__2, &tau[i__], &c__1, &ap[ii + 1], &c__1); q__1.r = q__2.r * q__4.r - q__2.i * q__4.i, q__1.i = q__2.r * q__4.i + q__2.i * q__4.r; alpha.r = q__1.r, alpha.i = q__1.i; i__2 = *n - i__; caxpy_(&i__2, &alpha, &ap[ii + 1], &c__1, &tau[i__], &c__1); /* Apply the transformation as a rank-2 update: */ /* A := A - v * w' - w * v' */ i__2 = *n - i__; q__1.r = -1.f, q__1.i = -0.f; chpr2_(uplo, &i__2, &q__1, &ap[ii + 1], &c__1, &tau[i__], & c__1, &ap[i1i1]); } i__2 = ii + 1; i__3 = i__; ap[i__2].r = e[i__3], ap[i__2].i = 0.f; i__2 = i__; i__3 = ii; d__[i__2] = ap[i__3].r; i__2 = i__; tau[i__2].r = taui.r, tau[i__2].i = taui.i; ii = i1i1; /* L20: */ } i__1 = *n; i__2 = ii; d__[i__1] = ap[i__2].r; } return 0; /* End of CHPTRD */ } /* chptrd_ */
/* Subroutine */ int chpgst_(integer *itype, char *uplo, integer *n, complex * ap, complex *bp, integer *info) { /* System generated locals */ integer i__1, i__2, i__3, i__4; real r__1, r__2; complex q__1, q__2, q__3; /* Local variables */ integer j, k, j1, k1, jj, kk; complex ct; real ajj; integer j1j1; real akk; integer k1k1; real bjj, bkk; extern /* Subroutine */ int chpr2_(char *, integer *, complex *, complex * , integer *, complex *, integer *, complex *); extern /* Complex */ VOID cdotc_f2c_(complex *, integer *, complex *, integer *, complex *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int chpmv_(char *, integer *, complex *, complex * , complex *, integer *, complex *, complex *, integer *), caxpy_(integer *, complex *, complex *, integer *, complex *, integer *), ctpmv_(char *, char *, char *, integer *, complex *, complex *, integer *); logical upper; extern /* Subroutine */ int ctpsv_(char *, char *, char *, integer *, complex *, complex *, integer *), csscal_( integer *, real *, complex *, integer *), xerbla_(char *, integer *); /* -- LAPACK computational routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --bp; --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (*itype < 1 || *itype > 3) { *info = -1; } else if (! upper && ! lsame_(uplo, "L")) { *info = -2; } else if (*n < 0) { *info = -3; } if (*info != 0) { i__1 = -(*info); xerbla_("CHPGST", &i__1); return 0; } if (*itype == 1) { if (upper) { /* Compute inv(U**H)*A*inv(U) */ /* J1 and JJ are the indices of A(1,j) and A(j,j) */ jj = 0; i__1 = *n; for (j = 1; j <= i__1; ++j) { j1 = jj + 1; jj += j; /* Compute the j-th column of the upper triangle of A */ i__2 = jj; i__3 = jj; r__1 = ap[i__3].r; ap[i__2].r = r__1; ap[i__2].i = 0.f; // , expr subst i__2 = jj; bjj = bp[i__2].r; ctpsv_(uplo, "Conjugate transpose", "Non-unit", &j, &bp[1], & ap[j1], &c__1); i__2 = j - 1; q__1.r = -1.f; q__1.i = -0.f; // , expr subst chpmv_(uplo, &i__2, &q__1, &ap[1], &bp[j1], &c__1, &c_b1, &ap[ j1], &c__1); i__2 = j - 1; r__1 = 1.f / bjj; csscal_(&i__2, &r__1, &ap[j1], &c__1); i__2 = jj; i__3 = jj; i__4 = j - 1; cdotc_f2c_(&q__3, &i__4, &ap[j1], &c__1, &bp[j1], &c__1); q__2.r = ap[i__3].r - q__3.r; q__2.i = ap[i__3].i - q__3.i; // , expr subst q__1.r = q__2.r / bjj; q__1.i = q__2.i / bjj; // , expr subst ap[i__2].r = q__1.r; ap[i__2].i = q__1.i; // , expr subst /* L10: */ } } else { /* Compute inv(L)*A*inv(L**H) */ /* KK and K1K1 are the indices of A(k,k) and A(k+1,k+1) */ kk = 1; i__1 = *n; for (k = 1; k <= i__1; ++k) { k1k1 = kk + *n - k + 1; /* Update the lower triangle of A(k:n,k:n) */ i__2 = kk; akk = ap[i__2].r; i__2 = kk; bkk = bp[i__2].r; /* Computing 2nd power */ r__1 = bkk; akk /= r__1 * r__1; i__2 = kk; ap[i__2].r = akk; ap[i__2].i = 0.f; // , expr subst if (k < *n) { i__2 = *n - k; r__1 = 1.f / bkk; csscal_(&i__2, &r__1, &ap[kk + 1], &c__1); r__1 = akk * -.5f; ct.r = r__1; ct.i = 0.f; // , expr subst i__2 = *n - k; caxpy_(&i__2, &ct, &bp[kk + 1], &c__1, &ap[kk + 1], &c__1) ; i__2 = *n - k; q__1.r = -1.f; q__1.i = -0.f; // , expr subst chpr2_(uplo, &i__2, &q__1, &ap[kk + 1], &c__1, &bp[kk + 1] , &c__1, &ap[k1k1]); i__2 = *n - k; caxpy_(&i__2, &ct, &bp[kk + 1], &c__1, &ap[kk + 1], &c__1) ; i__2 = *n - k; ctpsv_(uplo, "No transpose", "Non-unit", &i__2, &bp[k1k1], &ap[kk + 1], &c__1); } kk = k1k1; /* L20: */ } } } else { if (upper) { /* Compute U*A*U**H */ /* K1 and KK are the indices of A(1,k) and A(k,k) */ kk = 0; i__1 = *n; for (k = 1; k <= i__1; ++k) { k1 = kk + 1; kk += k; /* Update the upper triangle of A(1:k,1:k) */ i__2 = kk; akk = ap[i__2].r; i__2 = kk; bkk = bp[i__2].r; i__2 = k - 1; ctpmv_(uplo, "No transpose", "Non-unit", &i__2, &bp[1], &ap[ k1], &c__1); r__1 = akk * .5f; ct.r = r__1; ct.i = 0.f; // , expr subst i__2 = k - 1; caxpy_(&i__2, &ct, &bp[k1], &c__1, &ap[k1], &c__1); i__2 = k - 1; chpr2_(uplo, &i__2, &c_b1, &ap[k1], &c__1, &bp[k1], &c__1, & ap[1]); i__2 = k - 1; caxpy_(&i__2, &ct, &bp[k1], &c__1, &ap[k1], &c__1); i__2 = k - 1; csscal_(&i__2, &bkk, &ap[k1], &c__1); i__2 = kk; /* Computing 2nd power */ r__2 = bkk; r__1 = akk * (r__2 * r__2); ap[i__2].r = r__1; ap[i__2].i = 0.f; // , expr subst /* L30: */ } } else { /* Compute L**H *A*L */ /* JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1) */ jj = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { j1j1 = jj + *n - j + 1; /* Compute the j-th column of the lower triangle of A */ i__2 = jj; ajj = ap[i__2].r; i__2 = jj; bjj = bp[i__2].r; i__2 = jj; r__1 = ajj * bjj; i__3 = *n - j; cdotc_f2c_(&q__2, &i__3, &ap[jj + 1], &c__1, &bp[jj + 1], &c__1); q__1.r = r__1 + q__2.r; q__1.i = q__2.i; // , expr subst ap[i__2].r = q__1.r; ap[i__2].i = q__1.i; // , expr subst i__2 = *n - j; csscal_(&i__2, &bjj, &ap[jj + 1], &c__1); i__2 = *n - j; chpmv_(uplo, &i__2, &c_b1, &ap[j1j1], &bp[jj + 1], &c__1, & c_b1, &ap[jj + 1], &c__1); i__2 = *n - j + 1; ctpmv_(uplo, "Conjugate transpose", "Non-unit", &i__2, &bp[jj] , &ap[jj], &c__1); jj = j1j1; /* L40: */ } } } return 0; /* End of CHPGST */ }