poly* SAtensor(boolean alt,_index m,poly* p) { _index n,r=Lierank(grp); poly** adams,** q,* result; if (m==0) return poly_one(r); else if (m==1) return p; adams=alloc_array(poly*,m+1); for (n=1; n<=m; ++n) adams[n]=Adams(n,p); q=alloc_array(poly*,m+1); q[0]=poly_one(r); for (n=1; n<=m; ++n) { { _index i; q[n]=Tensor(p,q[n-1]); /* the initial term of the summation */ for (i=2; i<=n; ++i) q[n] = Add_pol_pol(q[n],Tensor(adams[i],q[n-i]),alt&&i%2==0); } { _index i; bigint* big_n=entry2bigint(n); setshared(big_n); for (i=0; i<q[n]->nrows; ++i) { bigint** cc= &q[n]->coef[i] ,* c= (clrshared(*cc),isshared(*cc)) ? copybigint(*cc,NULL) : *cc; *cc=divq(c,big_n); setshared(*cc); { if (c->size != 0) error("Internal error (SAtensor): remainder from %ld.\n" ,(long)n); freemem(c); } } clrshared(big_n); freemem(big_n); } } result=q[m]; { for (n=1; n<=m; ++n) freepol(adams[n]); } freearr(adams); { for (n=0; n<m; ++n) freepol(q[n]); } freearr(q); return result; }
poly* Plethysm(entry* lambda,_index l,_index n,poly* p) { if (n==0) return poly_one(Lierank(grp)); else if (n==1) return p; { _index i,j; poly* sum= poly_null(Lierank(grp)),**adams=alloc_array(poly*,n+1); poly* chi_lambda=MN_char(lambda,l); for (i=1; i<=n; ++i) { adams[i]=Adams(i,p); setshared(adams[i]); } for (i=0;i<chi_lambda->nrows;i++) { entry* mu=chi_lambda->elm[i]; poly* prod=adams[mu[0]],*t; for (j=1; j<n && mu[j]>0; ++j) { t=prod; prod=Tensor(t,adams[mu[j]]); freepol(t); } sum= Addmul_pol_pol_bin(sum,prod,mult(chi_lambda->coef[i],Classord(mu,n))); } freemem(chi_lambda); setshared(p); /* protect |p|; it coincides with |adams[1]| */ for (i=1; i<=n; ++i) { clrshared(adams[i]); freepol(adams[i]); } freearr(adams); clrshared(p); { bigint* fac_n=fac(n); setshared(fac_n); /* used repeatedly */ for (i=0; i<sum->nrows; ++i) { bigint** cc= &sum->coef[i] ,* c= (clrshared(*cc),isshared(*cc)) ? copybigint(*cc,NULL) : *cc; *cc=divq(c,fac_n); setshared(*cc); if (c->size!=0) error("Internal error (plethysm).\n"); else freemem(c); } clrshared(fac_n); freemem(fac_n); } return sum; } }
void wt_ins(entry* wt, bigint* c, boolean neg) { if (c->size==0) { freemem(c); return; } { lie_Index i=searchterm(sorted,wt); if (i>=0) { clrshared(sorted->coef[i]); sorted->coef[i]= (neg ? sub : add)(sorted->coef[i],c); setshared(sorted->coef[i]); } else { poly** acc= neg ? &neg_acc : &pos_acc; lie_Index i=(*acc)->nrows; if (i==(*acc)->rowsize) { sorted=Add_pol_pol(sorted,*acc,neg); *acc=mkpoly(Max(sorted->nrows,ACCMIN),sorted->ncols); i=0; } copyrow(wt,(*acc)->elm[i],sorted->ncols); (*acc)->coef[i++]=c; setshared(c); (*acc)->nrows=i; } } }
void freep(poly* addr) { index j; for (j=0; j<addr->nrows; j++) { object c=(object) addr->coef[j]; assert(isshared(c)); clrshared(c); freemem(c); } freemem(addr); }
poly* Reduce_pol(poly* p) { entry** expon=p->elm; bigint** coef=p->coef; lie_Index t=0,f=0,len=p->ncols; heap_sort_p(p,cmpfn); /* don't exclude cases~$<2$: we must catch $0$-polynomials */ while (++f<p->nrows) if (coef[f]->size==0) clrshared(coef[f]); /* drop term with zero coef */ else if (eqrow(expon[f],expon[t],len)) /* equal exponents: add coef's */ { clrshared(coef[t]); clrshared(coef[f]); coef[t]=add(coef[t],coef[f]); setshared(coef[t]); } else /* now term at f replaces one at t as discriminating term */ { if (coef[t]->size) t++; else clrshared(coef[t]); /* keep if nonzero */ swap_terms(expon,coef,t,f); /* move term, preserve row separateness */ } if (p->nrows!=0) /* |p| mights have no terms at all (e.g. from |alt_dom|). */ if (coef[t]->size) t++; else clrshared(coef[t]); /* handle final term */ else *coef=copybigint(null,NULL); /* safer not to introduce aliasing */ if ((p->nrows=t)==0) /* then must keep last term; coef is cleared */ { lie_Index i; p->nrows=1; setshared(*coef); /* |*coef| was |0| but not shared */ for (i=0; i<len; i++) expon[0][i]=0; /* clear first exponent as well */ } setsorted(p); return p; }