Пример #1
0
void ppfmap::CudaPPFMatch<PointT, NormalT>::detect(
    const PointCloudPtr cloud, 
    const NormalsPtr normals, 
    Eigen::Affine3f& trans, 
    pcl::Correspondences& correspondences,
    int& votes) {

    std::vector<Pose> poses;
    detect(cloud, normals, poses);
    clusterPoses(
        poses,
        translation_threshold,
        rotation_threshold,
        trans, 
        correspondences,
        votes);
}
Пример #2
0
template <typename PointSource, typename PointTarget> void
pcl::PPFRegistration<PointSource, PointTarget>::computeTransformation (PointCloudSource &output, const Eigen::Matrix4f& guess)
{
  if (!search_method_)
  {
    PCL_ERROR("[pcl::PPFRegistration::computeTransformation] Search method not set - skipping computeTransformation!\n");
    return;
  }

  if (guess != Eigen::Matrix4f::Identity ())
  {
    PCL_ERROR("[pcl::PPFRegistration::computeTransformation] setting initial transform (guess) not implemented!\n");
  }

  PoseWithVotesList voted_poses;
  std::vector <std::vector <unsigned int> > accumulator_array;
  accumulator_array.resize (input_->points.size ());

  size_t aux_size = static_cast<size_t> (floor (2 * M_PI / search_method_->getAngleDiscretizationStep ()));
  for (size_t i = 0; i < input_->points.size (); ++i)
  {
    std::vector<unsigned int> aux (aux_size);
    accumulator_array[i] = aux;
  }
  PCL_INFO ("Accumulator array size: %u x %u.\n", accumulator_array.size (), accumulator_array.back ().size ());

  // Consider every <scene_reference_point_sampling_rate>-th point as the reference point => fix s_r
  float f1, f2, f3, f4;
  for (size_t scene_reference_index = 0; scene_reference_index < target_->points.size (); scene_reference_index += scene_reference_point_sampling_rate_)
  {
    Eigen::Vector3f scene_reference_point = target_->points[scene_reference_index].getVector3fMap (),
        scene_reference_normal = target_->points[scene_reference_index].getNormalVector3fMap ();

    Eigen::AngleAxisf rotation_sg (acosf (scene_reference_normal.dot (Eigen::Vector3f::UnitX ())),
                                   scene_reference_normal.cross (Eigen::Vector3f::UnitX ()). normalized());
    Eigen::Affine3f transform_sg (Eigen::Translation3f (rotation_sg * ((-1) * scene_reference_point)) * rotation_sg);

    // For every other point in the scene => now have pair (s_r, s_i) fixed
    std::vector<int> indices;
    std::vector<float> distances;
    scene_search_tree_->radiusSearch (target_->points[scene_reference_index],
                                     search_method_->getModelDiameter () /2,
                                     indices,
                                     distances);
    for(size_t i = 0; i < indices.size (); ++i)
//    for(size_t i = 0; i < target_->points.size (); ++i)
    {
      //size_t scene_point_index = i;
      size_t scene_point_index = indices[i];
      if (scene_reference_index != scene_point_index)
      {
        if (/*pcl::computePPFPairFeature*/pcl::computePairFeatures (target_->points[scene_reference_index].getVector4fMap (),
                                        target_->points[scene_reference_index].getNormalVector4fMap (),
                                        target_->points[scene_point_index].getVector4fMap (),
                                        target_->points[scene_point_index].getNormalVector4fMap (),
                                        f1, f2, f3, f4))
        {
          std::vector<std::pair<size_t, size_t> > nearest_indices;
          search_method_->nearestNeighborSearch (f1, f2, f3, f4, nearest_indices);

          // Compute alpha_s angle
          Eigen::Vector3f scene_point = target_->points[scene_point_index].getVector3fMap ();
          Eigen::AngleAxisf rotation_sg (acosf (scene_reference_normal.dot (Eigen::Vector3f::UnitX ())),
                                         scene_reference_normal.cross (Eigen::Vector3f::UnitX ()).normalized ());
          Eigen::Affine3f transform_sg = Eigen::Translation3f ( rotation_sg * ((-1) * scene_reference_point)) * rotation_sg;
//          float alpha_s = acos (Eigen::Vector3f::UnitY ().dot ((transform_sg * scene_point).normalized ()));

          Eigen::Vector3f scene_point_transformed = transform_sg * scene_point;
          float alpha_s = atan2f ( -scene_point_transformed(2), scene_point_transformed(1));
          if ( alpha_s != alpha_s)
          {
            PCL_ERROR ("alpha_s is nan\n");
            continue;
          }
          if (sin (alpha_s) * scene_point_transformed(2) < 0.0f)
            alpha_s *= (-1);
          alpha_s *= (-1);

          // Go through point pairs in the model with the same discretized feature
          for (std::vector<std::pair<size_t, size_t> >::iterator v_it = nearest_indices.begin (); v_it != nearest_indices.end (); ++ v_it)
          {
            size_t model_reference_index = v_it->first,
                model_point_index = v_it->second;
            // Calculate angle alpha = alpha_m - alpha_s
            float alpha = search_method_->alpha_m_[model_reference_index][model_point_index] - alpha_s;
            unsigned int alpha_discretized = static_cast<unsigned int> (floor (alpha) + floor (M_PI / search_method_->getAngleDiscretizationStep ()));
            accumulator_array[model_reference_index][alpha_discretized] ++;
          }
        }
        else PCL_ERROR ("[pcl::PPFRegistration::computeTransformation] Computing pair feature vector between points %zu and %zu went wrong.\n", scene_reference_index, scene_point_index);
      }
    }

    size_t max_votes_i = 0, max_votes_j = 0;
    unsigned int max_votes = 0;

    for (size_t i = 0; i < accumulator_array.size (); ++i)
      for (size_t j = 0; j < accumulator_array.back ().size (); ++j)
      {
        if (accumulator_array[i][j] > max_votes)
        {
          max_votes = accumulator_array[i][j];
          max_votes_i = i;
          max_votes_j = j;
        }
        // Reset accumulator_array for the next set of iterations with a new scene reference point
        accumulator_array[i][j] = 0;
      }

    Eigen::Vector3f model_reference_point = input_->points[max_votes_i].getVector3fMap (),
        model_reference_normal = input_->points[max_votes_i].getNormalVector3fMap ();
    Eigen::AngleAxisf rotation_mg (acosf (model_reference_normal.dot (Eigen::Vector3f::UnitX ())), model_reference_normal.cross (Eigen::Vector3f::UnitX ()).normalized ());
    Eigen::Affine3f transform_mg = Eigen::Translation3f ( rotation_mg * ((-1) * model_reference_point)) * rotation_mg;
    Eigen::Affine3f max_transform = 
      transform_sg.inverse () * 
      Eigen::AngleAxisf ((static_cast<float> (max_votes_j) - floorf (static_cast<float> (M_PI) / search_method_->getAngleDiscretizationStep ())) * search_method_->getAngleDiscretizationStep (), Eigen::Vector3f::UnitX ()) * 
      transform_mg;

    voted_poses.push_back (PoseWithVotes (max_transform, max_votes));
  }
  PCL_DEBUG ("Done with the Hough Transform ...\n");

  // Cluster poses for filtering out outliers and obtaining more precise results
  PoseWithVotesList results;
  clusterPoses (voted_poses, results);

  pcl::transformPointCloud (*input_, output, results.front ().pose);

  transformation_ = final_transformation_ = results.front ().pose.matrix ();
  converged_ = true;
}