Пример #1
0
/// blur[par.Scales+1] is not used in order to look for extrema
/// while these could be computed using avalaible blur and dogs
void FindMaxMin(const flimage* dogs,  const flimage& blur, int s,
                float octSize, keypointslist& keys,siftPar &par)
{

	int width = dogs[0].w, height = dogs[0].h;

	/* Create an image map in which locations that have a keypoint are
	marked with value 1.0, to prevent two keypoints being located at
	same position.  This may seem an inefficient data structure, but
	does not add significant overhead.
	*/
	LWImage<bool> map  = alloc_image<bool>(width,height);
	flimage grad = alloc_image<float>(width,height,2);
    grad.planar = false; // Contiguous norm and dir
    for(int i=map.sizeBuffer()-1; i>=0; i--)
        map.data[i]=false;
    for(int i=grad.sizeBuffer()-1; i>=0; i--)
        grad.data[i]=0.0f;
	
    /* For each intermediate image, compute gradient and orientation
    images to be used for keypoint description.  */
    compute_gradient_orientation(blur.data, grad.data, blur.w, blur.h);
	
    /* Only find peaks at least par.BorderDist samples from image border, as
    peaks centered close to the border will lack stability. */
    assert(par.BorderDist >= 2);
    float val;
    int partialcounter = 0;
    for (int r = par.BorderDist; r < height - par.BorderDist; r++) 
        for (int c = par.BorderDist; c < width - par.BorderDist; c++) {
            /* Pixel value at (c,r) position. */
            val = *dogs[1].pixel(c,r);	

            /* DOG magnitude must be above 0.8 * par.PeakThresh threshold
            (precise threshold check will be done once peak
            interpolation is performed).  Then check whether this
            point is a peak in 3x3 region at each level, and is not
            on an elongated edge.
            */
            if (fabs(val) > 0.8 * par.PeakThresh) {
                if(LocalMaxMin(val, dogs[0], r, c) &&
                   LocalMaxMin(val, dogs[1], r, c) &&
                   LocalMaxMin(val, dogs[2], r, c) &&
                   NotOnEdge(dogs[1], r, c, octSize,par)) {
                    partialcounter++;
                    if (DEBUG) printf("%d:  (%d,%d,%d)  val: %f\n",partialcounter, s,r,c,val);
                    InterpKeyPoint(dogs, s, r, c, grad,
                                   map, octSize, keys, 5,par);	
                }
            }
		}
    free(map.data);
    free(grad.data);
}
Пример #2
0
/// blur[par.Scales+1] is not used in order to look for extrema
/// while these could be computed using avalaible blur and dogs
void FindMaxMin(
	flimage* dogs,  flimage* blur,
	float octSize, keypointslist& keys,siftPar &par)
{

	int width = dogs[0].nwidth(), height = dogs[0].nheight();

	/* Create an image map in which locations that have a keypoint are
	marked with value 1.0, to prevent two keypoints being located at
	same position.  This may seem an inefficient data structure, but
	does not add significant overhead.
	*/
	flimage map(width,height,0.0f);
	flimage grad(width,height,0.0f);
	flimage ori(width,height,0.0f);
	
	/* Search through each scale, leaving 1 scale below and 1 above.
		There are par.Scales+2 dog images.
	*/
	for (int s = 1; s < par.Scales+1; s++) {

		if (DEBUG) printf("************************scale: %d\n", s);

		//getchar();

		/* For each intermediate image, compute gradient and orientation
		images to be used for keypoint description.  */
		compute_gradient_orientation(blur[s].getPlane(), grad.getPlane(), ori.getPlane(), blur[s].nwidth(), blur[s].nheight());

	
		/* Only find peaks at least par.BorderDist samples from image border, as
		peaks centered close to the border will lack stability. */
		assert(par.BorderDist >= 2);
		float val;
		int partialcounter = 0;
		for (int r = par.BorderDist; r < height - par.BorderDist; r++) 
			for (int c = par.BorderDist; c < width - par.BorderDist; c++) {
			
				/* Pixel value at (c,r) position. */
				val = dogs[s](c,r);	
	
				/* DOG magnitude must be above 0.8 * par.PeakThresh threshold
				(precise threshold check will be done once peak
				interpolation is performed).  Then check whether this
				point is a peak in 3x3 region at each level, and is not
				on an elongated edge.
				*/

				if (fabs(val) > 0.8 * par.PeakThresh)
				{

/*

					// If local maxima
					if (LocalMax(val, dogs[s-1], r, c,par) && LocalMax(val, dogs[s], r, c, par) && LocalMax(val, dogs[s+1], r, c,par) && NotOnEdge(dogs[s], r, c, octSize,par))
					{
						if (DEBUG) printf("Maximum Keypoint found (%d,%d,%d)  val: %f\n",s,r,c,val);
						InterpKeyPoint(
							dogs, s, r, c, grad, ori,
							map, octSize, keys, 5,par);	

					} else  if (LocalMin(val, dogs[s-1], r, c,par) && LocalMin(val, dogs[s], r, c,par) && LocalMin(val, dogs[s+1], r, c,par) && NotOnEdge(dogs[s], r, c, octSize,par))
					{
						if (DEBUG) printf("Minimum Keypoint found (%d,%d,%d)  val: %f\n",s,r,c,val);
						InterpKeyPoint(
							dogs, s, r, c, grad, ori,
							map, octSize, keys, 5,par);	
					}
*/
					if (LocalMaxMin(val, dogs[s-1], r, c) && LocalMaxMin(val, dogs[s], r, c) && LocalMaxMin(val, dogs[s+1], r, c) && NotOnEdge(dogs[s], r, c, octSize,par))
					{
						partialcounter++;
						if (DEBUG) printf("%d:  (%d,%d,%d)  val: %f\n",partialcounter, s,r,c,val);
						
						InterpKeyPoint(
							dogs, s, r, c, grad, ori,
							map, octSize, keys, 5,par);	

						//getchar();
					} 


				}

		}
	}

}