Пример #1
0
void Utility::hungCorrespondOf2Sets (std::vector<Point3D> set1, std::vector<Point3D>set2, std::vector<int>&assignment1,std::vector<int>&assignment2)
{
		int nrows = set1.size();
		int ncols = set2.size();

		int maxSize = std::max(nrows,ncols);
		
		assignment1.resize(maxSize);
		assignment2.resize(maxSize);


	for (int i = 0;i<maxSize;i++)
	{
		assignment1[i] = -1;
		assignment2[i] = -1;
	}


		Matrix<double> costMatrix(maxSize, maxSize);

		for (int i = 0;i<nrows;i++)
			for (int j = 0;j<ncols;j++)
				costMatrix(i,j) = euclidDistance(set1[i],set2[j]);

		Munkres myMunkres;
		myMunkres.solve(costMatrix);
		// solution is back stored in costMatrix variable, 0 for matches, otherwise -1;
		// now fill in assignment
		for (int i = 0;i<maxSize;i++)
		{
			for (int j = 0;j<maxSize;j++)
			{
				if (costMatrix(i, j) ==0)
				{
					if (i<nrows && j<ncols)
					{
					assignment1[i] = j;
					assignment2[j] = i;
					}
				}
			}
		}




}
 void MultiObjectTracker::update(const std::vector<cv::Point2f>& massCenters,
                                 const std::vector<cv::Rect>& boundingRects,
                                 std::vector<OT::TrackingOutput>& trackingOutputs) {
     trackingOutputs.clear();
     
     // If we haven't found any mass centers, just update all the Kalman filters and return their predictions.
     if (massCenters.empty()) {
         for (int i = 0; i < this->kalmanTrackers.size(); i++) {
             // Indicate that the tracker didn't get an update this frame.
             this->kalmanTrackers[i].noUpdateThisFrame();
             
             // Remove the tracker if it is dead.
             if (this->kalmanTrackers[i].getNumFramesWithoutUpdate() > this->missedFramesThreshold) {
                 this->kalmanTrackers.erase(this->kalmanTrackers.begin() + i);
                 i--;
             }
         }
         // Update the remaining trackers.
         for (size_t i = 0; i < this->kalmanTrackers.size(); i++) {
             if (this->kalmanTrackers[i].getLifetime() > lifetimeThreshold) {
                 this->kalmanTrackers[i].predict();
                 trackingOutputs.push_back(this->kalmanTrackers[i].latestTrackingOutput());
             }
         }
         return;
     }
     
     // If there are no Kalman trackers, make one for each detection.
     if (this->kalmanTrackers.empty()) {
         for (auto massCenter : massCenters) {
             this->kalmanTrackers.push_back(OT::KalmanTracker(massCenter,
                                                              this->dt,
                                                              this->magnitudeOfAccelerationNoise));
         }
     }
     
     // Create our cost matrix.
     size_t numKalmans = this->kalmanTrackers.size();
     size_t numCenters = massCenters.size();
     
     std::vector<std::vector<double>> costMatrix(numKalmans, std::vector<double>(numCenters));
 
     std::vector<int> assignment;
     
     
     // Get the latest prediction for the Kalman filters.
     std::vector<cv::Point2f> predictions(this->kalmanTrackers.size());
     for (size_t i = 0; i < this->kalmanTrackers.size(); i++) {
         predictions[i] = this->kalmanTrackers[i].latestPrediction();
     }
     
     // We need to associate each of the mass centers to their corresponding Kalman filter. First,
     // let's find the pairwise distances. However, we first divide this distance by the diagonal size
     // of the frame to ensure that it is between 0 and 1.
     cv::Point framePoint = cv::Point(this->frameSize.width, this->frameSize.height);
     double frameDiagonal = std::sqrt(framePoint.dot(framePoint));
     for (size_t i = 0; i < predictions.size(); i++) {
         for (size_t j = 0; j < massCenters.size(); j++) {
             costMatrix[i][j] = cv::norm(predictions[i] - massCenters[j]) / frameDiagonal;
         }
     }
     
     // Assign Kalman trackers to mass centers with the Hungarian algorithm.
     AssignmentProblemSolver solver;
     solver.Solve(costMatrix, assignment, AssignmentProblemSolver::optimal);
     
     // Unassign any Kalman trackers whose distance to their assignment is too large.
     std::vector<int> kalmansWithoutCenters;
     for (size_t i = 0; i < assignment.size(); i++) {
         if (assignment[i] != -1) {
             if (costMatrix[i][assignment[i]] > this->distanceThreshold) {
                 assignment[i] = -1;
                 kalmansWithoutCenters.push_back(i);
             }
         } else {
             this->kalmanTrackers[i].noUpdateThisFrame();
         }
     }
     
     // If a Kalman tracker is contained in a bounding box and shares its
     // bounding box with another tracker, remove its assignment and mark it
     // as updated.
     for (size_t i = 0; i < assignment.size(); i++) {
         for (size_t j = 0; j < boundingRects.size(); j++) {
             if (boundingRects[j].contains(this->kalmanTrackers[i].latestPrediction())
                 && this->sharesBoundingRect(i, boundingRects[j])) {
                 this->kalmanTrackers[i].gotUpdate();
                 break;
             }
         }
     }
     
     // Remove any trackers that haven't been updated in a while.
     for (int i = 0; i < this->kalmanTrackers.size(); i++) {
         if (this->kalmanTrackers[i].getNumFramesWithoutUpdate() > this->missedFramesThreshold) {
             this->kalmanTrackers.erase(this->kalmanTrackers.begin() + i);
             assignment.erase(assignment.begin() + i);
             i--;
         }
     }
     
     // Find unassigned mass centers.
     std::vector<int> centersWithoutKalman;
     std::vector<int>::iterator it;
     for (size_t i = 0; i < massCenters.size(); i++) {
         it = std::find(assignment.begin(), assignment.end(), i);
         if (it == assignment.end()) {
             centersWithoutKalman.push_back(i);
         }
     }
     
     // Create new trackers for the unassigned mass centers.
     for (size_t i = 0; i < centersWithoutKalman.size(); i++) {
         this->kalmanTrackers.push_back(OT::KalmanTracker(massCenters[centersWithoutKalman[i]]));
     }
     
     // Update the Kalman filters.
     for (size_t i = 0; i < assignment.size(); i++) {
         this->kalmanTrackers[i].predict();
         if (assignment[i] != -1) {
             this->kalmanTrackers[i].correct(massCenters[assignment[i]]);
             this->kalmanTrackers[i].gotUpdate();
         }
     }
     
     // Remove any suppressed filters.
     for (size_t i = 0; i < this->kalmanTrackers.size(); i++) {
         if (this->hasSuppressor(i)) {
             this->kalmanTrackers.erase(this->kalmanTrackers.begin() + i);
             i--;
         }
     }
     
     // Now update the predictions.
     for (size_t i = 0; i < this->kalmanTrackers.size(); i++) {
         if (this->kalmanTrackers[i].getLifetime() > this->lifetimeThreshold) {
             trackingOutputs.push_back(this->kalmanTrackers[i].latestTrackingOutput());
         }
     }
 }
Пример #3
0
float CutMask::cost(Point p1, Point p2)
{
	return costMatrix(p1.y, p1.x) + costMatrix(p2.y, p2.x);
}