Пример #1
0
static unsigned int _shape_add(Entity ent, PhysicsShape type, cpShape *shape)
{
    PhysicsInfo *info;
    ShapeInfo *shapeInfo;

    info = entitypool_get(pool, ent);
    error_assert(info);

    /* init ShapeInfo */
    shapeInfo = array_add(info->shapes);
    shapeInfo->type = type;
    shapeInfo->shape = shape;

    /* init cpShape */
    cpShapeSetBody(shape, info->body);
    cpSpaceAddShape(space, shape);
    cpShapeSetFriction(shapeInfo->shape, 1);
    cpShapeSetUserData(shapeInfo->shape, ent);

    /* update moment */
    if (!cpBodyIsStatic(info->body))
    {
        if (array_length(info->shapes) > 1)
            cpBodySetMoment(info->body, _moment(info->body, shapeInfo)
                            + cpBodyGetMoment(info->body));
        else
            cpBodySetMoment(info->body, _moment(info->body, shapeInfo));
    }

    return array_length(info->shapes) - 1;
}
Пример #2
0
void update_friction(int n)
{
	// kill lateral velocity
	const cpFloat max_lateral_impulse = 300;
	cpVect impulse = cpvmult(cpvneg(lateral_velocity(n)), cpBodyGetMass(tire[n]));
	//printf("%f\n", cpvlength(impulse));
	if(cpvlength(impulse) > max_lateral_impulse)
		impulse = cpvmult(impulse, max_lateral_impulse / cpvlength(impulse));
	cpBodyApplyImpulse(tire[n], impulse, cpvzero);


	// TODO - kill angular velocity?
	cpFloat inertia = cpBodyGetMoment(tire[n]);
	cpFloat av = cpBodyGetAngVel(tire[n]);
	if(av != 0)
		cpBodySetAngVel(tire[n], av / 1.2);
	
	// apply drag
	cpVect forward_normal = forward_velocity(n);
	cpFloat forward_speed = cpvlength(forward_normal);
	if(forward_speed < 1) {
		cpBodySetVel(tire[n], cpvzero);
	} else {
		forward_normal = cpvnormalize(forward_normal);
		cpFloat drag = -1 * forward_speed;
		cpBodyApplyImpulse(tire[n], cpvmult(forward_normal, drag), cpvzero);
	}
}
Пример #3
0
bool physics_get_freeze_rotation(Entity ent)
{
    PhysicsInfo *info = entitypool_get(pool, ent);
    error_assert(info);

    /* TODO: do this a better way? maybe store separate flag */
    return cpBodyGetMoment(info->body) == SCALAR_INFINITY;
}
Пример #4
0
static int l_physics_getBodyMoment(lua_State* state)
{

    l_tools_checkUserDataPlusErrMsg(state, 1, "You must provide a body");
    l_physics_Body* body = (l_physics_Body*)lua_touserdata(state, 1);

    lua_pushnumber(state, cpBodyGetMoment(body->body));

    return 1;
}
Пример #5
0
static cpBody *utils_update_drawing(cpBody *drawing) {
    cpFloat mass = cpBodyGetMass(drawing);
    cpFloat moment = cpBodyGetMoment(drawing);
    
    Body_data *pa = cpBodyGetUserData(drawing);
    //cpFloat x = g_array_index(pa->x_values, cpFloat, 0);
    //cpFloat y = g_array_index(pa->y_values, cpFloat, 0);
    
    cpVect pos_a, pos_b;
    cpVect origin = cpBodyGetPos(drawing);
    
    cpFloat mi, micx = 0, micy = 0;
    int length = pa->x_values->len;
    for (int index = 1; index < length; index++) {
        pos_a = cpv(g_array_index(pa->x_values, cpFloat, index - 1), g_array_index(pa->y_values, cpFloat, index - 1));
        pos_b = cpv(g_array_index(pa->x_values, cpFloat, index), g_array_index(pa->y_values, cpFloat, index));
	 	//fprintf(stdout, "Pos_a = (%5.2f, %5.2f)\n", pos_a.x, pos_a.y);
		
        mi = (CRAYON_MASS * cpAreaForSegment( pos_a, pos_b, CRAYON_RADIUS ));
        micx += mi * ((pos_a.x + pos_b.x) / 2);
        micy += mi * ((pos_a.y + pos_b.y) / 2);
        
        mass += mi;
        moment += cpMomentForSegment(mass, pos_a, pos_b); // not actually sum, but maybe it is
    }

    cpBodySetMass(drawing, mass);
    cpBodySetMoment(drawing, moment);
    
    // center of mass is the average of all vertices  NOT
    //cpVect new_origin = cpv(x / length, y / length);
    cpVect new_origin = cpv(micx / mass, micy / mass);
    new_origin = cpBodyLocal2World(drawing, new_origin);
    cpBodySetPos( drawing, new_origin );
	//fprintf(stdout, "Position set at (%5.2f, %5.2f)\n", new_origin.x, new_origin.y);
    cpSpace * space = cpBodyGetSpace(drawing);
	cpSpaceReindexShapesForBody(space, drawing);
    //cpBodySetPos(drawing, cpv(pos.x + (second.x / length), pos.y + (second.y / length)));
    //pa->offset = cpvsub(new_origin, origin);
    pa = shift_origin(drawing, origin, new_origin);
    cpBodySetUserData(drawing, pa);
	if (space)
		post_step_body_replace_shapes(space, drawing, NULL);
	else
		fprintf(stderr, "WTF\n");

	//if (!(cpSpaceAddPostStepCallback(space, (cpPostStepFunc) post_step_body_replace_shapes, drawing, NULL)))
		//fprintf(stderr, "FAILED POST-STEP CALLBACK\n\n");
	
    return drawing;
}
Пример #6
0
static cpBody *utils_update_drawing(cpBody *drawing) {
    cpFloat mass = cpBodyGetMass(drawing);
    cpFloat moment = cpBodyGetMoment(drawing);
    
    Point_array *pa = cpBodyGetUserData(drawing);
    cpFloat x = g_array_index(pa->x_values, cpFloat, 0);
    cpFloat y = g_array_index(pa->y_values, cpFloat, 0);
    
    cpVect pos_a, pos_b;
    cpVect origin = cpBodyGetPos(drawing);
    
    cpFloat mi, micx = 0, micy = 0;
    int length = pa->x_values->len;
    for (int index = 1; index < length; index++) {
        pos_a = cpv(g_array_index(pa->x_values, cpFloat, index - 1), g_array_index(pa->y_values, cpFloat, index - 1));
        pos_b = cpv(g_array_index(pa->x_values, cpFloat, index), g_array_index(pa->y_values, cpFloat, index));
 	cpvadd(pos_a, origin);
	cpvadd(pos_b, origin);       
        x += pos_b.x;
        y += pos_b.y;
        
        mi = (CRAYON_MASS * cpAreaForSegment( pos_a, pos_b, CRAYON_RADIUS ));
        micx += mi * ((pos_a.x + pos_b.x) / 2);
        micy += mi * ((pos_a.y + pos_b.y) / 2);
        
        mass += mi;
        moment += cpMomentForSegment(mass, pos_a, pos_b); // not actually sum
    }

    cpBodySetMass(drawing, mass);
    cpBodySetMoment(drawing, moment);
    
    // center of mass is the average of all vertices  NOT
    //cpVect new_origin = cpv(x / length, y / length);
    cpVect new_origin = cpv(micx / mass, micy / mass);
    cpBodySetPos( drawing, new_origin );
    //cpBodySetPos(drawing, cpv(pos.x + (second.x / length), pos.y + (second.y / length)));
    
    pa = shift_origin(pa, origin, new_origin);
    cpBodySetUserData(drawing, pa);
    
    return drawing;
}
Пример #7
0
	void RigidBody2D::SetGeom(Collider2DRef geom, bool recomputeMoment)
	{
		// We have no public way of getting rid of an existing geom without removing the whole body
		// So let's save some attributes of the body, destroy it and rebuild it
		if (m_geom)
		{
			cpFloat mass = cpBodyGetMass(m_handle);
			cpFloat moment = cpBodyGetMoment(m_handle);

			cpBody* newHandle = Create(static_cast<float>(mass), static_cast<float>(moment));

			CopyBodyData(m_handle, newHandle);

			Destroy();

			m_handle = newHandle;
		}

		if (geom)
			m_geom = geom;
		else
			m_geom = NullCollider2D::New();

		m_geom->GenerateShapes(this, &m_shapes);

		cpSpace* space = m_world->GetHandle();
		for (cpShape* shape : m_shapes)
			cpShapeSetUserData(shape, this);

		if (m_isSimulationEnabled)
			RegisterToSpace();

		if (recomputeMoment)
		{
			if (!IsStatic() && !IsKinematic())
				cpBodySetMoment(m_handle, m_geom->ComputeMomentOfInertia(m_mass));
		}
	}
Пример #8
0
cpFloat cBody::Moment() const {
	return cpBodyGetMoment( mBody );
}
Пример #9
0
	float RigidBody2D::GetMomentOfInertia() const
	{
		return float(cpBodyGetMoment(m_handle));
	}
Пример #10
0
cpFloat Body::getMoment(void)
{
		return cpBodyGetMoment(body);
}
Пример #11
0
cpBool Buoyancy::WaterPreSolve(cpArbiter *arb, cpSpace *space, void *ptr)
{
    CP_ARBITER_GET_SHAPES(arb, water, poly);
    cpBody *body = cpShapeGetBody(poly);

    // Get the top of the water sensor bounding box to use as the water level.
    cpFloat level = cpShapeGetBB(water).t;

    // Clip the polygon against the water level
    int count = cpPolyShapeGetCount(poly);
    int clippedCount = 0;
#ifdef _MSC_VER
    // MSVC is pretty much the only compiler in existence that doesn't support variable sized arrays.
    cpVect clipped[10];
#else
    cpVect clipped[count + 1];
#endif

    for(int i=0, j=count-1; i<count; j=i, i++){
        cpVect a = cpBodyLocalToWorld(body, cpPolyShapeGetVert(poly, j));
        cpVect b = cpBodyLocalToWorld(body, cpPolyShapeGetVert(poly, i));

        if(a.y < level){
            clipped[clippedCount] = a;
            clippedCount++;
        }

        cpFloat a_level = a.y - level;
        cpFloat b_level = b.y - level;

        if(a_level*b_level < 0.0f){
            cpFloat t = cpfabs(a_level)/(cpfabs(a_level) + cpfabs(b_level));

            clipped[clippedCount] = cpvlerp(a, b, t);
            clippedCount++;
        }
    }

    // Calculate buoyancy from the clipped polygon area
    cpFloat clippedArea = cpAreaForPoly(clippedCount, clipped, 0.0f);
    cpFloat displacedMass = clippedArea*FLUID_DENSITY;
    cpVect centroid = cpCentroidForPoly(clippedCount, clipped);

    cpDataPointer data = ptr;
    DrawPolygon(clippedCount, clipped, 0.0f, RGBAColor(0, 0, 1, 1), RGBAColor(0, 0, 1, 0.1f), data);
    DrawDot(5, centroid, RGBAColor(0, 0, 1, 1), data);

    cpFloat dt = cpSpaceGetCurrentTimeStep(space);
    cpVect g = cpSpaceGetGravity(space);

    // Apply the buoyancy force as an impulse.
    cpBodyApplyImpulseAtWorldPoint(body, cpvmult(g, -displacedMass*dt), centroid);

    // Apply linear damping for the fluid drag.
    cpVect v_centroid = cpBodyGetVelocityAtWorldPoint(body, centroid);
    cpFloat k = k_scalar_body(body, centroid, cpvnormalize(v_centroid));
    cpFloat damping = clippedArea*FLUID_DRAG*FLUID_DENSITY;
    cpFloat v_coef = cpfexp(-damping*dt*k); // linear drag
    //	cpFloat v_coef = 1.0/(1.0 + damping*dt*cpvlength(v_centroid)*k); // quadratic drag
    cpBodyApplyImpulseAtWorldPoint(body, cpvmult(cpvsub(cpvmult(v_centroid, v_coef), v_centroid), 1.0/k), centroid);

    // Apply angular damping for the fluid drag.
    cpVect cog = cpBodyLocalToWorld(body, cpBodyGetCenterOfGravity(body));
    cpFloat w_damping = cpMomentForPoly(FLUID_DRAG*FLUID_DENSITY*clippedArea, clippedCount, clipped, cpvneg(cog), 0.0f);
    cpBodySetAngularVelocity(body, cpBodyGetAngularVelocity(body)*cpfexp(-w_damping*dt/cpBodyGetMoment(body)));

    return cpTrue;
}
Пример #12
0
// Modified from chipmunk_private.h
cpFloat Buoyancy::KScalarBody(cpBody *body, cpVect point, cpVect n)
{
    cpFloat rcn = cpvcross(cpvsub(point, cpBodyGetPosition(body)), n);
    return 1.0f/cpBodyGetMass(body) + rcn*rcn/cpBodyGetMoment(body);
}