/* Subroutine */ int chbgv_(char *jobz, char *uplo, integer *n, integer *ka, integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb, real *w, complex *z__, integer *ldz, complex *work, real *rwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1; /* Local variables */ integer inde; char vect[1]; extern logical lsame_(char *, char *); integer iinfo; logical upper, wantz; extern /* Subroutine */ int chbtrd_(char *, char *, integer *, integer *, complex *, integer *, real *, real *, complex *, integer *, complex *, integer *), chbgst_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, real *, integer *), xerbla_(char *, integer *), cpbstf_(char *, integer *, integer *, complex *, integer *, integer *); integer indwrk; extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, complex *, integer *, real *, integer *), ssterf_(integer *, real *, real *, integer *); /* -- LAPACK driver routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; bb_dim1 = *ldbb; bb_offset = 1 + bb_dim1; bb -= bb_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --rwork; /* Function Body */ wantz = lsame_(jobz, "V"); upper = lsame_(uplo, "U"); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (upper || lsame_(uplo, "L"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ka < 0) { *info = -4; } else if (*kb < 0 || *kb > *ka) { *info = -5; } else if (*ldab < *ka + 1) { *info = -7; } else if (*ldbb < *kb + 1) { *info = -9; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -12; } if (*info != 0) { i__1 = -(*info); xerbla_("CHBGV ", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Form a split Cholesky factorization of B. */ cpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem. */ inde = 1; indwrk = inde + *n; chbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, &z__[z_offset], ldz, &work[1], &rwork[indwrk], &iinfo); /* Reduce to tridiagonal form. */ if (wantz) { *(unsigned char *)vect = 'U'; } else { *(unsigned char *)vect = 'N'; } chbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &rwork[inde], & z__[z_offset], ldz, &work[1], &iinfo); /* For eigenvalues only, call SSTERF. For eigenvectors, call CSTEQR. */ if (! wantz) { ssterf_(n, &w[1], &rwork[inde], info); } else { csteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[ indwrk], info); } return 0; /* End of CHBGV */ }
/* Subroutine */ int chbgvd_(char *jobz, char *uplo, integer *n, integer *ka, integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb, real *w, complex *z__, integer *ldz, complex *work, integer *lwork, real *rwork, integer *lrwork, integer *iwork, integer *liwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1; /* Local variables */ integer inde; char vect[1]; integer llwk2; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); extern logical lsame_(char *, char *); integer iinfo, lwmin; logical upper; integer llrwk; logical wantz; integer indwk2; extern /* Subroutine */ int cstedc_(char *, integer *, real *, real *, complex *, integer *, complex *, integer *, real *, integer *, integer *, integer *, integer *), chbtrd_(char *, char *, integer *, integer *, complex *, integer *, real *, real *, complex *, integer *, complex *, integer *), chbgst_(char *, char *, integer *, integer *, integer *, complex * , integer *, complex *, integer *, complex *, integer *, complex * , real *, integer *), clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *), cpbstf_(char *, integer *, integer *, complex *, integer *, integer *); integer indwrk, liwmin; extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *); integer lrwmin; logical lquery; /* -- LAPACK driver routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; bb_dim1 = *ldbb; bb_offset = 1 + bb_dim1; bb -= bb_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --rwork; --iwork; /* Function Body */ wantz = lsame_(jobz, "V"); upper = lsame_(uplo, "U"); lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1; *info = 0; if (*n <= 1) { lwmin = *n + 1; lrwmin = *n + 1; liwmin = 1; } else if (wantz) { /* Computing 2nd power */ i__1 = *n; lwmin = i__1 * i__1 << 1; /* Computing 2nd power */ i__1 = *n; lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1); liwmin = *n * 5 + 3; } else { lwmin = *n; lrwmin = *n; liwmin = 1; } if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (upper || lsame_(uplo, "L"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ka < 0) { *info = -4; } else if (*kb < 0 || *kb > *ka) { *info = -5; } else if (*ldab < *ka + 1) { *info = -7; } else if (*ldbb < *kb + 1) { *info = -9; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -12; } if (*info == 0) { work[1].r = (real) lwmin; work[1].i = 0.f; // , expr subst rwork[1] = (real) lrwmin; iwork[1] = liwmin; if (*lwork < lwmin && ! lquery) { *info = -14; } else if (*lrwork < lrwmin && ! lquery) { *info = -16; } else if (*liwork < liwmin && ! lquery) { *info = -18; } } if (*info != 0) { i__1 = -(*info); xerbla_("CHBGVD", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Form a split Cholesky factorization of B. */ cpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem. */ inde = 1; indwrk = inde + *n; indwk2 = *n * *n + 1; llwk2 = *lwork - indwk2 + 2; llrwk = *lrwork - indwrk + 2; chbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, &z__[z_offset], ldz, &work[1], &rwork[indwrk], &iinfo); /* Reduce Hermitian band matrix to tridiagonal form. */ if (wantz) { *(unsigned char *)vect = 'U'; } else { *(unsigned char *)vect = 'N'; } chbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &rwork[inde], & z__[z_offset], ldz, &work[1], &iinfo); /* For eigenvalues only, call SSTERF. For eigenvectors, call CSTEDC. */ if (! wantz) { ssterf_(n, &w[1], &rwork[inde], info); } else { cstedc_("I", n, &w[1], &rwork[inde], &work[1], n, &work[indwk2], & llwk2, &rwork[indwrk], &llrwk, &iwork[1], liwork, info); cgemm_("N", "N", n, n, n, &c_b1, &z__[z_offset], ldz, &work[1], n, & c_b2, &work[indwk2], n); clacpy_("A", n, n, &work[indwk2], n, &z__[z_offset], ldz); } work[1].r = (real) lwmin; work[1].i = 0.f; // , expr subst rwork[1] = (real) lrwmin; iwork[1] = liwmin; return 0; /* End of CHBGVD */ }
/* Subroutine */ int chbgvd_(char *jobz, char *uplo, integer *n, integer *ka, integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb, real *w, complex *z__, integer *ldz, complex *work, integer *lwork, real *rwork, integer *lrwork, integer *iwork, integer *liwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1; /* Local variables */ integer inde; char vect[1]; integer llwk2; integer iinfo, lwmin; logical upper; integer llrwk; logical wantz; integer indwk2; integer indwrk, liwmin; integer lrwmin; logical lquery; /* -- LAPACK driver routine (version 3.2) -- */ /* November 2006 */ /* Purpose */ /* ======= */ /* CHBGVD computes all the eigenvalues, and optionally, the eigenvectors */ /* of a complex generalized Hermitian-definite banded eigenproblem, of */ /* the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian */ /* and banded, and B is also positive definite. If eigenvectors are */ /* desired, it uses a divide and conquer algorithm. */ /* The divide and conquer algorithm makes very mild assumptions about */ /* floating point arithmetic. It will work on machines with a guard */ /* digit in add/subtract, or on those binary machines without guard */ /* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ /* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ /* without guard digits, but we know of none. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangles of A and B are stored; */ /* = 'L': Lower triangles of A and B are stored. */ /* N (input) INTEGER */ /* The order of the matrices A and B. N >= 0. */ /* KA (input) INTEGER */ /* The number of superdiagonals of the matrix A if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */ /* KB (input) INTEGER */ /* The number of superdiagonals of the matrix B if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */ /* AB (input/output) COMPLEX array, dimension (LDAB, N) */ /* On entry, the upper or lower triangle of the Hermitian band */ /* matrix A, stored in the first ka+1 rows of the array. The */ /* j-th column of A is stored in the j-th column of the array AB */ /* as follows: */ /* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */ /* On exit, the contents of AB are destroyed. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KA+1. */ /* BB (input/output) COMPLEX array, dimension (LDBB, N) */ /* On entry, the upper or lower triangle of the Hermitian band */ /* matrix B, stored in the first kb+1 rows of the array. The */ /* j-th column of B is stored in the j-th column of the array BB */ /* as follows: */ /* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */ /* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */ /* On exit, the factor S from the split Cholesky factorization */ /* B = S**H*S, as returned by CPBSTF. */ /* LDBB (input) INTEGER */ /* The leading dimension of the array BB. LDBB >= KB+1. */ /* W (output) REAL array, dimension (N) */ /* If INFO = 0, the eigenvalues in ascending order. */ /* Z (output) COMPLEX array, dimension (LDZ, N) */ /* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */ /* eigenvectors, with the i-th column of Z holding the */ /* eigenvector associated with W(i). The eigenvectors are */ /* normalized so that Z**H*B*Z = I. */ /* If JOBZ = 'N', then Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= N. */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO=0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* If N <= 1, LWORK >= 1. */ /* If JOBZ = 'N' and N > 1, LWORK >= N. */ /* If JOBZ = 'V' and N > 1, LWORK >= 2*N**2. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal sizes of the WORK, RWORK and */ /* IWORK arrays, returns these values as the first entries of */ /* the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* RWORK (workspace/output) REAL array, dimension (MAX(1,LRWORK)) */ /* On exit, if INFO=0, RWORK(1) returns the optimal LRWORK. */ /* LRWORK (input) INTEGER */ /* The dimension of array RWORK. */ /* If N <= 1, LRWORK >= 1. */ /* If JOBZ = 'N' and N > 1, LRWORK >= N. */ /* If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. */ /* If LRWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal sizes of the WORK, RWORK */ /* and IWORK arrays, returns these values as the first entries */ /* of the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ /* On exit, if INFO=0, IWORK(1) returns the optimal LIWORK. */ /* LIWORK (input) INTEGER */ /* The dimension of array IWORK. */ /* If JOBZ = 'N' or N <= 1, LIWORK >= 1. */ /* If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. */ /* If LIWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal sizes of the WORK, RWORK */ /* and IWORK arrays, returns these values as the first entries */ /* of the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, and i is: */ /* <= N: the algorithm failed to converge: */ /* i off-diagonal elements of an intermediate */ /* tridiagonal form did not converge to zero; */ /* > N: if INFO = N + i, for 1 <= i <= N, then CPBSTF */ /* returned INFO = i: B is not positive definite. */ /* The factorization of B could not be completed and */ /* no eigenvalues or eigenvectors were computed. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; bb_dim1 = *ldbb; bb_offset = 1 + bb_dim1; bb -= bb_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --rwork; --iwork; /* Function Body */ wantz = lsame_(jobz, "V"); upper = lsame_(uplo, "U"); lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1; *info = 0; if (*n <= 1) { lwmin = 1; lrwmin = 1; liwmin = 1; } else if (wantz) { /* Computing 2nd power */ i__1 = *n; lwmin = i__1 * i__1 << 1; /* Computing 2nd power */ i__1 = *n; lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1); liwmin = *n * 5 + 3; } else { lwmin = *n; lrwmin = *n; liwmin = 1; } if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (upper || lsame_(uplo, "L"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ka < 0) { *info = -4; } else if (*kb < 0 || *kb > *ka) { *info = -5; } else if (*ldab < *ka + 1) { *info = -7; } else if (*ldbb < *kb + 1) { *info = -9; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -12; } if (*info == 0) { work[1].r = (real) lwmin, work[1].i = 0.f; rwork[1] = (real) lrwmin; iwork[1] = liwmin; if (*lwork < lwmin && ! lquery) { *info = -14; } else if (*lrwork < lrwmin && ! lquery) { *info = -16; } else if (*liwork < liwmin && ! lquery) { *info = -18; } } if (*info != 0) { i__1 = -(*info); xerbla_("CHBGVD", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Form a split Cholesky factorization of B. */ cpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem. */ inde = 1; indwrk = inde + *n; indwk2 = *n * *n + 1; llwk2 = *lwork - indwk2 + 2; llrwk = *lrwork - indwrk + 2; chbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, &z__[z_offset], ldz, &work[1], &rwork[indwrk], &iinfo); /* Reduce Hermitian band matrix to tridiagonal form. */ if (wantz) { *(unsigned char *)vect = 'U'; } else { *(unsigned char *)vect = 'N'; } chbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &rwork[inde], & z__[z_offset], ldz, &work[1], &iinfo); /* For eigenvalues only, call SSTERF. For eigenvectors, call CSTEDC. */ if (! wantz) { ssterf_(n, &w[1], &rwork[inde], info); } else { cstedc_("I", n, &w[1], &rwork[inde], &work[1], n, &work[indwk2], & llwk2, &rwork[indwrk], &llrwk, &iwork[1], liwork, info); cgemm_("N", "N", n, n, n, &c_b1, &z__[z_offset], ldz, &work[1], n, & c_b2, &work[indwk2], n); clacpy_("A", n, n, &work[indwk2], n, &z__[z_offset], ldz); } work[1].r = (real) lwmin, work[1].i = 0.f; rwork[1] = (real) lrwmin; iwork[1] = liwmin; return 0; /* End of CHBGVD */ } /* chbgvd_ */
/* Subroutine */ int chbgvx_(char *jobz, char *range, char *uplo, integer *n, integer *ka, integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb, complex *q, integer *ldq, real *vl, real *vu, integer * il, integer *iu, real *abstol, integer *m, real *w, complex *z__, integer *ldz, complex *work, real *rwork, integer *iwork, integer * ifail, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, bb_dim1, bb_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, i__2; /* Local variables */ integer i__, j, jj; real tmp1; integer indd, inde; char vect[1]; logical test; integer itmp1, indee; extern logical lsame_(char *, char *); extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex * , complex *, integer *, complex *, integer *, complex *, complex * , integer *); integer iinfo; char order[1]; extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *), cswap_(integer *, complex *, integer *, complex *, integer *); logical upper; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); logical wantz, alleig, indeig; integer indibl; extern /* Subroutine */ int chbtrd_(char *, char *, integer *, integer *, complex *, integer *, real *, real *, complex *, integer *, complex *, integer *); logical valeig; extern /* Subroutine */ int chbgst_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, real *, integer *), clacpy_( char *, integer *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *), cpbstf_( char *, integer *, integer *, complex *, integer *, integer *); integer indiwk, indisp; extern /* Subroutine */ int cstein_(integer *, real *, real *, integer *, real *, integer *, integer *, complex *, integer *, real *, integer *, integer *, integer *); integer indrwk, indwrk; extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, complex *, integer *, real *, integer *), ssterf_(integer *, real *, real *, integer *); integer nsplit; extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, real *, integer *, integer *, real *, real *, real *, integer *, integer *, real *, integer *, integer *, real *, integer *, integer *); /* -- LAPACK driver routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; bb_dim1 = *ldbb; bb_offset = 1 + bb_dim1; bb -= bb_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --rwork; --iwork; --ifail; /* Function Body */ wantz = lsame_(jobz, "V"); upper = lsame_(uplo, "U"); alleig = lsame_(range, "A"); valeig = lsame_(range, "V"); indeig = lsame_(range, "I"); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (upper || lsame_(uplo, "L"))) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*ka < 0) { *info = -5; } else if (*kb < 0 || *kb > *ka) { *info = -6; } else if (*ldab < *ka + 1) { *info = -8; } else if (*ldbb < *kb + 1) { *info = -10; } else if (*ldq < 1 || wantz && *ldq < *n) { *info = -12; } else { if (valeig) { if (*n > 0 && *vu <= *vl) { *info = -14; } } else if (indeig) { if (*il < 1 || *il > max(1,*n)) { *info = -15; } else if (*iu < min(*n,*il) || *iu > *n) { *info = -16; } } } if (*info == 0) { if (*ldz < 1 || wantz && *ldz < *n) { *info = -21; } } if (*info != 0) { i__1 = -(*info); xerbla_("CHBGVX", &i__1); return 0; } /* Quick return if possible */ *m = 0; if (*n == 0) { return 0; } /* Form a split Cholesky factorization of B. */ cpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem. */ chbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, &q[q_offset], ldq, &work[1], &rwork[1], &iinfo); /* Solve the standard eigenvalue problem. */ /* Reduce Hermitian band matrix to tridiagonal form. */ indd = 1; inde = indd + *n; indrwk = inde + *n; indwrk = 1; if (wantz) { *(unsigned char *)vect = 'U'; } else { *(unsigned char *)vect = 'N'; } chbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &rwork[indd], &rwork[ inde], &q[q_offset], ldq, &work[indwrk], &iinfo); /* If all eigenvalues are desired and ABSTOL is less than or equal */ /* to zero, then call SSTERF or CSTEQR. If this fails for some */ /* eigenvalue, then try SSTEBZ. */ test = FALSE_; if (indeig) { if (*il == 1 && *iu == *n) { test = TRUE_; } } if ((alleig || test) && *abstol <= 0.f) { scopy_(n, &rwork[indd], &c__1, &w[1], &c__1); indee = indrwk + (*n << 1); i__1 = *n - 1; scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1); if (! wantz) { ssterf_(n, &w[1], &rwork[indee], info); } else { clacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz); csteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, & rwork[indrwk], info); if (*info == 0) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { ifail[i__] = 0; /* L10: */ } } } if (*info == 0) { *m = *n; goto L30; } *info = 0; } /* Otherwise, call SSTEBZ and, if eigenvectors are desired, */ /* call CSTEIN. */ if (wantz) { *(unsigned char *)order = 'B'; } else { *(unsigned char *)order = 'E'; } indibl = 1; indisp = indibl + *n; indiwk = indisp + *n; sstebz_(range, order, n, vl, vu, il, iu, abstol, &rwork[indd], &rwork[ inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &rwork[ indrwk], &iwork[indiwk], info); if (wantz) { cstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], & iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[ indiwk], &ifail[1], info); /* Apply unitary matrix used in reduction to tridiagonal */ /* form to eigenvectors returned by CSTEIN. */ i__1 = *m; for (j = 1; j <= i__1; ++j) { ccopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1); cgemv_("N", n, n, &c_b2, &q[q_offset], ldq, &work[1], &c__1, & c_b1, &z__[j * z_dim1 + 1], &c__1); /* L20: */ } } L30: /* If eigenvalues are not in order, then sort them, along with */ /* eigenvectors. */ if (wantz) { i__1 = *m - 1; for (j = 1; j <= i__1; ++j) { i__ = 0; tmp1 = w[j]; i__2 = *m; for (jj = j + 1; jj <= i__2; ++jj) { if (w[jj] < tmp1) { i__ = jj; tmp1 = w[jj]; } /* L40: */ } if (i__ != 0) { itmp1 = iwork[indibl + i__ - 1]; w[i__] = w[j]; iwork[indibl + i__ - 1] = iwork[indibl + j - 1]; w[j] = tmp1; iwork[indibl + j - 1] = itmp1; cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], &c__1); if (*info != 0) { itmp1 = ifail[i__]; ifail[i__] = ifail[j]; ifail[j] = itmp1; } } /* L50: */ } } return 0; /* End of CHBGVX */ }
/* Subroutine */ int chbgv_(char *jobz, char *uplo, integer *n, integer *ka, integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb, real *w, complex *z, integer *ldz, complex *work, real *rwork, integer *info) { /* -- LAPACK driver routine (version 2.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= CHBGV computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian and banded, and B is also positive definite. Arguments ========= JOBZ (input) CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO (input) CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored. N (input) INTEGER The order of the matrices A and B. N >= 0. KA (input) INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KA >= 0. KB (input) INTEGER The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KB >= 0. AB (input/output) COMPLEX array, dimension (LDAB, N) On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first ka+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). On exit, the contents of AB are destroyed. LDAB (input) INTEGER The leading dimension of the array AB. LDAB >= KA+1. BB (input/output) COMPLEX array, dimension (LDBB, N) On entry, the upper or lower triangle of the Hermitian band matrix B, stored in the first kb+1 rows of the array. The j-th column of B is stored in the j-th column of the array BB as follows: if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). On exit, the factor S from the split Cholesky factorization B = S**H*S, as returned by CPBSTF. LDBB (input) INTEGER The leading dimension of the array BB. LDBB >= KB+1. W (output) REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. Z (output) COMPLEX array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors, with the i-th column of Z holding the eigenvector associated with W(i). The eigenvectors are normalized so that Z**H*B*Z = I. If JOBZ = 'N', then Z is not referenced. LDZ (input) INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= N. WORK (workspace) COMPLEX array, dimension (N) RWORK (workspace) REAL array, dimension (3*N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is: <= N: the algorithm failed to converge: i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; > N: if INFO = N + i, for 1 <= i <= N, then CPBSTF returned INFO = i: B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. ===================================================================== Test the input parameters. Parameter adjustments Function Body */ /* System generated locals */ integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1; /* Local variables */ static integer inde; static char vect[1]; extern logical lsame_(char *, char *); static integer iinfo; static logical upper, wantz; extern /* Subroutine */ int chbtrd_(char *, char *, integer *, integer *, complex *, integer *, real *, real *, complex *, integer *, complex *, integer *), chbgst_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, real *, integer *), xerbla_(char *, integer *), cpbstf_(char *, integer *, integer *, complex *, integer *, integer *); static integer indwrk; extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, complex *, integer *, real *, integer *), ssterf_(integer *, real *, real *, integer *); #define W(I) w[(I)-1] #define WORK(I) work[(I)-1] #define RWORK(I) rwork[(I)-1] #define AB(I,J) ab[(I)-1 + ((J)-1)* ( *ldab)] #define BB(I,J) bb[(I)-1 + ((J)-1)* ( *ldbb)] #define Z(I,J) z[(I)-1 + ((J)-1)* ( *ldz)] wantz = lsame_(jobz, "V"); upper = lsame_(uplo, "U"); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (upper || lsame_(uplo, "L"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ka < 0) { *info = -4; } else if (*kb < 0 || *kb > *ka) { *info = -5; } else if (*ldab < *ka + 1) { *info = -7; } else if (*ldbb < *kb + 1) { *info = -9; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -12; } if (*info != 0) { i__1 = -(*info); xerbla_("CHBGV ", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Form a split Cholesky factorization of B. */ cpbstf_(uplo, n, kb, &BB(1,1), ldbb, info); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem. */ inde = 1; indwrk = inde + *n; chbgst_(jobz, uplo, n, ka, kb, &AB(1,1), ldab, &BB(1,1), ldbb, &Z(1,1), ldz, &WORK(1), &RWORK(indwrk), &iinfo); /* Reduce to tridiagonal form. */ if (wantz) { *(unsigned char *)vect = 'U'; } else { *(unsigned char *)vect = 'N'; } chbtrd_(vect, uplo, n, ka, &AB(1,1), ldab, &W(1), &RWORK(inde), &Z(1,1), ldz, &WORK(1), &iinfo); /* For eigenvalues only, call SSTERF. For eigenvectors, call CSTEQR. */ if (! wantz) { ssterf_(n, &W(1), &RWORK(inde), info); } else { csteqr_(jobz, n, &W(1), &RWORK(inde), &Z(1,1), ldz, &RWORK( indwrk), info); } return 0; /* End of CHBGV */ } /* chbgv_ */
/* Subroutine */ int chbgvx_(char *jobz, char *range, char *uplo, integer *n, integer *ka, integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb, complex *q, integer *ldq, real *vl, real *vu, integer * il, integer *iu, real *abstol, integer *m, real *w, complex *z__, integer *ldz, complex *work, real *rwork, integer *iwork, integer * ifail, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, bb_dim1, bb_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, i__2; /* Local variables */ integer i__, j, jj; real tmp1; integer indd, inde; char vect[1]; logical test; integer itmp1, indee; extern logical lsame_(char *, char *); extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex * , complex *, integer *, complex *, integer *, complex *, complex * , integer *); integer iinfo; char order[1]; extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *), cswap_(integer *, complex *, integer *, complex *, integer *); logical upper; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); logical wantz, alleig, indeig; integer indibl; extern /* Subroutine */ int chbtrd_(char *, char *, integer *, integer *, complex *, integer *, real *, real *, complex *, integer *, complex *, integer *); logical valeig; extern /* Subroutine */ int chbgst_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, real *, integer *), clacpy_( char *, integer *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *), cpbstf_( char *, integer *, integer *, complex *, integer *, integer *); integer indiwk, indisp; extern /* Subroutine */ int cstein_(integer *, real *, real *, integer *, real *, integer *, integer *, complex *, integer *, real *, integer *, integer *, integer *); integer indrwk, indwrk; extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, complex *, integer *, real *, integer *), ssterf_(integer *, real *, real *, integer *); integer nsplit; extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, real *, integer *, integer *, real *, real *, real *, integer *, integer *, real *, integer *, integer *, real *, integer *, integer *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CHBGVX computes all the eigenvalues, and optionally, the eigenvectors */ /* of a complex generalized Hermitian-definite banded eigenproblem, of */ /* the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian */ /* and banded, and B is also positive definite. Eigenvalues and */ /* eigenvectors can be selected by specifying either all eigenvalues, */ /* a range of values or a range of indices for the desired eigenvalues. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* RANGE (input) CHARACTER*1 */ /* = 'A': all eigenvalues will be found; */ /* = 'V': all eigenvalues in the half-open interval (VL,VU] */ /* will be found; */ /* = 'I': the IL-th through IU-th eigenvalues will be found. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangles of A and B are stored; */ /* = 'L': Lower triangles of A and B are stored. */ /* N (input) INTEGER */ /* The order of the matrices A and B. N >= 0. */ /* KA (input) INTEGER */ /* The number of superdiagonals of the matrix A if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */ /* KB (input) INTEGER */ /* The number of superdiagonals of the matrix B if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */ /* AB (input/output) COMPLEX array, dimension (LDAB, N) */ /* On entry, the upper or lower triangle of the Hermitian band */ /* matrix A, stored in the first ka+1 rows of the array. The */ /* j-th column of A is stored in the j-th column of the array AB */ /* as follows: */ /* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */ /* On exit, the contents of AB are destroyed. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KA+1. */ /* BB (input/output) COMPLEX array, dimension (LDBB, N) */ /* On entry, the upper or lower triangle of the Hermitian band */ /* matrix B, stored in the first kb+1 rows of the array. The */ /* j-th column of B is stored in the j-th column of the array BB */ /* as follows: */ /* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */ /* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */ /* On exit, the factor S from the split Cholesky factorization */ /* B = S**H*S, as returned by CPBSTF. */ /* LDBB (input) INTEGER */ /* The leading dimension of the array BB. LDBB >= KB+1. */ /* Q (output) COMPLEX array, dimension (LDQ, N) */ /* If JOBZ = 'V', the n-by-n matrix used in the reduction of */ /* A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, */ /* and consequently C to tridiagonal form. */ /* If JOBZ = 'N', the array Q is not referenced. */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. If JOBZ = 'N', */ /* LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N). */ /* VL (input) REAL */ /* VU (input) REAL */ /* If RANGE='V', the lower and upper bounds of the interval to */ /* be searched for eigenvalues. VL < VU. */ /* Not referenced if RANGE = 'A' or 'I'. */ /* IL (input) INTEGER */ /* IU (input) INTEGER */ /* If RANGE='I', the indices (in ascending order) of the */ /* smallest and largest eigenvalues to be returned. */ /* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ /* Not referenced if RANGE = 'A' or 'V'. */ /* ABSTOL (input) REAL */ /* The absolute error tolerance for the eigenvalues. */ /* An approximate eigenvalue is accepted as converged */ /* when it is determined to lie in an interval [a,b] */ /* of width less than or equal to */ /* ABSTOL + EPS * max( |a|,|b| ) , */ /* where EPS is the machine precision. If ABSTOL is less than */ /* or equal to zero, then EPS*|T| will be used in its place, */ /* where |T| is the 1-norm of the tridiagonal matrix obtained */ /* by reducing AP to tridiagonal form. */ /* Eigenvalues will be computed most accurately when ABSTOL is */ /* set to twice the underflow threshold 2*SLAMCH('S'), not zero. */ /* If this routine returns with INFO>0, indicating that some */ /* eigenvectors did not converge, try setting ABSTOL to */ /* 2*SLAMCH('S'). */ /* M (output) INTEGER */ /* The total number of eigenvalues found. 0 <= M <= N. */ /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ /* W (output) REAL array, dimension (N) */ /* If INFO = 0, the eigenvalues in ascending order. */ /* Z (output) COMPLEX array, dimension (LDZ, N) */ /* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */ /* eigenvectors, with the i-th column of Z holding the */ /* eigenvector associated with W(i). The eigenvectors are */ /* normalized so that Z**H*B*Z = I. */ /* If JOBZ = 'N', then Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= N. */ /* WORK (workspace) COMPLEX array, dimension (N) */ /* RWORK (workspace) REAL array, dimension (7*N) */ /* IWORK (workspace) INTEGER array, dimension (5*N) */ /* IFAIL (output) INTEGER array, dimension (N) */ /* If JOBZ = 'V', then if INFO = 0, the first M elements of */ /* IFAIL are zero. If INFO > 0, then IFAIL contains the */ /* indices of the eigenvectors that failed to converge. */ /* If JOBZ = 'N', then IFAIL is not referenced. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, and i is: */ /* <= N: then i eigenvectors failed to converge. Their */ /* indices are stored in array IFAIL. */ /* > N: if INFO = N + i, for 1 <= i <= N, then CPBSTF */ /* returned INFO = i: B is not positive definite. */ /* The factorization of B could not be completed and */ /* no eigenvalues or eigenvectors were computed. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; bb_dim1 = *ldbb; bb_offset = 1 + bb_dim1; bb -= bb_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --rwork; --iwork; --ifail; /* Function Body */ wantz = lsame_(jobz, "V"); upper = lsame_(uplo, "U"); alleig = lsame_(range, "A"); valeig = lsame_(range, "V"); indeig = lsame_(range, "I"); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (upper || lsame_(uplo, "L"))) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*ka < 0) { *info = -5; } else if (*kb < 0 || *kb > *ka) { *info = -6; } else if (*ldab < *ka + 1) { *info = -8; } else if (*ldbb < *kb + 1) { *info = -10; } else if (*ldq < 1 || wantz && *ldq < *n) { *info = -12; } else { if (valeig) { if (*n > 0 && *vu <= *vl) { *info = -14; } } else if (indeig) { if (*il < 1 || *il > max(1,*n)) { *info = -15; } else if (*iu < min(*n,*il) || *iu > *n) { *info = -16; } } } if (*info == 0) { if (*ldz < 1 || wantz && *ldz < *n) { *info = -21; } } if (*info != 0) { i__1 = -(*info); xerbla_("CHBGVX", &i__1); return 0; } /* Quick return if possible */ *m = 0; if (*n == 0) { return 0; } /* Form a split Cholesky factorization of B. */ cpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem. */ chbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, &q[q_offset], ldq, &work[1], &rwork[1], &iinfo); /* Solve the standard eigenvalue problem. */ /* Reduce Hermitian band matrix to tridiagonal form. */ indd = 1; inde = indd + *n; indrwk = inde + *n; indwrk = 1; if (wantz) { *(unsigned char *)vect = 'U'; } else { *(unsigned char *)vect = 'N'; } chbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &rwork[indd], &rwork[ inde], &q[q_offset], ldq, &work[indwrk], &iinfo); /* If all eigenvalues are desired and ABSTOL is less than or equal */ /* to zero, then call SSTERF or CSTEQR. If this fails for some */ /* eigenvalue, then try SSTEBZ. */ test = FALSE_; if (indeig) { if (*il == 1 && *iu == *n) { test = TRUE_; } } if ((alleig || test) && *abstol <= 0.f) { scopy_(n, &rwork[indd], &c__1, &w[1], &c__1); indee = indrwk + (*n << 1); i__1 = *n - 1; scopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1); if (! wantz) { ssterf_(n, &w[1], &rwork[indee], info); } else { clacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz); csteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, & rwork[indrwk], info); if (*info == 0) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { ifail[i__] = 0; /* L10: */ } } } if (*info == 0) { *m = *n; goto L30; } *info = 0; } /* Otherwise, call SSTEBZ and, if eigenvectors are desired, */ /* call CSTEIN. */ if (wantz) { *(unsigned char *)order = 'B'; } else { *(unsigned char *)order = 'E'; } indibl = 1; indisp = indibl + *n; indiwk = indisp + *n; sstebz_(range, order, n, vl, vu, il, iu, abstol, &rwork[indd], &rwork[ inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &rwork[ indrwk], &iwork[indiwk], info); if (wantz) { cstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], & iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[ indiwk], &ifail[1], info); /* Apply unitary matrix used in reduction to tridiagonal */ /* form to eigenvectors returned by CSTEIN. */ i__1 = *m; for (j = 1; j <= i__1; ++j) { ccopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1); cgemv_("N", n, n, &c_b2, &q[q_offset], ldq, &work[1], &c__1, & c_b1, &z__[j * z_dim1 + 1], &c__1); /* L20: */ } } L30: /* If eigenvalues are not in order, then sort them, along with */ /* eigenvectors. */ if (wantz) { i__1 = *m - 1; for (j = 1; j <= i__1; ++j) { i__ = 0; tmp1 = w[j]; i__2 = *m; for (jj = j + 1; jj <= i__2; ++jj) { if (w[jj] < tmp1) { i__ = jj; tmp1 = w[jj]; } /* L40: */ } if (i__ != 0) { itmp1 = iwork[indibl + i__ - 1]; w[i__] = w[j]; iwork[indibl + i__ - 1] = iwork[indibl + j - 1]; w[j] = tmp1; iwork[indibl + j - 1] = itmp1; cswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], &c__1); if (*info != 0) { itmp1 = ifail[i__]; ifail[i__] = ifail[j]; ifail[j] = itmp1; } } /* L50: */ } } return 0; /* End of CHBGVX */ } /* chbgvx_ */