/* Subroutine */ int cerrpo_(char *path, integer *nunit) { /* System generated locals */ integer i__1; real r__1, r__2; complex q__1; /* Local variables */ complex a[16] /* was [4][4] */, b[4]; integer i__, j; real r__[4]; complex w[8], x[4]; char c2[2]; real r1[4], r2[4]; complex af[16] /* was [4][4] */; integer info; real anrm, rcond; /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CERRPO tests the error exits for the COMPLEX routines */ /* for Hermitian positive definite matrices. */ /* Arguments */ /* ========= */ /* PATH (input) CHARACTER*3 */ /* The LAPACK path name for the routines to be tested. */ /* NUNIT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2); /* Set the variables to innocuous values. */ for (j = 1; j <= 4; ++j) { for (i__ = 1; i__ <= 4; ++i__) { i__1 = i__ + (j << 2) - 5; r__1 = 1.f / (real) (i__ + j); r__2 = -1.f / (real) (i__ + j); q__1.r = r__1, q__1.i = r__2; a[i__1].r = q__1.r, a[i__1].i = q__1.i; i__1 = i__ + (j << 2) - 5; r__1 = 1.f / (real) (i__ + j); r__2 = -1.f / (real) (i__ + j); q__1.r = r__1, q__1.i = r__2; af[i__1].r = q__1.r, af[i__1].i = q__1.i; /* L10: */ } i__1 = j - 1; b[i__1].r = 0.f, b[i__1].i = 0.f; r1[j - 1] = 0.f; r2[j - 1] = 0.f; i__1 = j - 1; w[i__1].r = 0.f, w[i__1].i = 0.f; i__1 = j - 1; x[i__1].r = 0.f, x[i__1].i = 0.f; /* L20: */ } anrm = 1.f; infoc_1.ok = TRUE_; /* Test error exits of the routines that use the Cholesky */ /* decomposition of a Hermitian positive definite matrix. */ if (lsamen_(&c__2, c2, "PO")) { /* CPOTRF */ s_copy(srnamc_1.srnamt, "CPOTRF", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cpotrf_("/", &c__0, a, &c__1, &info); chkxer_("CPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cpotrf_("U", &c_n1, a, &c__1, &info); chkxer_("CPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cpotrf_("U", &c__2, a, &c__1, &info); chkxer_("CPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CPOTF2 */ s_copy(srnamc_1.srnamt, "CPOTF2", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cpotf2_("/", &c__0, a, &c__1, &info); chkxer_("CPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cpotf2_("U", &c_n1, a, &c__1, &info); chkxer_("CPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cpotf2_("U", &c__2, a, &c__1, &info); chkxer_("CPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CPOTRI */ s_copy(srnamc_1.srnamt, "CPOTRI", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cpotri_("/", &c__0, a, &c__1, &info); chkxer_("CPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cpotri_("U", &c_n1, a, &c__1, &info); chkxer_("CPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cpotri_("U", &c__2, a, &c__1, &info); chkxer_("CPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CPOTRS */ s_copy(srnamc_1.srnamt, "CPOTRS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cpotrs_("/", &c__0, &c__0, a, &c__1, b, &c__1, &info); chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cpotrs_("U", &c_n1, &c__0, a, &c__1, b, &c__1, &info); chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cpotrs_("U", &c__0, &c_n1, a, &c__1, b, &c__1, &info); chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cpotrs_("U", &c__2, &c__1, a, &c__1, b, &c__2, &info); chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cpotrs_("U", &c__2, &c__1, a, &c__2, b, &c__1, &info); chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CPORFS */ s_copy(srnamc_1.srnamt, "CPORFS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cporfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cporfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cporfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cporfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &c__2, r1, r2, w, r__, &info); chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cporfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &c__2, r1, r2, w, r__, &info); chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 9; cporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__1, x, &c__2, r1, r2, w, r__, &info); chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 11; cporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__2, x, &c__1, r1, r2, w, r__, &info); chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CPOCON */ s_copy(srnamc_1.srnamt, "CPOCON", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cpocon_("/", &c__0, a, &c__1, &anrm, &rcond, w, r__, &info) ; chkxer_("CPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cpocon_("U", &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info) ; chkxer_("CPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cpocon_("U", &c__2, a, &c__1, &anrm, &rcond, w, r__, &info) ; chkxer_("CPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; r__1 = -anrm; cpocon_("U", &c__1, a, &c__1, &r__1, &rcond, w, r__, &info) ; chkxer_("CPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CPOEQU */ s_copy(srnamc_1.srnamt, "CPOEQU", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cpoequ_(&c_n1, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("CPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cpoequ_(&c__2, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("CPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Test error exits of the routines that use the Cholesky */ /* decomposition of a Hermitian positive definite packed matrix. */ } else if (lsamen_(&c__2, c2, "PP")) { /* CPPTRF */ s_copy(srnamc_1.srnamt, "CPPTRF", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cpptrf_("/", &c__0, a, &info); chkxer_("CPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cpptrf_("U", &c_n1, a, &info); chkxer_("CPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CPPTRI */ s_copy(srnamc_1.srnamt, "CPPTRI", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cpptri_("/", &c__0, a, &info); chkxer_("CPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cpptri_("U", &c_n1, a, &info); chkxer_("CPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CPPTRS */ s_copy(srnamc_1.srnamt, "CPPTRS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cpptrs_("/", &c__0, &c__0, a, b, &c__1, &info); chkxer_("CPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cpptrs_("U", &c_n1, &c__0, a, b, &c__1, &info); chkxer_("CPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cpptrs_("U", &c__0, &c_n1, a, b, &c__1, &info); chkxer_("CPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; cpptrs_("U", &c__2, &c__1, a, b, &c__1, &info); chkxer_("CPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CPPRFS */ s_copy(srnamc_1.srnamt, "CPPRFS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cpprfs_("/", &c__0, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cpprfs_("U", &c_n1, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cpprfs_("U", &c__0, &c_n1, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cpprfs_("U", &c__2, &c__1, a, af, b, &c__1, x, &c__2, r1, r2, w, r__, &info); chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 9; cpprfs_("U", &c__2, &c__1, a, af, b, &c__2, x, &c__1, r1, r2, w, r__, &info); chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CPPCON */ s_copy(srnamc_1.srnamt, "CPPCON", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cppcon_("/", &c__0, a, &anrm, &rcond, w, r__, &info); chkxer_("CPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cppcon_("U", &c_n1, a, &anrm, &rcond, w, r__, &info); chkxer_("CPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; r__1 = -anrm; cppcon_("U", &c__1, a, &r__1, &rcond, w, r__, &info); chkxer_("CPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CPPEQU */ s_copy(srnamc_1.srnamt, "CPPEQU", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cppequ_("/", &c__0, a, r1, &rcond, &anrm, &info); chkxer_("CPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cppequ_("U", &c_n1, a, r1, &rcond, &anrm, &info); chkxer_("CPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Test error exits of the routines that use the Cholesky */ /* decomposition of a Hermitian positive definite band matrix. */ } else if (lsamen_(&c__2, c2, "PB")) { /* CPBTRF */ s_copy(srnamc_1.srnamt, "CPBTRF", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cpbtrf_("/", &c__0, &c__0, a, &c__1, &info); chkxer_("CPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cpbtrf_("U", &c_n1, &c__0, a, &c__1, &info); chkxer_("CPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cpbtrf_("U", &c__1, &c_n1, a, &c__1, &info); chkxer_("CPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cpbtrf_("U", &c__2, &c__1, a, &c__1, &info); chkxer_("CPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CPBTF2 */ s_copy(srnamc_1.srnamt, "CPBTF2", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cpbtf2_("/", &c__0, &c__0, a, &c__1, &info); chkxer_("CPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cpbtf2_("U", &c_n1, &c__0, a, &c__1, &info); chkxer_("CPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cpbtf2_("U", &c__1, &c_n1, a, &c__1, &info); chkxer_("CPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cpbtf2_("U", &c__2, &c__1, a, &c__1, &info); chkxer_("CPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CPBTRS */ s_copy(srnamc_1.srnamt, "CPBTRS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cpbtrs_("/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, &info); chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cpbtrs_("U", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, &info); chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cpbtrs_("U", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, &info); chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cpbtrs_("U", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, &info); chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; cpbtrs_("U", &c__2, &c__1, &c__1, a, &c__1, b, &c__1, &info); chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; cpbtrs_("U", &c__2, &c__0, &c__1, a, &c__1, b, &c__1, &info); chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CPBRFS */ s_copy(srnamc_1.srnamt, "CPBRFS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cpbrfs_("/", &c__0, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, & c__1, r1, r2, w, r__, &info); chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cpbrfs_("U", &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, & c__1, r1, r2, w, r__, &info); chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cpbrfs_("U", &c__1, &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, & c__1, r1, r2, w, r__, &info); chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cpbrfs_("U", &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, & c__1, r1, r2, w, r__, &info); chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; cpbrfs_("U", &c__2, &c__1, &c__1, a, &c__1, af, &c__2, b, &c__2, x, & c__2, r1, r2, w, r__, &info); chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; cpbrfs_("U", &c__2, &c__1, &c__1, a, &c__2, af, &c__1, b, &c__2, x, & c__2, r1, r2, w, r__, &info); chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; cpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__1, x, & c__2, r1, r2, w, r__, &info); chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; cpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__2, x, & c__1, r1, r2, w, r__, &info); chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CPBCON */ s_copy(srnamc_1.srnamt, "CPBCON", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cpbcon_("/", &c__0, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info); chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cpbcon_("U", &c_n1, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info); chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cpbcon_("U", &c__1, &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info); chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cpbcon_("U", &c__2, &c__1, a, &c__1, &anrm, &rcond, w, r__, &info); chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; r__1 = -anrm; cpbcon_("U", &c__1, &c__0, a, &c__1, &r__1, &rcond, w, r__, &info); chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CPBEQU */ s_copy(srnamc_1.srnamt, "CPBEQU", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cpbequ_("/", &c__0, &c__0, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("CPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cpbequ_("U", &c_n1, &c__0, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("CPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cpbequ_("U", &c__1, &c_n1, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("CPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cpbequ_("U", &c__2, &c__1, a, &c__1, r1, &rcond, &anrm, &info); chkxer_("CPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); } /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of CERRPO */ } /* cerrpo_ */
/* Subroutine */ int cpbtrf_(char *uplo, integer *n, integer *kd, complex *ab, integer *ldab, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6; complex q__1; /* Local variables */ integer i__, j, i2, i3, ib, nb, ii, jj; complex work[1056] /* was [33][32] */; /* -- LAPACK routine (version 3.2) -- */ /* November 2006 */ /* Purpose */ /* ======= */ /* CPBTRF computes the Cholesky factorization of a complex Hermitian */ /* positive definite band matrix A. */ /* The factorization has the form */ /* A = U**H * U, if UPLO = 'U', or */ /* A = L * L**H, if UPLO = 'L', */ /* where U is an upper triangular matrix and L is lower triangular. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of superdiagonals of the matrix A if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */ /* AB (input/output) COMPLEX array, dimension (LDAB,N) */ /* On entry, the upper or lower triangle of the Hermitian band */ /* matrix A, stored in the first KD+1 rows of the array. The */ /* j-th column of A is stored in the j-th column of the array AB */ /* as follows: */ /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ /* On exit, if INFO = 0, the triangular factor U or L from the */ /* Cholesky factorization A = U**H*U or A = L*L**H of the band */ /* matrix A, in the same storage format as A. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KD+1. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, the leading minor of order i is not */ /* positive definite, and the factorization could not be */ /* completed. */ /* Further Details */ /* =============== */ /* The band storage scheme is illustrated by the following example, when */ /* N = 6, KD = 2, and UPLO = 'U': */ /* On entry: On exit: */ /* * * a13 a24 a35 a46 * * u13 u24 u35 u46 */ /* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */ /* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */ /* Similarly, if UPLO = 'L' the format of A is as follows: */ /* On entry: On exit: */ /* a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 */ /* a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * */ /* a31 a42 a53 a64 * * l31 l42 l53 l64 * * */ /* Array elements marked * are not used by the routine. */ /* Contributed by */ /* Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989 */ /* ===================================================================== */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; /* Function Body */ *info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*kd < 0) { *info = -3; } else if (*ldab < *kd + 1) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("CPBTRF", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Determine the block size for this environment */ nb = ilaenv_(&c__1, "CPBTRF", uplo, n, kd, &c_n1, &c_n1); /* The block size must not exceed the semi-bandwidth KD, and must not */ /* exceed the limit set by the size of the local array WORK. */ nb = min(nb,32); if (nb <= 1 || nb > *kd) { /* Use unblocked code */ cpbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info); } else { /* Use blocked code */ if (lsame_(uplo, "U")) { /* Compute the Cholesky factorization of a Hermitian band */ /* matrix, given the upper triangle of the matrix in band */ /* storage. */ /* Zero the upper triangle of the work array. */ i__1 = nb; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * 33 - 34; work[i__3].r = 0.f, work[i__3].i = 0.f; } } /* Process the band matrix one diagonal block at a time. */ i__1 = *n; i__2 = nb; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = nb, i__4 = *n - i__ + 1; ib = min(i__3,i__4); /* Factorize the diagonal block */ i__3 = *ldab - 1; cpotf2_(uplo, &ib, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ii); if (ii != 0) { *info = i__ + ii - 1; goto L150; } if (i__ + ib <= *n) { /* Update the relevant part of the trailing submatrix. */ /* If A11 denotes the diagonal block which has just been */ /* factorized, then we need to update the remaining */ /* blocks in the diagram: */ /* A11 A12 A13 */ /* A22 A23 */ /* A33 */ /* The numbers of rows and columns in the partitioning */ /* are IB, I2, I3 respectively. The blocks A12, A22 and */ /* A23 are empty if IB = KD. The upper triangle of A13 */ /* lies outside the band. */ /* Computing MIN */ i__3 = *kd - ib, i__4 = *n - i__ - ib + 1; i2 = min(i__3,i__4); /* Computing MIN */ i__3 = ib, i__4 = *n - i__ - *kd + 1; i3 = min(i__3,i__4); if (i2 > 0) { /* Update A12 */ i__3 = *ldab - 1; i__4 = *ldab - 1; ctrsm_("Left", "Upper", "Conjugate transpose", "Non-" "unit", &ib, &i2, &c_b1, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__4); /* Update A22 */ i__3 = *ldab - 1; i__4 = *ldab - 1; cherk_("Upper", "Conjugate transpose", &i2, &ib, & c_b21, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__3, &c_b22, &ab[*kd + 1 + (i__ + ib) * ab_dim1], &i__4); } if (i3 > 0) { /* Copy the lower triangle of A13 into the work array. */ i__3 = i3; for (jj = 1; jj <= i__3; ++jj) { i__4 = ib; for (ii = jj; ii <= i__4; ++ii) { i__5 = ii + jj * 33 - 34; i__6 = ii - jj + 1 + (jj + i__ + *kd - 1) * ab_dim1; work[i__5].r = ab[i__6].r, work[i__5].i = ab[ i__6].i; } } /* Update A13 (in the work array). */ i__3 = *ldab - 1; ctrsm_("Left", "Upper", "Conjugate transpose", "Non-" "unit", &ib, &i3, &c_b1, &ab[*kd + 1 + i__ * ab_dim1], &i__3, work, &c__33); /* Update A23 */ if (i2 > 0) { q__1.r = -1.f, q__1.i = -0.f; i__3 = *ldab - 1; i__4 = *ldab - 1; cgemm_("Conjugate transpose", "No transpose", &i2, &i3, &ib, &q__1, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__3, work, &c__33, & c_b1, &ab[ib + 1 + (i__ + *kd) * ab_dim1], &i__4); } /* Update A33 */ i__3 = *ldab - 1; cherk_("Upper", "Conjugate transpose", &i3, &ib, & c_b21, work, &c__33, &c_b22, &ab[*kd + 1 + ( i__ + *kd) * ab_dim1], &i__3); /* Copy the lower triangle of A13 back into place. */ i__3 = i3; for (jj = 1; jj <= i__3; ++jj) { i__4 = ib; for (ii = jj; ii <= i__4; ++ii) { i__5 = ii - jj + 1 + (jj + i__ + *kd - 1) * ab_dim1; i__6 = ii + jj * 33 - 34; ab[i__5].r = work[i__6].r, ab[i__5].i = work[ i__6].i; } } } } } } else { /* Compute the Cholesky factorization of a Hermitian band */ /* matrix, given the lower triangle of the matrix in band */ /* storage. */ /* Zero the lower triangle of the work array. */ i__2 = nb; for (j = 1; j <= i__2; ++j) { i__1 = nb; for (i__ = j + 1; i__ <= i__1; ++i__) { i__3 = i__ + j * 33 - 34; work[i__3].r = 0.f, work[i__3].i = 0.f; } } /* Process the band matrix one diagonal block at a time. */ i__2 = *n; i__1 = nb; for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) { /* Computing MIN */ i__3 = nb, i__4 = *n - i__ + 1; ib = min(i__3,i__4); /* Factorize the diagonal block */ i__3 = *ldab - 1; cpotf2_(uplo, &ib, &ab[i__ * ab_dim1 + 1], &i__3, &ii); if (ii != 0) { *info = i__ + ii - 1; goto L150; } if (i__ + ib <= *n) { /* Update the relevant part of the trailing submatrix. */ /* If A11 denotes the diagonal block which has just been */ /* factorized, then we need to update the remaining */ /* blocks in the diagram: */ /* A11 */ /* A21 A22 */ /* A31 A32 A33 */ /* The numbers of rows and columns in the partitioning */ /* are IB, I2, I3 respectively. The blocks A21, A22 and */ /* A32 are empty if IB = KD. The lower triangle of A31 */ /* lies outside the band. */ /* Computing MIN */ i__3 = *kd - ib, i__4 = *n - i__ - ib + 1; i2 = min(i__3,i__4); /* Computing MIN */ i__3 = ib, i__4 = *n - i__ - *kd + 1; i3 = min(i__3,i__4); if (i2 > 0) { /* Update A21 */ i__3 = *ldab - 1; i__4 = *ldab - 1; ctrsm_("Right", "Lower", "Conjugate transpose", "Non" "-unit", &i2, &ib, &c_b1, &ab[i__ * ab_dim1 + 1], &i__3, &ab[ib + 1 + i__ * ab_dim1], &i__4); /* Update A22 */ i__3 = *ldab - 1; i__4 = *ldab - 1; cherk_("Lower", "No transpose", &i2, &ib, &c_b21, &ab[ ib + 1 + i__ * ab_dim1], &i__3, &c_b22, &ab[( i__ + ib) * ab_dim1 + 1], &i__4); } if (i3 > 0) { /* Copy the upper triangle of A31 into the work array. */ i__3 = ib; for (jj = 1; jj <= i__3; ++jj) { i__4 = min(jj,i3); for (ii = 1; ii <= i__4; ++ii) { i__5 = ii + jj * 33 - 34; i__6 = *kd + 1 - jj + ii + (jj + i__ - 1) * ab_dim1; work[i__5].r = ab[i__6].r, work[i__5].i = ab[ i__6].i; } } /* Update A31 (in the work array). */ i__3 = *ldab - 1; ctrsm_("Right", "Lower", "Conjugate transpose", "Non" "-unit", &i3, &ib, &c_b1, &ab[i__ * ab_dim1 + 1], &i__3, work, &c__33); /* Update A32 */ if (i2 > 0) { q__1.r = -1.f, q__1.i = -0.f; i__3 = *ldab - 1; i__4 = *ldab - 1; cgemm_("No transpose", "Conjugate transpose", &i3, &i2, &ib, &q__1, work, &c__33, &ab[ib + 1 + i__ * ab_dim1], &i__3, &c_b1, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__4); } /* Update A33 */ i__3 = *ldab - 1; cherk_("Lower", "No transpose", &i3, &ib, &c_b21, work, &c__33, &c_b22, &ab[(i__ + *kd) * ab_dim1 + 1], &i__3); /* Copy the upper triangle of A31 back into place. */ i__3 = ib; for (jj = 1; jj <= i__3; ++jj) { i__4 = min(jj,i3); for (ii = 1; ii <= i__4; ++ii) { i__5 = *kd + 1 - jj + ii + (jj + i__ - 1) * ab_dim1; i__6 = ii + jj * 33 - 34; ab[i__5].r = work[i__6].r, ab[i__5].i = work[ i__6].i; } } } } } } } return 0; L150: return 0; /* End of CPBTRF */ } /* cpbtrf_ */
/* Subroutine */ int cpbtrf_(char *uplo, integer *n, integer *kd, complex *ab, integer *ldab, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6; complex q__1; /* Local variables */ integer i__, j, i2, i3, ib, nb, ii, jj; complex work[1056] /* was [33][32] */ ; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *), cherk_(char *, char *, integer *, integer *, real *, complex *, integer *, real * , complex *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *), cpbtf2_(char *, integer *, integer *, complex *, integer *, integer *), cpotf2_(char *, integer *, complex *, integer *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); /* -- LAPACK computational routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; /* Function Body */ *info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*kd < 0) { *info = -3; } else if (*ldab < *kd + 1) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("CPBTRF", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Determine the block size for this environment */ nb = ilaenv_(&c__1, "CPBTRF", uplo, n, kd, &c_n1, &c_n1); /* The block size must not exceed the semi-bandwidth KD, and must not */ /* exceed the limit set by the size of the local array WORK. */ nb = min(nb,32); if (nb <= 1 || nb > *kd) { /* Use unblocked code */ cpbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info); } else { /* Use blocked code */ if (lsame_(uplo, "U")) { /* Compute the Cholesky factorization of a Hermitian band */ /* matrix, given the upper triangle of the matrix in band */ /* storage. */ /* Zero the upper triangle of the work array. */ i__1 = nb; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * 33 - 34; work[i__3].r = 0.f; work[i__3].i = 0.f; // , expr subst /* L10: */ } /* L20: */ } /* Process the band matrix one diagonal block at a time. */ i__1 = *n; i__2 = nb; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = nb; i__4 = *n - i__ + 1; // , expr subst ib = min(i__3,i__4); /* Factorize the diagonal block */ i__3 = *ldab - 1; cpotf2_(uplo, &ib, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ii); if (ii != 0) { *info = i__ + ii - 1; goto L150; } if (i__ + ib <= *n) { /* Update the relevant part of the trailing submatrix. */ /* If A11 denotes the diagonal block which has just been */ /* factorized, then we need to update the remaining */ /* blocks in the diagram: */ /* A11 A12 A13 */ /* A22 A23 */ /* A33 */ /* The numbers of rows and columns in the partitioning */ /* are IB, I2, I3 respectively. The blocks A12, A22 and */ /* A23 are empty if IB = KD. The upper triangle of A13 */ /* lies outside the band. */ /* Computing MIN */ i__3 = *kd - ib; i__4 = *n - i__ - ib + 1; // , expr subst i2 = min(i__3,i__4); /* Computing MIN */ i__3 = ib; i__4 = *n - i__ - *kd + 1; // , expr subst i3 = min(i__3,i__4); if (i2 > 0) { /* Update A12 */ i__3 = *ldab - 1; i__4 = *ldab - 1; ctrsm_("Left", "Upper", "Conjugate transpose", "Non-" "unit", &ib, &i2, &c_b1, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__4); /* Update A22 */ i__3 = *ldab - 1; i__4 = *ldab - 1; cherk_("Upper", "Conjugate transpose", &i2, &ib, & c_b21, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__3, &c_b22, &ab[*kd + 1 + (i__ + ib) * ab_dim1], &i__4); } if (i3 > 0) { /* Copy the lower triangle of A13 into the work array. */ i__3 = i3; for (jj = 1; jj <= i__3; ++jj) { i__4 = ib; for (ii = jj; ii <= i__4; ++ii) { i__5 = ii + jj * 33 - 34; i__6 = ii - jj + 1 + (jj + i__ + *kd - 1) * ab_dim1; work[i__5].r = ab[i__6].r; work[i__5].i = ab[ i__6].i; // , expr subst /* L30: */ } /* L40: */ } /* Update A13 (in the work array). */ i__3 = *ldab - 1; ctrsm_("Left", "Upper", "Conjugate transpose", "Non-" "unit", &ib, &i3, &c_b1, &ab[*kd + 1 + i__ * ab_dim1], &i__3, work, &c__33); /* Update A23 */ if (i2 > 0) { q__1.r = -1.f; q__1.i = -0.f; // , expr subst i__3 = *ldab - 1; i__4 = *ldab - 1; cgemm_("Conjugate transpose", "No transpose", &i2, &i3, &ib, &q__1, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__3, work, &c__33, & c_b1, &ab[ib + 1 + (i__ + *kd) * ab_dim1], &i__4); } /* Update A33 */ i__3 = *ldab - 1; cherk_("Upper", "Conjugate transpose", &i3, &ib, & c_b21, work, &c__33, &c_b22, &ab[*kd + 1 + ( i__ + *kd) * ab_dim1], &i__3); /* Copy the lower triangle of A13 back into place. */ i__3 = i3; for (jj = 1; jj <= i__3; ++jj) { i__4 = ib; for (ii = jj; ii <= i__4; ++ii) { i__5 = ii - jj + 1 + (jj + i__ + *kd - 1) * ab_dim1; i__6 = ii + jj * 33 - 34; ab[i__5].r = work[i__6].r; ab[i__5].i = work[ i__6].i; // , expr subst /* L50: */ } /* L60: */ } } } /* L70: */ } } else { /* Compute the Cholesky factorization of a Hermitian band */ /* matrix, given the lower triangle of the matrix in band */ /* storage. */ /* Zero the lower triangle of the work array. */ i__2 = nb; for (j = 1; j <= i__2; ++j) { i__1 = nb; for (i__ = j + 1; i__ <= i__1; ++i__) { i__3 = i__ + j * 33 - 34; work[i__3].r = 0.f; work[i__3].i = 0.f; // , expr subst /* L80: */ } /* L90: */ } /* Process the band matrix one diagonal block at a time. */ i__2 = *n; i__1 = nb; for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) { /* Computing MIN */ i__3 = nb; i__4 = *n - i__ + 1; // , expr subst ib = min(i__3,i__4); /* Factorize the diagonal block */ i__3 = *ldab - 1; cpotf2_(uplo, &ib, &ab[i__ * ab_dim1 + 1], &i__3, &ii); if (ii != 0) { *info = i__ + ii - 1; goto L150; } if (i__ + ib <= *n) { /* Update the relevant part of the trailing submatrix. */ /* If A11 denotes the diagonal block which has just been */ /* factorized, then we need to update the remaining */ /* blocks in the diagram: */ /* A11 */ /* A21 A22 */ /* A31 A32 A33 */ /* The numbers of rows and columns in the partitioning */ /* are IB, I2, I3 respectively. The blocks A21, A22 and */ /* A32 are empty if IB = KD. The lower triangle of A31 */ /* lies outside the band. */ /* Computing MIN */ i__3 = *kd - ib; i__4 = *n - i__ - ib + 1; // , expr subst i2 = min(i__3,i__4); /* Computing MIN */ i__3 = ib; i__4 = *n - i__ - *kd + 1; // , expr subst i3 = min(i__3,i__4); if (i2 > 0) { /* Update A21 */ i__3 = *ldab - 1; i__4 = *ldab - 1; ctrsm_("Right", "Lower", "Conjugate transpose", "Non" "-unit", &i2, &ib, &c_b1, &ab[i__ * ab_dim1 + 1], &i__3, &ab[ib + 1 + i__ * ab_dim1], &i__4); /* Update A22 */ i__3 = *ldab - 1; i__4 = *ldab - 1; cherk_("Lower", "No transpose", &i2, &ib, &c_b21, &ab[ ib + 1 + i__ * ab_dim1], &i__3, &c_b22, &ab[( i__ + ib) * ab_dim1 + 1], &i__4); } if (i3 > 0) { /* Copy the upper triangle of A31 into the work array. */ i__3 = ib; for (jj = 1; jj <= i__3; ++jj) { i__4 = min(jj,i3); for (ii = 1; ii <= i__4; ++ii) { i__5 = ii + jj * 33 - 34; i__6 = *kd + 1 - jj + ii + (jj + i__ - 1) * ab_dim1; work[i__5].r = ab[i__6].r; work[i__5].i = ab[ i__6].i; // , expr subst /* L100: */ } /* L110: */ } /* Update A31 (in the work array). */ i__3 = *ldab - 1; ctrsm_("Right", "Lower", "Conjugate transpose", "Non" "-unit", &i3, &ib, &c_b1, &ab[i__ * ab_dim1 + 1], &i__3, work, &c__33); /* Update A32 */ if (i2 > 0) { q__1.r = -1.f; q__1.i = -0.f; // , expr subst i__3 = *ldab - 1; i__4 = *ldab - 1; cgemm_("No transpose", "Conjugate transpose", &i3, &i2, &ib, &q__1, work, &c__33, &ab[ib + 1 + i__ * ab_dim1], &i__3, &c_b1, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__4); } /* Update A33 */ i__3 = *ldab - 1; cherk_("Lower", "No transpose", &i3, &ib, &c_b21, work, &c__33, &c_b22, &ab[(i__ + *kd) * ab_dim1 + 1], &i__3); /* Copy the upper triangle of A31 back into place. */ i__3 = ib; for (jj = 1; jj <= i__3; ++jj) { i__4 = min(jj,i3); for (ii = 1; ii <= i__4; ++ii) { i__5 = *kd + 1 - jj + ii + (jj + i__ - 1) * ab_dim1; i__6 = ii + jj * 33 - 34; ab[i__5].r = work[i__6].r; ab[i__5].i = work[ i__6].i; // , expr subst /* L120: */ } /* L130: */ } } } /* L140: */ } } } return 0; L150: return 0; /* End of CPBTRF */ }