Пример #1
0
/* Subroutine */ int cerrpo_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    real r__1, r__2;
    complex q__1;

    /* Local variables */
    complex a[16]	/* was [4][4] */, b[4];
    integer i__, j;
    real r__[4];
    complex w[8], x[4];
    char c2[2];
    real r1[4], r2[4];
    complex af[16]	/* was [4][4] */;
    integer info;
    real anrm, rcond;

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CERRPO tests the error exits for the COMPLEX routines */
/*  for Hermitian positive definite matrices. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    i__1 = i__ + (j << 2) - 5;
	    r__1 = 1.f / (real) (i__ + j);
	    r__2 = -1.f / (real) (i__ + j);
	    q__1.r = r__1, q__1.i = r__2;
	    a[i__1].r = q__1.r, a[i__1].i = q__1.i;
	    i__1 = i__ + (j << 2) - 5;
	    r__1 = 1.f / (real) (i__ + j);
	    r__2 = -1.f / (real) (i__ + j);
	    q__1.r = r__1, q__1.i = r__2;
	    af[i__1].r = q__1.r, af[i__1].i = q__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0.f, b[i__1].i = 0.f;
	r1[j - 1] = 0.f;
	r2[j - 1] = 0.f;
	i__1 = j - 1;
	w[i__1].r = 0.f, w[i__1].i = 0.f;
	i__1 = j - 1;
	x[i__1].r = 0.f, x[i__1].i = 0.f;
/* L20: */
    }
    anrm = 1.f;
    infoc_1.ok = TRUE_;

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite matrix. */

    if (lsamen_(&c__2, c2, "PO")) {

/*        CPOTRF */

	s_copy(srnamc_1.srnamt, "CPOTRF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpotrf_("/", &c__0, a, &c__1, &info);
	chkxer_("CPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpotrf_("U", &c_n1, a, &c__1, &info);
	chkxer_("CPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpotrf_("U", &c__2, a, &c__1, &info);
	chkxer_("CPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPOTF2 */

	s_copy(srnamc_1.srnamt, "CPOTF2", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpotf2_("/", &c__0, a, &c__1, &info);
	chkxer_("CPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpotf2_("U", &c_n1, a, &c__1, &info);
	chkxer_("CPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpotf2_("U", &c__2, a, &c__1, &info);
	chkxer_("CPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPOTRI */

	s_copy(srnamc_1.srnamt, "CPOTRI", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpotri_("/", &c__0, a, &c__1, &info);
	chkxer_("CPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpotri_("U", &c_n1, a, &c__1, &info);
	chkxer_("CPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpotri_("U", &c__2, a, &c__1, &info);
	chkxer_("CPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPOTRS */

	s_copy(srnamc_1.srnamt, "CPOTRS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpotrs_("/", &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpotrs_("U", &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpotrs_("U", &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cpotrs_("U", &c__2, &c__1, a, &c__1, b, &c__2, &info);
	chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	cpotrs_("U", &c__2, &c__1, a, &c__2, b, &c__1, &info);
	chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPORFS */

	s_copy(srnamc_1.srnamt, "CPORFS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cporfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cporfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cporfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cporfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	cporfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	cporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__1, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	cporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__2, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPOCON */

	s_copy(srnamc_1.srnamt, "CPOCON", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpocon_("/", &c__0, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("CPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpocon_("U", &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("CPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpocon_("U", &c__2, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("CPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	r__1 = -anrm;
	cpocon_("U", &c__1, a, &c__1, &r__1, &rcond, w, r__, &info)
		;
	chkxer_("CPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPOEQU */

	s_copy(srnamc_1.srnamt, "CPOEQU", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpoequ_(&c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpoequ_(&c__2, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite packed matrix. */

    } else if (lsamen_(&c__2, c2, "PP")) {

/*        CPPTRF */

	s_copy(srnamc_1.srnamt, "CPPTRF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpptrf_("/", &c__0, a, &info);
	chkxer_("CPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpptrf_("U", &c_n1, a, &info);
	chkxer_("CPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPPTRI */

	s_copy(srnamc_1.srnamt, "CPPTRI", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpptri_("/", &c__0, a, &info);
	chkxer_("CPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpptri_("U", &c_n1, a, &info);
	chkxer_("CPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPPTRS */

	s_copy(srnamc_1.srnamt, "CPPTRS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpptrs_("/", &c__0, &c__0, a, b, &c__1, &info);
	chkxer_("CPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpptrs_("U", &c_n1, &c__0, a, b, &c__1, &info);
	chkxer_("CPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpptrs_("U", &c__0, &c_n1, a, b, &c__1, &info);
	chkxer_("CPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	cpptrs_("U", &c__2, &c__1, a, b, &c__1, &info);
	chkxer_("CPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPPRFS */

	s_copy(srnamc_1.srnamt, "CPPRFS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpprfs_("/", &c__0, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpprfs_("U", &c_n1, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpprfs_("U", &c__0, &c_n1, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	cpprfs_("U", &c__2, &c__1, a, af, b, &c__1, x, &c__2, r1, r2, w, r__, 
		&info);
	chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	cpprfs_("U", &c__2, &c__1, a, af, b, &c__2, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPPCON */

	s_copy(srnamc_1.srnamt, "CPPCON", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cppcon_("/", &c__0, a, &anrm, &rcond, w, r__, &info);
	chkxer_("CPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cppcon_("U", &c_n1, a, &anrm, &rcond, w, r__, &info);
	chkxer_("CPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	r__1 = -anrm;
	cppcon_("U", &c__1, a, &r__1, &rcond, w, r__, &info);
	chkxer_("CPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPPEQU */

	s_copy(srnamc_1.srnamt, "CPPEQU", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cppequ_("/", &c__0, a, r1, &rcond, &anrm, &info);
	chkxer_("CPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cppequ_("U", &c_n1, a, r1, &rcond, &anrm, &info);
	chkxer_("CPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite band matrix. */

    } else if (lsamen_(&c__2, c2, "PB")) {

/*        CPBTRF */

	s_copy(srnamc_1.srnamt, "CPBTRF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbtrf_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("CPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbtrf_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("CPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbtrf_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("CPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cpbtrf_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("CPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPBTF2 */

	s_copy(srnamc_1.srnamt, "CPBTF2", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbtf2_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("CPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbtf2_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("CPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbtf2_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("CPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cpbtf2_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("CPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPBTRS */

	s_copy(srnamc_1.srnamt, "CPBTRS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbtrs_("/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbtrs_("U", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbtrs_("U", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpbtrs_("U", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	cpbtrs_("U", &c__2, &c__1, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	cpbtrs_("U", &c__2, &c__0, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPBRFS */

	s_copy(srnamc_1.srnamt, "CPBRFS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbrfs_("/", &c__0, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbrfs_("U", &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbrfs_("U", &c__1, &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpbrfs_("U", &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	cpbrfs_("U", &c__2, &c__1, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	cpbrfs_("U", &c__2, &c__1, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	cpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	cpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__2, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPBCON */

	s_copy(srnamc_1.srnamt, "CPBCON", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbcon_("/", &c__0, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbcon_("U", &c_n1, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbcon_("U", &c__1, &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cpbcon_("U", &c__2, &c__1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	r__1 = -anrm;
	cpbcon_("U", &c__1, &c__0, a, &c__1, &r__1, &rcond, w, r__, &info);
	chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPBEQU */

	s_copy(srnamc_1.srnamt, "CPBEQU", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbequ_("/", &c__0, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbequ_("U", &c_n1, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbequ_("U", &c__1, &c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cpbequ_("U", &c__2, &c__1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of CERRPO */

} /* cerrpo_ */
Пример #2
0
/* Subroutine */ int cpbtrf_(char *uplo, integer *n, integer *kd, complex *ab, 
	 integer *ldab, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    complex q__1;

    /* Local variables */
    integer i__, j, i2, i3, ib, nb, ii, jj;
    complex work[1056]	/* was [33][32] */;

/*  -- LAPACK routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  CPBTRF computes the Cholesky factorization of a complex Hermitian */
/*  positive definite band matrix A. */

/*  The factorization has the form */
/*     A = U**H * U,  if UPLO = 'U', or */
/*     A = L  * L**H,  if UPLO = 'L', */
/*  where U is an upper triangular matrix and L is lower triangular. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */

/*  AB      (input/output) COMPLEX array, dimension (LDAB,N) */
/*          On entry, the upper or lower triangle of the Hermitian band */
/*          matrix A, stored in the first KD+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */

/*          On exit, if INFO = 0, the triangular factor U or L from the */
/*          Cholesky factorization A = U**H*U or A = L*L**H of the band */
/*          matrix A, in the same storage format as A. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD+1. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the leading minor of order i is not */
/*                positive definite, and the factorization could not be */
/*                completed. */

/*  Further Details */
/*  =============== */

/*  The band storage scheme is illustrated by the following example, when */
/*  N = 6, KD = 2, and UPLO = 'U': */

/*  On entry:                       On exit: */

/*      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46 */
/*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 */
/*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 */

/*  Similarly, if UPLO = 'L' the format of A is as follows: */

/*  On entry:                       On exit: */

/*     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66 */
/*     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   * */
/*     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    * */

/*  Array elements marked * are not used by the routine. */

/*  Contributed by */
/*  Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989 */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;

    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kd < 0) {
	*info = -3;
    } else if (*ldab < *kd + 1) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CPBTRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine the block size for this environment */

    nb = ilaenv_(&c__1, "CPBTRF", uplo, n, kd, &c_n1, &c_n1);

/*     The block size must not exceed the semi-bandwidth KD, and must not */
/*     exceed the limit set by the size of the local array WORK. */

    nb = min(nb,32);

    if (nb <= 1 || nb > *kd) {

/*        Use unblocked code */

	cpbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info);
    } else {

/*        Use blocked code */

	if (lsame_(uplo, "U")) {

/*           Compute the Cholesky factorization of a Hermitian band */
/*           matrix, given the upper triangle of the matrix in band */
/*           storage. */

/*           Zero the upper triangle of the work array. */

	    i__1 = nb;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 1;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__3 = i__ + j * 33 - 34;
		    work[i__3].r = 0.f, work[i__3].i = 0.f;
		}
	    }

/*           Process the band matrix one diagonal block at a time. */

	    i__1 = *n;
	    i__2 = nb;
	    for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
		i__3 = nb, i__4 = *n - i__ + 1;
		ib = min(i__3,i__4);

/*              Factorize the diagonal block */

		i__3 = *ldab - 1;
		cpotf2_(uplo, &ib, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ii);
		if (ii != 0) {
		    *info = i__ + ii - 1;
		    goto L150;
		}
		if (i__ + ib <= *n) {

/*                 Update the relevant part of the trailing submatrix. */
/*                 If A11 denotes the diagonal block which has just been */
/*                 factorized, then we need to update the remaining */
/*                 blocks in the diagram: */

/*                    A11   A12   A13 */
/*                          A22   A23 */
/*                                A33 */

/*                 The numbers of rows and columns in the partitioning */
/*                 are IB, I2, I3 respectively. The blocks A12, A22 and */
/*                 A23 are empty if IB = KD. The upper triangle of A13 */
/*                 lies outside the band. */

/* Computing MIN */
		    i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
		    i2 = min(i__3,i__4);
/* Computing MIN */
		    i__3 = ib, i__4 = *n - i__ - *kd + 1;
		    i3 = min(i__3,i__4);

		    if (i2 > 0) {

/*                    Update A12 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			ctrsm_("Left", "Upper", "Conjugate transpose", "Non-"
				"unit", &ib, &i2, &c_b1, &ab[*kd + 1 + i__ * 
				ab_dim1], &i__3, &ab[*kd + 1 - ib + (i__ + ib)
				 * ab_dim1], &i__4);

/*                    Update A22 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			cherk_("Upper", "Conjugate transpose", &i2, &ib, &
				c_b21, &ab[*kd + 1 - ib + (i__ + ib) * 
				ab_dim1], &i__3, &c_b22, &ab[*kd + 1 + (i__ + 
				ib) * ab_dim1], &i__4);
		    }

		    if (i3 > 0) {

/*                    Copy the lower triangle of A13 into the work array. */

			i__3 = i3;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = ib;
			    for (ii = jj; ii <= i__4; ++ii) {
				i__5 = ii + jj * 33 - 34;
				i__6 = ii - jj + 1 + (jj + i__ + *kd - 1) * 
					ab_dim1;
				work[i__5].r = ab[i__6].r, work[i__5].i = ab[
					i__6].i;
			    }
			}

/*                    Update A13 (in the work array). */

			i__3 = *ldab - 1;
			ctrsm_("Left", "Upper", "Conjugate transpose", "Non-"
				"unit", &ib, &i3, &c_b1, &ab[*kd + 1 + i__ * 
				ab_dim1], &i__3, work, &c__33);

/*                    Update A23 */

			if (i2 > 0) {
			    q__1.r = -1.f, q__1.i = -0.f;
			    i__3 = *ldab - 1;
			    i__4 = *ldab - 1;
			    cgemm_("Conjugate transpose", "No transpose", &i2, 
				     &i3, &ib, &q__1, &ab[*kd + 1 - ib + (i__ 
				    + ib) * ab_dim1], &i__3, work, &c__33, &
				    c_b1, &ab[ib + 1 + (i__ + *kd) * ab_dim1], 
				     &i__4);
			}

/*                    Update A33 */

			i__3 = *ldab - 1;
			cherk_("Upper", "Conjugate transpose", &i3, &ib, &
				c_b21, work, &c__33, &c_b22, &ab[*kd + 1 + (
				i__ + *kd) * ab_dim1], &i__3);

/*                    Copy the lower triangle of A13 back into place. */

			i__3 = i3;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = ib;
			    for (ii = jj; ii <= i__4; ++ii) {
				i__5 = ii - jj + 1 + (jj + i__ + *kd - 1) * 
					ab_dim1;
				i__6 = ii + jj * 33 - 34;
				ab[i__5].r = work[i__6].r, ab[i__5].i = work[
					i__6].i;
			    }
			}
		    }
		}
	    }
	} else {

/*           Compute the Cholesky factorization of a Hermitian band */
/*           matrix, given the lower triangle of the matrix in band */
/*           storage. */

/*           Zero the lower triangle of the work array. */

	    i__2 = nb;
	    for (j = 1; j <= i__2; ++j) {
		i__1 = nb;
		for (i__ = j + 1; i__ <= i__1; ++i__) {
		    i__3 = i__ + j * 33 - 34;
		    work[i__3].r = 0.f, work[i__3].i = 0.f;
		}
	    }

/*           Process the band matrix one diagonal block at a time. */

	    i__2 = *n;
	    i__1 = nb;
	    for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
/* Computing MIN */
		i__3 = nb, i__4 = *n - i__ + 1;
		ib = min(i__3,i__4);

/*              Factorize the diagonal block */

		i__3 = *ldab - 1;
		cpotf2_(uplo, &ib, &ab[i__ * ab_dim1 + 1], &i__3, &ii);
		if (ii != 0) {
		    *info = i__ + ii - 1;
		    goto L150;
		}
		if (i__ + ib <= *n) {

/*                 Update the relevant part of the trailing submatrix. */
/*                 If A11 denotes the diagonal block which has just been */
/*                 factorized, then we need to update the remaining */
/*                 blocks in the diagram: */

/*                    A11 */
/*                    A21   A22 */
/*                    A31   A32   A33 */

/*                 The numbers of rows and columns in the partitioning */
/*                 are IB, I2, I3 respectively. The blocks A21, A22 and */
/*                 A32 are empty if IB = KD. The lower triangle of A31 */
/*                 lies outside the band. */

/* Computing MIN */
		    i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
		    i2 = min(i__3,i__4);
/* Computing MIN */
		    i__3 = ib, i__4 = *n - i__ - *kd + 1;
		    i3 = min(i__3,i__4);

		    if (i2 > 0) {

/*                    Update A21 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			ctrsm_("Right", "Lower", "Conjugate transpose", "Non"
				"-unit", &i2, &ib, &c_b1, &ab[i__ * ab_dim1 + 
				1], &i__3, &ab[ib + 1 + i__ * ab_dim1], &i__4);

/*                    Update A22 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			cherk_("Lower", "No transpose", &i2, &ib, &c_b21, &ab[
				ib + 1 + i__ * ab_dim1], &i__3, &c_b22, &ab[(
				i__ + ib) * ab_dim1 + 1], &i__4);
		    }

		    if (i3 > 0) {

/*                    Copy the upper triangle of A31 into the work array. */

			i__3 = ib;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = min(jj,i3);
			    for (ii = 1; ii <= i__4; ++ii) {
				i__5 = ii + jj * 33 - 34;
				i__6 = *kd + 1 - jj + ii + (jj + i__ - 1) * 
					ab_dim1;
				work[i__5].r = ab[i__6].r, work[i__5].i = ab[
					i__6].i;
			    }
			}

/*                    Update A31 (in the work array). */

			i__3 = *ldab - 1;
			ctrsm_("Right", "Lower", "Conjugate transpose", "Non"
				"-unit", &i3, &ib, &c_b1, &ab[i__ * ab_dim1 + 
				1], &i__3, work, &c__33);

/*                    Update A32 */

			if (i2 > 0) {
			    q__1.r = -1.f, q__1.i = -0.f;
			    i__3 = *ldab - 1;
			    i__4 = *ldab - 1;
			    cgemm_("No transpose", "Conjugate transpose", &i3, 
				     &i2, &ib, &q__1, work, &c__33, &ab[ib + 
				    1 + i__ * ab_dim1], &i__3, &c_b1, &ab[*kd 
				    + 1 - ib + (i__ + ib) * ab_dim1], &i__4);
			}

/*                    Update A33 */

			i__3 = *ldab - 1;
			cherk_("Lower", "No transpose", &i3, &ib, &c_b21, 
				work, &c__33, &c_b22, &ab[(i__ + *kd) * 
				ab_dim1 + 1], &i__3);

/*                    Copy the upper triangle of A31 back into place. */

			i__3 = ib;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = min(jj,i3);
			    for (ii = 1; ii <= i__4; ++ii) {
				i__5 = *kd + 1 - jj + ii + (jj + i__ - 1) * 
					ab_dim1;
				i__6 = ii + jj * 33 - 34;
				ab[i__5].r = work[i__6].r, ab[i__5].i = work[
					i__6].i;
			    }
			}
		    }
		}
	    }
	}
    }
    return 0;

L150:
    return 0;

/*     End of CPBTRF */

} /* cpbtrf_ */
Пример #3
0
/* Subroutine */
int cpbtrf_(char *uplo, integer *n, integer *kd, complex *ab, integer *ldab, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    complex q__1;
    /* Local variables */
    integer i__, j, i2, i3, ib, nb, ii, jj;
    complex work[1056] /* was [33][32] */
    ;
    extern /* Subroutine */
    int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *), cherk_(char *, char *, integer *, integer *, real *, complex *, integer *, real * , complex *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */
    int ctrsm_(char *, char *, char *, char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *), cpbtf2_(char *, integer *, integer *, complex *, integer *, integer *), cpotf2_(char *, integer *, complex *, integer *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *);
    /* -- LAPACK computational routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. Local Arrays .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L"))
    {
        *info = -1;
    }
    else if (*n < 0)
    {
        *info = -2;
    }
    else if (*kd < 0)
    {
        *info = -3;
    }
    else if (*ldab < *kd + 1)
    {
        *info = -5;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("CPBTRF", &i__1);
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0)
    {
        return 0;
    }
    /* Determine the block size for this environment */
    nb = ilaenv_(&c__1, "CPBTRF", uplo, n, kd, &c_n1, &c_n1);
    /* The block size must not exceed the semi-bandwidth KD, and must not */
    /* exceed the limit set by the size of the local array WORK. */
    nb = min(nb,32);
    if (nb <= 1 || nb > *kd)
    {
        /* Use unblocked code */
        cpbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info);
    }
    else
    {
        /* Use blocked code */
        if (lsame_(uplo, "U"))
        {
            /* Compute the Cholesky factorization of a Hermitian band */
            /* matrix, given the upper triangle of the matrix in band */
            /* storage. */
            /* Zero the upper triangle of the work array. */
            i__1 = nb;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                i__2 = j - 1;
                for (i__ = 1;
                        i__ <= i__2;
                        ++i__)
                {
                    i__3 = i__ + j * 33 - 34;
                    work[i__3].r = 0.f;
                    work[i__3].i = 0.f; // , expr subst
                    /* L10: */
                }
                /* L20: */
            }
            /* Process the band matrix one diagonal block at a time. */
            i__1 = *n;
            i__2 = nb;
            for (i__ = 1;
                    i__2 < 0 ? i__ >= i__1 : i__ <= i__1;
                    i__ += i__2)
            {
                /* Computing MIN */
                i__3 = nb;
                i__4 = *n - i__ + 1; // , expr subst
                ib = min(i__3,i__4);
                /* Factorize the diagonal block */
                i__3 = *ldab - 1;
                cpotf2_(uplo, &ib, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ii);
                if (ii != 0)
                {
                    *info = i__ + ii - 1;
                    goto L150;
                }
                if (i__ + ib <= *n)
                {
                    /* Update the relevant part of the trailing submatrix. */
                    /* If A11 denotes the diagonal block which has just been */
                    /* factorized, then we need to update the remaining */
                    /* blocks in the diagram: */
                    /* A11 A12 A13 */
                    /* A22 A23 */
                    /* A33 */
                    /* The numbers of rows and columns in the partitioning */
                    /* are IB, I2, I3 respectively. The blocks A12, A22 and */
                    /* A23 are empty if IB = KD. The upper triangle of A13 */
                    /* lies outside the band. */
                    /* Computing MIN */
                    i__3 = *kd - ib;
                    i__4 = *n - i__ - ib + 1; // , expr subst
                    i2 = min(i__3,i__4);
                    /* Computing MIN */
                    i__3 = ib;
                    i__4 = *n - i__ - *kd + 1; // , expr subst
                    i3 = min(i__3,i__4);
                    if (i2 > 0)
                    {
                        /* Update A12 */
                        i__3 = *ldab - 1;
                        i__4 = *ldab - 1;
                        ctrsm_("Left", "Upper", "Conjugate transpose", "Non-" "unit", &ib, &i2, &c_b1, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__4);
                        /* Update A22 */
                        i__3 = *ldab - 1;
                        i__4 = *ldab - 1;
                        cherk_("Upper", "Conjugate transpose", &i2, &ib, & c_b21, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__3, &c_b22, &ab[*kd + 1 + (i__ + ib) * ab_dim1], &i__4);
                    }
                    if (i3 > 0)
                    {
                        /* Copy the lower triangle of A13 into the work array. */
                        i__3 = i3;
                        for (jj = 1;
                                jj <= i__3;
                                ++jj)
                        {
                            i__4 = ib;
                            for (ii = jj;
                                    ii <= i__4;
                                    ++ii)
                            {
                                i__5 = ii + jj * 33 - 34;
                                i__6 = ii - jj + 1 + (jj + i__ + *kd - 1) * ab_dim1;
                                work[i__5].r = ab[i__6].r;
                                work[i__5].i = ab[ i__6].i; // , expr subst
                                /* L30: */
                            }
                            /* L40: */
                        }
                        /* Update A13 (in the work array). */
                        i__3 = *ldab - 1;
                        ctrsm_("Left", "Upper", "Conjugate transpose", "Non-" "unit", &ib, &i3, &c_b1, &ab[*kd + 1 + i__ * ab_dim1], &i__3, work, &c__33);
                        /* Update A23 */
                        if (i2 > 0)
                        {
                            q__1.r = -1.f;
                            q__1.i = -0.f; // , expr subst
                            i__3 = *ldab - 1;
                            i__4 = *ldab - 1;
                            cgemm_("Conjugate transpose", "No transpose", &i2, &i3, &ib, &q__1, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__3, work, &c__33, & c_b1, &ab[ib + 1 + (i__ + *kd) * ab_dim1], &i__4);
                        }
                        /* Update A33 */
                        i__3 = *ldab - 1;
                        cherk_("Upper", "Conjugate transpose", &i3, &ib, & c_b21, work, &c__33, &c_b22, &ab[*kd + 1 + ( i__ + *kd) * ab_dim1], &i__3);
                        /* Copy the lower triangle of A13 back into place. */
                        i__3 = i3;
                        for (jj = 1;
                                jj <= i__3;
                                ++jj)
                        {
                            i__4 = ib;
                            for (ii = jj;
                                    ii <= i__4;
                                    ++ii)
                            {
                                i__5 = ii - jj + 1 + (jj + i__ + *kd - 1) * ab_dim1;
                                i__6 = ii + jj * 33 - 34;
                                ab[i__5].r = work[i__6].r;
                                ab[i__5].i = work[ i__6].i; // , expr subst
                                /* L50: */
                            }
                            /* L60: */
                        }
                    }
                }
                /* L70: */
            }
        }
        else
        {
            /* Compute the Cholesky factorization of a Hermitian band */
            /* matrix, given the lower triangle of the matrix in band */
            /* storage. */
            /* Zero the lower triangle of the work array. */
            i__2 = nb;
            for (j = 1;
                    j <= i__2;
                    ++j)
            {
                i__1 = nb;
                for (i__ = j + 1;
                        i__ <= i__1;
                        ++i__)
                {
                    i__3 = i__ + j * 33 - 34;
                    work[i__3].r = 0.f;
                    work[i__3].i = 0.f; // , expr subst
                    /* L80: */
                }
                /* L90: */
            }
            /* Process the band matrix one diagonal block at a time. */
            i__2 = *n;
            i__1 = nb;
            for (i__ = 1;
                    i__1 < 0 ? i__ >= i__2 : i__ <= i__2;
                    i__ += i__1)
            {
                /* Computing MIN */
                i__3 = nb;
                i__4 = *n - i__ + 1; // , expr subst
                ib = min(i__3,i__4);
                /* Factorize the diagonal block */
                i__3 = *ldab - 1;
                cpotf2_(uplo, &ib, &ab[i__ * ab_dim1 + 1], &i__3, &ii);
                if (ii != 0)
                {
                    *info = i__ + ii - 1;
                    goto L150;
                }
                if (i__ + ib <= *n)
                {
                    /* Update the relevant part of the trailing submatrix. */
                    /* If A11 denotes the diagonal block which has just been */
                    /* factorized, then we need to update the remaining */
                    /* blocks in the diagram: */
                    /* A11 */
                    /* A21 A22 */
                    /* A31 A32 A33 */
                    /* The numbers of rows and columns in the partitioning */
                    /* are IB, I2, I3 respectively. The blocks A21, A22 and */
                    /* A32 are empty if IB = KD. The lower triangle of A31 */
                    /* lies outside the band. */
                    /* Computing MIN */
                    i__3 = *kd - ib;
                    i__4 = *n - i__ - ib + 1; // , expr subst
                    i2 = min(i__3,i__4);
                    /* Computing MIN */
                    i__3 = ib;
                    i__4 = *n - i__ - *kd + 1; // , expr subst
                    i3 = min(i__3,i__4);
                    if (i2 > 0)
                    {
                        /* Update A21 */
                        i__3 = *ldab - 1;
                        i__4 = *ldab - 1;
                        ctrsm_("Right", "Lower", "Conjugate transpose", "Non" "-unit", &i2, &ib, &c_b1, &ab[i__ * ab_dim1 + 1], &i__3, &ab[ib + 1 + i__ * ab_dim1], &i__4);
                        /* Update A22 */
                        i__3 = *ldab - 1;
                        i__4 = *ldab - 1;
                        cherk_("Lower", "No transpose", &i2, &ib, &c_b21, &ab[ ib + 1 + i__ * ab_dim1], &i__3, &c_b22, &ab[( i__ + ib) * ab_dim1 + 1], &i__4);
                    }
                    if (i3 > 0)
                    {
                        /* Copy the upper triangle of A31 into the work array. */
                        i__3 = ib;
                        for (jj = 1;
                                jj <= i__3;
                                ++jj)
                        {
                            i__4 = min(jj,i3);
                            for (ii = 1;
                                    ii <= i__4;
                                    ++ii)
                            {
                                i__5 = ii + jj * 33 - 34;
                                i__6 = *kd + 1 - jj + ii + (jj + i__ - 1) * ab_dim1;
                                work[i__5].r = ab[i__6].r;
                                work[i__5].i = ab[ i__6].i; // , expr subst
                                /* L100: */
                            }
                            /* L110: */
                        }
                        /* Update A31 (in the work array). */
                        i__3 = *ldab - 1;
                        ctrsm_("Right", "Lower", "Conjugate transpose", "Non" "-unit", &i3, &ib, &c_b1, &ab[i__ * ab_dim1 + 1], &i__3, work, &c__33);
                        /* Update A32 */
                        if (i2 > 0)
                        {
                            q__1.r = -1.f;
                            q__1.i = -0.f; // , expr subst
                            i__3 = *ldab - 1;
                            i__4 = *ldab - 1;
                            cgemm_("No transpose", "Conjugate transpose", &i3, &i2, &ib, &q__1, work, &c__33, &ab[ib + 1 + i__ * ab_dim1], &i__3, &c_b1, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1], &i__4);
                        }
                        /* Update A33 */
                        i__3 = *ldab - 1;
                        cherk_("Lower", "No transpose", &i3, &ib, &c_b21, work, &c__33, &c_b22, &ab[(i__ + *kd) * ab_dim1 + 1], &i__3);
                        /* Copy the upper triangle of A31 back into place. */
                        i__3 = ib;
                        for (jj = 1;
                                jj <= i__3;
                                ++jj)
                        {
                            i__4 = min(jj,i3);
                            for (ii = 1;
                                    ii <= i__4;
                                    ++ii)
                            {
                                i__5 = *kd + 1 - jj + ii + (jj + i__ - 1) * ab_dim1;
                                i__6 = ii + jj * 33 - 34;
                                ab[i__5].r = work[i__6].r;
                                ab[i__5].i = work[ i__6].i; // , expr subst
                                /* L120: */
                            }
                            /* L130: */
                        }
                    }
                }
                /* L140: */
            }
        }
    }
    return 0;
L150:
    return 0;
    /* End of CPBTRF */
}