Пример #1
0
DBInt RGPSetColorMap(RGPColorMapEntry *colorMap, DBInt colorNum) {
    DBInt color, shade, shadeNum = RGPColorShadeNum;
    float red, red0, red1, green, green0, green1, blue, blue0, blue1, mColor;

    if (colorNum < 3) return (DBFault);

    red = (float) colorMap[0].Red / 255.0;
    green = (float) colorMap[0].Green / 255.0;
    blue = (float) colorMap[0].Blue / 255.0;
    cpgscr(RGPStartColorIndex, red, green, blue);

    for (shade = 0; shade < shadeNum; ++shade) {
        color = (DBInt)(floor((double) (colorNum - 2) * (double) shade / (double) (shadeNum - 1)));
        red0 = (float) colorMap[color + 1].Red / 255.0;
        green0 = (float) colorMap[color + 1].Green / 255.0;
        blue0 = (float) colorMap[color + 1].Blue / 255.0;
        red1 = (float) colorMap[color + 2].Red / 255.0;
        green1 = (float) colorMap[color + 2].Green / 255.0;
        blue1 = (float) colorMap[color + 2].Blue / 255.0;
        mColor = shade - ((float) color * (float) (shadeNum - 1) / (float) (colorNum - 2));

        red = red0 + (red1 - red0) * (float) mColor / ((float) shadeNum / (float) (colorNum - 2));
        green = green0 + (green1 - green0) * (float) mColor / ((float) shadeNum / (float) (colorNum - 2));
        blue = blue0 + (blue1 - blue0) * (float) mColor / ((float) shadeNum / (float) (colorNum - 2));
        cpgscr(RGPStartColorIndex + 1 + shade, red, green, blue);
    }
    red = (float) colorMap[colorNum - 1].Red / 255.0;
    green = (float) colorMap[colorNum - 1].Green / 255.0;
    blue = (float) colorMap[colorNum - 1].Blue / 255.0;
    cpgscr(RGPStartColorIndex + 1 + shade, red, green, blue);

    cpgscir(RGPStartColorIndex, RGPStartColorIndex + shadeNum + 1);
    return (shadeNum + 2);
}
Пример #2
0
void RGPInitPenColors() {
    DBInt color;
    float red, green, blue;

    for (color = 0; color < (DBInt)(sizeof(_RGPStandardColors) / sizeof(RGPColorMapEntry)); color++) {
        red = (float) _RGPStandardColors[color].Red / 255.0;
        green = (float) _RGPStandardColors[color].Green / 255.0;
        blue = (float) _RGPStandardColors[color].Blue / 255.0;
        cpgscr(color + 1, red, green, blue);
    }
}
Пример #3
0
void rfifind_plot(int numchan, int numint, int ptsperint,
                  float timesigma, float freqsigma,
                  float inttrigfrac, float chantrigfrac,
                  float **dataavg, float **datastd, float **datapow,
                  int *userchan, int numuserchan,
                  int *userints, int numuserints,
                  infodata * idata, unsigned char **bytemask,
                  mask * oldmask, mask * newmask,
                  rfi * rfivect, int numrfi, int rfixwin, int rfips, int xwin)
/* Make the beautiful multi-page rfifind plots */
{
   int ii, jj, ct, loops = 1;
   float *freqs, *chans, *times, *ints;
   float *avg_chan_avg, *std_chan_avg, *pow_chan_avg;
   float *avg_chan_med, *std_chan_med, *pow_chan_med;
   float *avg_chan_std, *std_chan_std, *pow_chan_std;
   float *avg_int_avg, *std_int_avg, *pow_int_avg;
   float *avg_int_med, *std_int_med, *pow_int_med;
   float *avg_int_std, *std_int_std, *pow_int_std;
   float dataavg_avg, datastd_avg, datapow_avg;
   float dataavg_med, datastd_med, datapow_med;
   float dataavg_std, datastd_std, datapow_std;
   float avg_reject, std_reject, pow_reject;
   double inttim, T, lof, hif;

   inttim = ptsperint * idata->dt;
   T = inttim * numint;
   lof = idata->freq - 0.5 * idata->chan_wid;
   hif = lof + idata->freqband;
   avg_chan_avg = gen_fvect(numchan);
   std_chan_avg = gen_fvect(numchan);
   pow_chan_avg = gen_fvect(numchan);
   avg_int_avg = gen_fvect(numint);
   std_int_avg = gen_fvect(numint);
   pow_int_avg = gen_fvect(numint);
   avg_chan_med = gen_fvect(numchan);
   std_chan_med = gen_fvect(numchan);
   pow_chan_med = gen_fvect(numchan);
   avg_int_med = gen_fvect(numint);
   std_int_med = gen_fvect(numint);
   pow_int_med = gen_fvect(numint);
   avg_chan_std = gen_fvect(numchan);
   std_chan_std = gen_fvect(numchan);
   pow_chan_std = gen_fvect(numchan);
   avg_int_std = gen_fvect(numint);
   std_int_std = gen_fvect(numint);
   pow_int_std = gen_fvect(numint);
   chans = gen_fvect(numchan);
   freqs = gen_fvect(numchan);
   for (ii = 0; ii < numchan; ii++) {
      chans[ii] = ii;
      freqs[ii] = idata->freq + ii * idata->chan_wid;
   }
   ints = gen_fvect(numint);
   times = gen_fvect(numint);
   for (ii = 0; ii < numint; ii++) {
      ints[ii] = ii;
      times[ii] = 0.0 + ii * inttim;
   }

   /* Calculate the statistics of the full set */

   ct = numchan * numint;
   calc_avgmedstd(dataavg[0], ct, 0.8, 1, &dataavg_avg, &dataavg_med, &dataavg_std);
   calc_avgmedstd(datastd[0], ct, 0.8, 1, &datastd_avg, &datastd_med, &datastd_std);
   calc_avgmedstd(datapow[0], ct, 0.5, 1, &datapow_avg, &datapow_med, &datapow_std);
   avg_reject = timesigma * dataavg_std;
   std_reject = timesigma * datastd_std;
   pow_reject = power_for_sigma(freqsigma, 1, ptsperint / 2);

   /* Calculate the channel/integration statistics vectors */

   for (ii = 0; ii < numint; ii++) {
      calc_avgmedstd(dataavg[0] + ii * numchan, numchan, 0.8, 1,
                     avg_int_avg + ii, avg_int_med + ii, avg_int_std + ii);
      calc_avgmedstd(datastd[0] + ii * numchan, numchan, 0.8, 1,
                     std_int_avg + ii, std_int_med + ii, std_int_std + ii);
      calc_avgmedstd(datapow[0] + ii * numchan, numchan, 0.5, 1,
                     pow_int_avg + ii, pow_int_med + ii, pow_int_std + ii);
   }
   for (ii = 0; ii < numchan; ii++) {
      calc_avgmedstd(dataavg[0] + ii, numint, 0.8, numchan,
                     avg_chan_avg + ii, avg_chan_med + ii, avg_chan_std + ii);
      calc_avgmedstd(datastd[0] + ii, numint, 0.8, numchan,
                     std_chan_avg + ii, std_chan_med + ii, std_chan_std + ii);
      calc_avgmedstd(datapow[0] + ii, numint, 0.5, numchan,
                     pow_chan_avg + ii, pow_chan_med + ii, pow_chan_std + ii);
      /*
         fprintf(stderr, "%12.7g  %12.7g  %12.7g    %12.7g  %12.7g  %12.7g    %12.7g  %12.7g  %12.7g    \n", 
         avg_chan_avg[ii], avg_chan_med[ii], avg_chan_std[ii],
         std_chan_avg[ii], std_chan_med[ii], std_chan_std[ii],
         pow_chan_avg[ii], pow_chan_med[ii], pow_chan_std[ii]);
       */
   }

   /* Generate the byte mask */

   /* Set the channels/intervals picked by the user */
   if (numuserints)
      for (ii = 0; ii < numuserints; ii++)
         if (userints[ii] >= 0 && userints[ii] < numint)
            for (jj = 0; jj < numchan; jj++)
               bytemask[userints[ii]][jj] |= USERINTS;
   if (numuserchan)
      for (ii = 0; ii < numuserchan; ii++)
         if (userchan[ii] >= 0 && userchan[ii] < numchan)
            for (jj = 0; jj < numint; jj++)
               bytemask[jj][userchan[ii]] |= USERCHAN;

   /* Compare each point in an interval (or channel) with   */
   /* the interval's (or channel's) median and the overall  */
   /* standard deviation.  If the channel/integration       */
   /* medians are more than sigma different than the global */
   /* value, set them to the global.                        */
   {
      float int_med, chan_med;

      for (ii = 0; ii < numint; ii++) {
         for (jj = 0; jj < numchan; jj++) {
            {                   /* Powers */
               if (datapow[ii][jj] > pow_reject)
                  if (!(bytemask[ii][jj] & PADDING))
                     bytemask[ii][jj] |= BAD_POW;
            }
            {                   /* Averages */
               if (fabs(avg_int_med[ii] - dataavg_med) > timesigma * dataavg_std)
                  int_med = dataavg_med;
               else
                  int_med = avg_int_med[ii];
               if (fabs(avg_chan_med[jj] - dataavg_med) > timesigma * dataavg_std)
                  chan_med = dataavg_med;
               else
                  chan_med = avg_chan_med[jj];
               if (fabs(dataavg[ii][jj] - int_med) > avg_reject ||
                   fabs(dataavg[ii][jj] - chan_med) > avg_reject)
                  if (!(bytemask[ii][jj] & PADDING))
                     bytemask[ii][jj] |= BAD_AVG;
            }
            {                   /* Standard Deviations */
               if (fabs(std_int_med[ii] - datastd_med) > timesigma * datastd_std)
                  int_med = datastd_med;
               else
                  int_med = std_int_med[ii];
               if (fabs(std_chan_med[jj] - datastd_med) > timesigma * datastd_std)
                  chan_med = datastd_med;
               else
                  chan_med = std_chan_med[jj];
               if (fabs(datastd[ii][jj] - int_med) > std_reject ||
                   fabs(datastd[ii][jj] - chan_med) > std_reject)
                  if (!(bytemask[ii][jj] & PADDING))
                     bytemask[ii][jj] |= BAD_STD;
            }
         }
      }
   }

   /* Step over the intervals and channels and count how many are set "bad". */
   /* For a given interval, if the number of bad channels is greater than    */
   /* chantrigfrac*numchan then reject the whole interval.                   */
   /* For a given channel, if the number of bad intervals is greater than    */
   /* inttrigfrac*numint then reject the whole channel.                      */
   {
      int badnum, trignum;

      /* Loop over the intervals */
      trignum = (int) (numchan * chantrigfrac);
      for (ii = 0; ii < numint; ii++) {
         if (!(bytemask[ii][0] & USERINTS)) {
            badnum = 0;
            for (jj = 0; jj < numchan; jj++)
               if (bytemask[ii][jj] & BADDATA)
                  badnum++;
            if (badnum > trignum) {
               userints[numuserints++] = ii;
               for (jj = 0; jj < numchan; jj++)
                  bytemask[ii][jj] |= USERINTS;
            }
         }
      }

      /* Loop over the channels */
      trignum = (int) (numint * inttrigfrac);
      for (ii = 0; ii < numchan; ii++) {
         if (!(bytemask[0][ii] & USERCHAN)) {
            badnum = 0;
            for (jj = 0; jj < numint; jj++)
               if (bytemask[jj][ii] & BADDATA)
                  badnum++;
            if (badnum > trignum) {
               userchan[numuserchan++] = ii;
               for (jj = 0; jj < numint; jj++)
                  bytemask[jj][ii] |= USERCHAN;
            }
         }
      }
   }

   /* Generate the New Mask */

   fill_mask(timesigma, freqsigma, idata->mjd_i + idata->mjd_f,
             ptsperint * idata->dt, idata->freq, idata->chan_wid,
             numchan, numint, ptsperint, numuserchan, userchan,
             numuserints, userints, bytemask, newmask);

   /* Place the oldmask over the newmask for plotting purposes */

   if (oldmask->numchan)
      set_oldmask_bits(oldmask, bytemask);

   /*
    *  Now plot the results
    */

   if (xwin)
      loops = 2;
   for (ct = 0; ct < loops; ct++) {     /* PS/XWIN Plot Loop */
      float min, max, tr[6], locut, hicut;
      float left, right, top, bottom;
      float xl, xh, yl, yh;
      float tt, ft, th, fh;     /* thin and fat thicknesses and heights */
      float lm, rm, tm, bm;     /* LRTB margins */
      float xarr[2], yarr[2];
      char outdev[100];
      int ii, mincol, maxcol, numcol;

      /*Set the PGPLOT device to an X-Window */

      if (ct == 1)
         strcpy(outdev, "/XWIN");
      else
         sprintf(outdev, "%s.ps/CPS", idata->name);

      /* Open and prep our device */

      cpgopen(outdev);
      cpgpap(10.25, 8.5 / 11.0);
      cpgpage();
      cpgiden();
      cpgsch(0.7);
      cpgqcir(&mincol, &maxcol);
      numcol = maxcol - mincol + 1;
      for (ii = mincol; ii <= maxcol; ii++) {
         float color;
         color = (float) (maxcol - ii) / (float) numcol;
         cpgscr(ii, color, color, color);
      }

      /* Set thicknesses and margins */

      lm = 0.04;
      rm = 0.04;
      bm = 0.08;
      tm = 0.05;
      ft = 3.0;                 /* This sets fat thickness = 3 x thin thickness */
      tt = 0.92 / (6.0 + 4.0 * ft);
      ft *= tt;
      fh = 0.55;
      th = tt * 11.0 / 8.5;

      {                         /* Powers Histogram */
         float *theo, *hist, *hpows, *tpows, maxhist = 0.0, maxtheo = 0.0;
         int numhist = 40, numtheo = 200, bin, numpows;
         double dtheo, dhist, spacing;

         /* Calculate the predicted distribution of max powers */

         numpows = numint * numchan;
         find_min_max_arr(numpows, datapow[0], &min, &max);
         min = (min < 5.0) ? log10(5.0 * 0.95) : log10(min * 0.95);
         max = log10(max * 1.05);
         dhist = (max - min) / numhist;
         theo = gen_fvect(numtheo);
         tpows = gen_fvect(numtheo);
         hist = gen_fvect(numhist);
         hpows = gen_fvect(numhist);
         for (ii = 0; ii < numhist; ii++) {
            hist[ii] = 0.0;
            hpows[ii] = min + ii * dhist;
         }
         for (ii = 0; ii < numpows; ii++) {
            bin = (*(datapow[0] + ii) == 0.0) ? 0 :
                (log10(*(datapow[0] + ii)) - min) / dhist;
            if (bin < 0)
               bin = 0;
            if (bin >= numhist)
               bin = numhist;
            hist[bin] += 1.0;
         }
         for (ii = 0; ii < numhist; ii++)
            if (hist[ii] > maxhist)
               maxhist = hist[ii];
         maxhist *= 1.1;
         dtheo = (max - min) / (double) (numtheo - 1);
         for (ii = 0; ii < numtheo; ii++) {
            tpows[ii] = min + ii * dtheo;
            theo[ii] = single_power_pdf(pow(10.0, tpows[ii]),
                                        ptsperint / 2) * numpows;
            spacing = (pow(10.0, tpows[ii] + dhist) - pow(10.0, tpows[ii]));
            theo[ii] *= spacing;
            if (theo[ii] > maxtheo)
               maxtheo = theo[ii];
         }
         maxtheo *= 1.1;
         if (maxtheo > maxhist)
            maxhist = maxtheo;
         left = lm;
         right = lm + ft + tt;
         bottom = 0.80;
         top = 0.96;
         cpgsvp(left, right, bottom, top);
         xl = min;
         xh = max;
         yl = 0.0;
         yh = maxhist;
         cpgswin(xl, xh, yl, yh);
         cpgmtxt("L", 1.1, 0.5, 0.5, "Number");
         cpgmtxt("B", 2.1, 0.5, 0.5, "Max Power");
         cpgbin(numhist, hpows, hist, 0);
         cpgscr(maxcol, 0.5, 0.5, 0.5);
         cpgsci(maxcol);        /* Grey */
         cpgline(numtheo, tpows, theo);
         xarr[0] = log10(power_for_sigma(freqsigma, 1, ptsperint / 2));
         xarr[1] = xarr[0];
         yarr[0] = yl;
         yarr[1] = yh;
         cpgsls(4);             /* Dotted line */
         cpgscr(maxcol, 1.0, 0.0, 0.0);
         cpgsci(maxcol);        /* Red */
         cpgline(2, xarr, yarr);
         cpgsls(1);             /* Solid line */
         cpgsci(1);             /* Default color */
         cpgbox("BCLNST", 0.0, 0, "BC", 0.0, 0);
         vect_free(hist);
         vect_free(theo);
         vect_free(tpows);
         vect_free(hpows);
      }

      /* Maximum Powers */

      left = lm;
      right = lm + ft;
      bottom = bm;
      top = bm + fh;
      xl = 0.0;
      xh = numchan;
      yl = 0.0;
      yh = T;
      cpgsvp(left, right, bottom, top);
      cpgswin(xl, xh, yl, yh);
      cpgscr(maxcol, 1.0, 0.0, 0.0);    /* Red */
      locut = 0.0;
      hicut = pow_reject;
      tr[2] = tr[4] = 0.0;
      tr[1] = (xh - xl) / numchan;
      tr[0] = xl - (tr[1] / 2);
      tr[5] = (yh - yl) / numint;
      tr[3] = yl - (tr[5] / 2);
      cpgimag(datapow[0], numchan, numint, 1, numchan, 1, numint, locut, hicut, tr);
      cpgswin(xl, xh, yl, yh);
      cpgbox("BNST", 0.0, 0, "BNST", 0.0, 0);
      cpgmtxt("B", 2.6, 0.5, 0.5, "Channel");
      cpgmtxt("L", 2.1, 0.5, 0.5, "Time (s)");
      xl = lof;
      xh = hif;
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CST", 0.0, 0, "CST", 0.0, 0);

      /* Max Power Label */

      left = lm + ft;
      right = lm + ft + tt;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      cpgswin(0.0, 1.0, 0.0, 1.0);
      cpgscr(maxcol, 1.0, 0.0, 0.0);
      cpgsci(maxcol);           /* Red */
      cpgptxt(0.5, 0.7, 0.0, 0.5, "Max");
      cpgptxt(0.5, 0.3, 0.0, 0.5, "Power");
      cpgsci(1);                /* Default color */

      /*  Max Power versus Time */

      left = lm + ft;
      right = lm + ft + tt;
      bottom = bm;
      top = bm + fh;
      cpgsvp(left, right, bottom, top);
      find_min_max_arr(numint, pow_int_med, &min, &max);
      xl = 0.0;
      xh = 1.5 * pow_reject;
      yl = 0.0;
      yh = T;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BCST", 0.0, 0, "BST", 0.0, 0);
      cpgscr(maxcol, 1.0, 0.0, 0.0);
      cpgsci(maxcol);           /* Red */
      yarr[0] = yl;
      yarr[1] = yh;
      xarr[0] = xarr[1] = datapow_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      xarr[0] = xarr[1] = pow_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numint, pow_int_med, times);
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("", 0.0, 0, "CMST", 0.0, 0);
      /* cpgmtxt("R", 2.3, 0.5, 0.5, "Interval Number"); */

      /*  Max Power versus Channel */

      left = lm;
      right = lm + ft;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      find_min_max_arr(numchan, pow_chan_med, &min, &max);
      xl = 0.0;
      xh = numchan;
      yl = 0.0;
      yh = 1.5 * pow_reject;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BST", 0.0, 0, "BCST", 0.0, 0);
      cpgscr(maxcol, 1.0, 0.0, 0.0);
      cpgsci(maxcol);           /* Red */
      xarr[0] = xl;
      xarr[1] = xh;
      yarr[0] = yarr[1] = datapow_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      yarr[0] = yarr[1] = pow_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numchan, chans, pow_chan_med);
      xl = lof;
      xh = hif;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CMST", 0.0, 0, "", 0.0, 0);
      cpgmtxt("T", 1.8, 0.5, 0.5, "Frequency (MHz)");

      /* Standard Deviations */

      left = lm + ft + 2.0 * tt;
      right = lm + 2.0 * ft + 2.0 * tt;
      bottom = bm;
      top = bm + fh;
      xl = 0.0;
      xh = numchan;
      yl = 0.0;
      yh = T;
      cpgsvp(left, right, bottom, top);
      cpgswin(xl, xh, yl, yh);
      cpgscr(mincol, 0.7, 1.0, 0.7);    /* Light Green */
      cpgscr(maxcol, 0.3, 1.0, 0.3);    /* Dark Green */
      locut = datastd_med - timesigma * datastd_std;
      hicut = datastd_med + timesigma * datastd_std;
      tr[2] = tr[4] = 0.0;
      tr[1] = (xh - xl) / numchan;
      tr[0] = xl - (tr[1] / 2);
      tr[5] = (yh - yl) / numint;
      tr[3] = yl - (tr[5] / 2);
      cpgimag(datastd[0], numchan, numint, 1, numchan, 1, numint, locut, hicut, tr);
      cpgswin(xl, xh, yl, yh);
      cpgbox("BNST", 0.0, 0, "BNST", 0.0, 0);
      cpgmtxt("B", 2.6, 0.5, 0.5, "Channel");
      xl = lof;
      xh = hif;
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CST", 0.0, 0, "CST", 0.0, 0);

      /* Data Sigma Label */

      left = lm + 2.0 * ft + 2.0 * tt;
      right = lm + 2.0 * ft + 3.0 * tt;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      cpgswin(0.0, 1.0, 0.0, 1.0);
      cpgscr(maxcol, 0.0, 1.0, 0.0);
      cpgsci(maxcol);           /* Green */
      cpgptxt(0.5, 0.7, 0.0, 0.5, "Data");
      cpgptxt(0.5, 0.3, 0.0, 0.5, "Sigma");
      cpgsci(1);                /* Default color */

      /*  Data Sigma versus Time */

      left = lm + 2.0 * ft + 2.0 * tt;
      right = lm + 2.0 * ft + 3.0 * tt;
      bottom = bm;
      top = bm + fh;
      cpgsvp(left, right, bottom, top);
      xl = datastd_med - 2.0 * std_reject;
      xh = datastd_med + 2.0 * std_reject;
      yl = 0.0;
      yh = T;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BCST", 0.0, 0, "BST", 0.0, 0);
      cpgscr(maxcol, 0.0, 1.0, 0.0);
      cpgsci(maxcol);           /* Green */
      yarr[0] = yl;
      yarr[1] = yh;
      xarr[0] = xarr[1] = datastd_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      xarr[0] = xarr[1] = datastd_med + std_reject;
      cpgline(2, xarr, yarr);
      xarr[0] = xarr[1] = datastd_med - std_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numint, std_int_med, times);
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("", 0.0, 0, "CMST", 0.0, 0);
      /* cpgmtxt("R", 2.3, 0.5, 0.5, "Interval Number"); */

      /*  Data Sigma versus Channel */

      left = lm + ft + 2.0 * tt;
      right = lm + 2.0 * ft + 2.0 * tt;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      xl = 0.0;
      xh = numchan;
      yl = datastd_med - 2.0 * std_reject;
      yh = datastd_med + 2.0 * std_reject;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BST", 0.0, 0, "BCST", 0.0, 0);
      cpgscr(maxcol, 0.0, 1.0, 0.0);
      cpgsci(maxcol);           /* Green */
      xarr[0] = xl;
      xarr[1] = xh;
      yarr[0] = yarr[1] = datastd_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      yarr[0] = yarr[1] = datastd_med + std_reject;
      cpgline(2, xarr, yarr);
      yarr[0] = yarr[1] = datastd_med - std_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numchan, chans, std_chan_med);
      xl = lof;
      xh = hif;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CMST", 0.0, 0, "", 0.0, 0);
      cpgmtxt("T", 1.8, 0.5, 0.5, "Frequency (MHz)");

      /* Data Mean */

      left = lm + 2.0 * ft + 4.0 * tt;
      right = lm + 3.0 * ft + 4.0 * tt;
      bottom = bm;
      top = bm + fh;
      xl = 0.0;
      xh = numchan;
      yl = 0.0;
      yh = T;
      cpgsvp(left, right, bottom, top);
      cpgswin(xl, xh, yl, yh);
      cpgscr(mincol, 0.7, 0.7, 1.0);    /* Light Blue */
      cpgscr(maxcol, 0.3, 0.3, 1.0);    /* Dark Blue */
      locut = dataavg_med - timesigma * dataavg_std;
      hicut = dataavg_med + timesigma * dataavg_std;
      tr[2] = tr[4] = 0.0;
      tr[1] = (xh - xl) / numchan;
      tr[0] = xl - (tr[1] / 2);
      tr[5] = (yh - yl) / numint;
      tr[3] = yl - (tr[5] / 2);
      cpgimag(dataavg[0], numchan, numint, 1, numchan, 1, numint, locut, hicut, tr);
      cpgswin(xl, xh, yl, yh);
      cpgbox("BNST", 0.0, 0, "BNST", 0.0, 0);
      cpgmtxt("B", 2.6, 0.5, 0.5, "Channel");
      xl = lof;
      xh = hif;
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CST", 0.0, 0, "CST", 0.0, 0);

      /* Data Mean Label */

      left = lm + 3.0 * ft + 4.0 * tt;
      right = lm + 3.0 * ft + 5.0 * tt;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      cpgswin(0.0, 1.0, 0.0, 1.0);
      cpgscr(maxcol, 0.0, 0.0, 1.0);
      cpgsci(maxcol);           /* Blue */
      cpgptxt(0.5, 0.7, 0.0, 0.5, "Data");
      cpgptxt(0.5, 0.3, 0.0, 0.5, "Mean");
      cpgsci(1);                /* Default color */

      /*  Data Mean versus Time */

      left = lm + 3.0 * ft + 4.0 * tt;
      right = lm + 3.0 * ft + 5.0 * tt;
      bottom = bm;
      top = bm + fh;
      cpgsvp(left, right, bottom, top);
      xl = dataavg_med - 2.0 * avg_reject;
      xh = dataavg_med + 2.0 * avg_reject;
      yl = 0.0;
      yh = T;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BCST", 0.0, 0, "BST", 0.0, 0);
      cpgscr(maxcol, 0.0, 0.0, 1.0);
      cpgsci(maxcol);           /* Blue */
      yarr[0] = yl;
      yarr[1] = yh;
      xarr[0] = xarr[1] = dataavg_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      xarr[0] = xarr[1] = dataavg_med + avg_reject;
      cpgline(2, xarr, yarr);
      xarr[0] = xarr[1] = dataavg_med - avg_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numint, avg_int_med, times);
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("", 0.0, 0, "CMST", 0.0, 0);

      /*  Data Mean versus Channel */

      left = lm + 2.0 * ft + 4.0 * tt;
      right = lm + 3.0 * ft + 4.0 * tt;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      xl = 0.0;
      xh = numchan;
      yl = dataavg_med - 2.0 * avg_reject;
      yh = dataavg_med + 2.0 * avg_reject;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BST", 0.0, 0, "BCST", 0.0, 0);
      cpgscr(maxcol, 0.0, 0.0, 1.0);
      cpgsci(maxcol);           /* Blue */
      xarr[0] = xl;
      xarr[1] = xh;
      yarr[0] = yarr[1] = dataavg_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      yarr[0] = yarr[1] = dataavg_med + avg_reject;
      cpgline(2, xarr, yarr);
      yarr[0] = yarr[1] = dataavg_med - avg_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numchan, chans, avg_chan_med);
      xl = lof;
      xh = hif;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CMST", 0.0, 0, "", 0.0, 0);
      cpgmtxt("T", 1.8, 0.5, 0.5, "Frequency (MHz)");

      {                         /* Add the Data Info area */
         char out[200], out2[100];
         float dy = 0.025;

         cpgsvp(0.0, 1.0, 0.0, 1.0);
         cpgswin(0.0, 1.0, 0.0, 1.0);
         left = lm + ft + 1.5 * tt;
         top = 1.0 - tm;
         cpgsch(1.0);
         sprintf(out, "%-s", idata->name);
         cpgptxt(0.5, 1.0 - 0.5 * tm, 0.0, 0.5, out);
         cpgsch(0.8);

         sprintf(out, "Object:");
         cpgtext(left + 0.0, top - 0 * dy, out);
         sprintf(out, "%-s", idata->object);
         cpgtext(left + 0.1, top - 0 * dy, out);
         sprintf(out, "Telescope:");
         cpgtext(left + 0.0, top - 1 * dy, out);
         sprintf(out, "%-s", idata->telescope);
         cpgtext(left + 0.1, top - 1 * dy, out);
         sprintf(out, "Instrument:");
         cpgtext(left + 0.0, top - 2 * dy, out);
         sprintf(out, "%-s", idata->instrument);
         cpgtext(left + 0.1, top - 2 * dy, out);
         ra_dec_to_string(out2, idata->ra_h, idata->ra_m, idata->ra_s);
         sprintf(out, "RA\\dJ2000\\u");
         cpgtext(left + 0.0, top - 3 * dy, out);
         sprintf(out, "= %-s", out2);
         cpgtext(left + 0.08, top - 3 * dy, out);
         ra_dec_to_string(out2, idata->dec_d, idata->dec_m, idata->dec_s);
         sprintf(out, "DEC\\dJ2000\\u");
         cpgtext(left + 0.0, top - 4 * dy, out);
         sprintf(out, "= %-s", out2);
         cpgtext(left + 0.08, top - 4 * dy, out);
         sprintf(out, "Epoch\\dtopo\\u");
         cpgtext(left + 0.0, top - 5 * dy, out);
         sprintf(out, "= %-.11f", idata->mjd_i + idata->mjd_f);
         cpgtext(left + 0.08, top - 5 * dy, out);
         sprintf(out, "T\\dsample\\u (s)");
         cpgtext(left + 0.0, top - 6 * dy, out);
         sprintf(out, "= %g", idata->dt);
         cpgtext(left + 0.08, top - 6 * dy, out);
         sprintf(out, "T\\dtotal\\u (s)");
         cpgtext(left + 0.0, top - 7 * dy, out);
         sprintf(out, "= %g", T);
         cpgtext(left + 0.08, top - 7 * dy, out);

         left = lm + ft + 7.8 * tt;
         sprintf(out, "Num channels");
         cpgtext(left + 0.0, top - 0 * dy, out);
         sprintf(out, "= %-d", numchan);
         cpgtext(left + 0.12, top - 0 * dy, out);
         sprintf(out, "Pts per int");
         cpgtext(left + 0.19, top - 0 * dy, out);
         sprintf(out, "= %-d", ptsperint);
         cpgtext(left + 0.29, top - 0 * dy, out);
         sprintf(out, "Num intervals");
         cpgtext(left + 0.0, top - 1 * dy, out);
         sprintf(out, "= %-d", numint);
         cpgtext(left + 0.12, top - 1 * dy, out);
         sprintf(out, "Time per int");
         cpgtext(left + 0.19, top - 1 * dy, out);
         sprintf(out, "= %-g", inttim);
         cpgtext(left + 0.29, top - 1 * dy, out);
         sprintf(out, "Power:");
         cpgtext(left + 0.0, top - 2 * dy, out);
         sprintf(out, "median");
         cpgtext(left + 0.06, top - 2 * dy, out);
         sprintf(out, "= %-.3f", datapow_med);
         cpgtext(left + 0.12, top - 2 * dy, out);
         sprintf(out, "\\gs");
         cpgtext(left + 0.21, top - 2 * dy, out);
         sprintf(out, "= %-.3g", datapow_std);
         cpgtext(left + 0.245, top - 2 * dy, out);
         find_min_max_arr(numint * numchan, datapow[0], &min, &max);
         sprintf(out, "min");
         cpgtext(left + 0.06, top - 3 * dy, out);
         sprintf(out, "= %-.3f", min);
         cpgtext(left + 0.12, top - 3 * dy, out);
         sprintf(out, "max");
         cpgtext(left + 0.21, top - 3 * dy, out);
         sprintf(out, "= %-.3f", max);
         cpgtext(left + 0.245, top - 3 * dy, out);
         sprintf(out, "Sigma:");
         cpgtext(left + 0.0, top - 4 * dy, out);
         sprintf(out, "median");
         cpgtext(left + 0.06, top - 4 * dy, out);
         sprintf(out, "= %-.3f", datastd_med);
         cpgtext(left + 0.12, top - 4 * dy, out);
         sprintf(out, "\\gs");
         cpgtext(left + 0.21, top - 4 * dy, out);
         sprintf(out, "= %-.3g", datastd_std);
         cpgtext(left + 0.245, top - 4 * dy, out);
         find_min_max_arr(numint * numchan, datastd[0], &min, &max);
         sprintf(out, "min");
         cpgtext(left + 0.06, top - 5 * dy, out);
         sprintf(out, "= %-.3f", min);
         cpgtext(left + 0.12, top - 5 * dy, out);
         sprintf(out, "max");
         cpgtext(left + 0.21, top - 5 * dy, out);
         sprintf(out, "= %-.3f", max);
         cpgtext(left + 0.245, top - 5 * dy, out);
         sprintf(out, "Mean:");
         cpgtext(left + 0.0, top - 6 * dy, out);
         sprintf(out, "median");
         cpgtext(left + 0.06, top - 6 * dy, out);
         sprintf(out, "= %-.3f", dataavg_med);
         cpgtext(left + 0.12, top - 6 * dy, out);
         sprintf(out, "\\gs");
         cpgtext(left + 0.21, top - 6 * dy, out);
         sprintf(out, "= %-.3g", dataavg_std);
         cpgtext(left + 0.245, top - 6 * dy, out);
         find_min_max_arr(numint * numchan, dataavg[0], &min, &max);
         sprintf(out, "min");
         cpgtext(left + 0.06, top - 7 * dy, out);
         sprintf(out, "= %-.3f", min);
         cpgtext(left + 0.12, top - 7 * dy, out);
         sprintf(out, "max");
         cpgtext(left + 0.21, top - 7 * dy, out);
         sprintf(out, "= %-.3f", max);
         cpgtext(left + 0.245, top - 7 * dy, out);
      }

      {                         /* Plot the Mask */
         unsigned char byte;
         char temp[200];
         float **plotmask, rr, gg, bb, page;

         plotmask = gen_fmatrix(numint, numchan);
         for (ii = 0; ii < numint; ii++) {
            for (jj = 0; jj < numchan; jj++) {
               byte = bytemask[ii][jj];
               plotmask[ii][jj] = 0.0;
               if (byte & PADDING)
                  plotmask[ii][jj] = 1.0;
               if (byte & OLDMASK)
                  plotmask[ii][jj] = 2.0;
               if (byte & USERZAP)
                  plotmask[ii][jj] = 3.0;
               if (byte & BAD_POW)
                  plotmask[ii][jj] = 4.0;
               else if (byte & BAD_AVG)
                  plotmask[ii][jj] = 5.0;
               else if (byte & BAD_STD)
                  plotmask[ii][jj] = 6.0;
            }
         }
         /* Set the colors */
         numcol = 7;
         maxcol = mincol + numcol - 1;
         cpgscir(mincol, maxcol);
         cpgqcr(0, &rr, &gg, &bb);
         cpgscr(mincol + 0, rr, gg, bb);        /* GOODDATA = background */
         cpgscr(mincol + 1, 0.7, 0.7, 0.7);     /* PADDING  = light grey */
         cpgscr(mincol + 2, 0.3, 0.3, 0.3);     /* OLDMASK  = dark grey */
         cpgqcr(1, &rr, &gg, &bb);
         cpgscr(mincol + 3, rr, gg, bb);        /* USERZAP  = foreground */
         cpgscr(mincol + 4, 1.0, 0.0, 0.0);     /* BAD+POW  = red */
         cpgscr(mincol + 5, 0.0, 0.0, 1.0);     /* BAD+AVG  = blue */
         cpgscr(mincol + 6, 0.0, 1.0, 0.0);     /* BAD+STD  = green */
         /* Prep the image */
         for (page = 0; page <= 1; page++) {
            xl = 0.0;
            xh = numchan;
            yl = 0.0;
            yh = T;
            locut = 0.0;
            hicut = 6.0;
            tr[2] = tr[4] = 0.0;
            tr[1] = (xh - xl) / numchan;
            tr[0] = xl - (tr[1] / 2);
            tr[5] = (yh - yl) / numint;
            tr[3] = yl - (tr[5] / 2);
            if (page == 0) {
               left = lm + 3.0 * ft + 6.0 * tt;
               right = lm + 4.0 * ft + 6.0 * tt;
               bottom = bm;
               top = bm + fh;
            } else {
               cpgpage();
               cpgiden();
               left = 0.06;
               right = 0.94;
               bottom = 0.06;
               top = 0.88;
            }
            cpgsvp(left, right, bottom, top);
            cpgswin(xl, xh, yl, yh);
            cpgimag(plotmask[0], numchan, numint, 1,
                    numchan, 1, numint, locut, hicut, tr);
            cpgswin(xl, xh, yl, yh);
            cpgbox("BNST", 0.0, 0, "BNST", 0.0, 0);
            cpgmtxt("B", 2.6, 0.5, 0.5, "Channel");
            if (page)
               cpgmtxt("L", 2.1, 0.5, 0.5, "Time (s)");
            xl = lof;
            xh = hif;
            yl = 0.0;
            yh = numint;
            cpgswin(xl, xh, yl, yh);
            cpgbox("CMST", 0.0, 0, "CMST", 0.0, 0);
            cpgmtxt("T", 1.8, 0.5, 0.5, "Frequency (MHz)");
            cpgmtxt("R", 2.3, 0.5, 0.5, "Interval Number");
            /* Add the Labels */
            cpgsvp(0.0, 1.0, 0.0, 1.0);
            cpgswin(0.0, 1.0, 0.0, 1.0);
            cpgsch(0.8);
            if (page == 0) {
               cpgsci(mincol + 1);
               cpgptxt(left, top + 0.1, 0.0, 0.0, "Padding");
               cpgsci(mincol + 2);
               cpgptxt(left, top + 0.08, 0.0, 0.0, "Old Mask");
               cpgsci(mincol + 3);
               cpgptxt(left, top + 0.06, 0.0, 0.0, "User Zap");
               cpgsci(mincol + 4);
               cpgptxt(right, top + 0.1, 0.0, 1.0, "Power");
               cpgsci(mincol + 6);
               cpgptxt(right, top + 0.08, 0.0, 1.0, "Sigma");
               cpgsci(mincol + 5);
               cpgptxt(right, top + 0.06, 0.0, 1.0, "Mean");
               cpgsci(1);
            } else {
               cpgsci(mincol + 1);
               cpgptxt(1.0 / 12.0, 0.955, 0.0, 0.5, "Padding");
               cpgsci(mincol + 2);
               cpgptxt(3.0 / 12.0, 0.955, 0.0, 0.5, "Old Mask");
               cpgsci(mincol + 3);
               cpgptxt(5.0 / 12.0, 0.955, 0.0, 0.5, "User Zap");
               cpgsci(mincol + 4);
               cpgptxt(7.0 / 12.0, 0.955, 0.0, 0.5, "Max Power");
               cpgsci(mincol + 6);
               cpgptxt(9.0 / 12.0, 0.955, 0.0, 0.5, "Data Sigma");
               cpgsci(mincol + 5);
               cpgptxt(11.0 / 12.0, 0.955, 0.0, 0.5, "Data Mean");
               cpgsci(1);
               cpgsch(0.9);
               sprintf(temp, "Recommended Mask for '%-s'", idata->name);
               cpgptxt(0.5, 0.985, 0.0, 0.5, temp);
            }
         }
         vect_free(plotmask[0]);
         vect_free(plotmask);
      }

      if (ct == 0)
         printf("There are %d RFI instances.\n\n", numrfi);

      if ((ct == 0 && rfips) || (ct == 1 && rfixwin)) { /* Plot the RFI instances */
         int maxcol, mincol, numperpage = 25, numtoplot;
         float dy = 0.035, top = 0.95, rr, gg, bb;
         char temp[200];

         qsort(rfivect, numrfi, sizeof(rfi), compare_rfi_freq);
         /* qsort(rfivect, numrfi, sizeof(rfi), compare_rfi_sigma); */
         for (ii = 0; ii <= (numrfi - 1) / numperpage; ii++) {
            cpgpage();
            cpgiden();
            cpgsvp(0.0, 1.0, 0.0, 1.0);
            cpgswin(0.0, 1.0, 0.0, 1.0);
            cpgsch(0.8);
            sprintf(temp, "%-s", idata->name);
            cpgtext(0.05, 0.985, temp);
            cpgsch(0.6);
            sprintf(temp, "Freq (Hz)");
            cpgptxt(0.03, 0.96, 0.0, 0.0, temp);
            sprintf(temp, "Period (ms)");
            cpgptxt(0.12, 0.96, 0.0, 0.0, temp);
            sprintf(temp, "Sigma");
            cpgptxt(0.21, 0.96, 0.0, 0.0, temp);
            sprintf(temp, "Number");
            cpgptxt(0.27, 0.96, 0.0, 0.0, temp);
            cpgsvp(0.33, 0.64, top - dy, top);
            cpgswin(lof, hif, 0.0, 1.0);
            cpgbox("CIMST", 0.0, 0, "", 0.0, 0);
            cpgmtxt("T", 2.5, 0.5, 0.5, "Frequency (MHz)");
            cpgsvp(0.65, 0.96, top - dy, top);
            cpgswin(0.0, T, 0.0, 1.0);
            cpgbox("CIMST", 0.0, 0, "", 0.0, 0);
            cpgmtxt("T", 2.5, 0.5, 0.5, "Time (s)");
            cpgqcir(&mincol, &maxcol);
            maxcol = mincol + 1;
            cpgscir(mincol, maxcol);
            cpgqcr(0, &rr, &gg, &bb);
            cpgscr(mincol, rr, gg, bb); /* background */
            cpgqcr(1, &rr, &gg, &bb);
            /* cpgscr(maxcol, rr, gg, bb);  foreground */
            cpgscr(maxcol, 0.5, 0.5, 0.5);      /* grey */
            if (ii == (numrfi - 1) / numperpage)
               numtoplot = numrfi % numperpage;
            else
               numtoplot = numperpage;
            for (jj = 0; jj < numtoplot; jj++)
               plot_rfi(rfivect + ii * numperpage + jj,
                        top - jj * dy, numint, numchan, T, lof, hif);
            cpgsvp(0.33, 0.64, top - jj * dy, top - (jj - 1) * dy);
            cpgswin(0.0, numchan, 0.0, 1.0);
            cpgbox("BINST", 0.0, 0, "", 0.0, 0);
            cpgmtxt("B", 2.5, 0.5, 0.5, "Channel");
            cpgsvp(0.65, 0.96, top - jj * dy, top - (jj - 1) * dy);
            cpgswin(0.0, numint, 0.0, 1.0);
            cpgbox("BINST", 0.0, 0, "", 0.0, 0);
            cpgmtxt("B", 2.5, 0.5, 0.5, "Interval");
         }
      }
      cpgclos();
   }                            /* Plot for loop */

   /* Free our arrays */

   vect_free(freqs);
   vect_free(chans);
   vect_free(times);
   vect_free(ints);
   vect_free(avg_chan_avg);
   vect_free(std_chan_avg);
   vect_free(pow_chan_avg);
   vect_free(avg_int_avg);
   vect_free(std_int_avg);
   vect_free(pow_int_avg);
   vect_free(avg_chan_med);
   vect_free(std_chan_med);
   vect_free(pow_chan_med);
   vect_free(avg_int_med);
   vect_free(std_int_med);
   vect_free(pow_int_med);
   vect_free(avg_chan_std);
   vect_free(std_chan_std);
   vect_free(pow_chan_std);
   vect_free(avg_int_std);
   vect_free(std_int_std);
   vect_free(pow_int_std);
}
Пример #4
0
int main()

{
  char   text[80];
  int    ci, crval1, crval2, ilat, ilng, j, k, latpole, lonpole, stat[361],
         status;
  float  xr[512], yr[512];
  double lat[181], lng[361], phi[361], theta[361], x[361], y[361];
  struct celprm native, celestial;


  printf(
  "Testing WCSLIB celestial coordinate transformation routines (tcel1.c)\n"
  "---------------------------------------------------------------------\n");

  /* List status return messages. */
  printf("\nList of cel status return values:\n");
  for (status = 1; status <= 6; status++) {
    printf("%4d: %s.\n", status, cel_errmsg[status]);
  }

  printf("\n");


  /* Initialize. */
  celini(&native);

  /* Reference angles for the native graticule (in fact, the defaults). */
  native.ref[0] = 0.0;
  native.ref[1] = 0.0;

  /* Set up Bonne's projection with conformal latitude at +35. */
  strcpy(native.prj.code, "BON");
  native.prj.pv[1] = 35.0;


  /* Celestial graticule. */
  celini(&celestial);
  celestial.prj = native.prj;


  /* PGPLOT initialization. */
  strcpy(text, "/xwindow");
  cpgbeg(0, text, 1, 1);

  /* Define pen colours. */
  cpgscr(0, 0.0f, 0.0f, 0.0f);
  cpgscr(1, 1.0f, 1.0f, 0.0f);
  cpgscr(2, 1.0f, 1.0f, 1.0f);
  cpgscr(3, 0.5f, 0.5f, 0.8f);
  cpgscr(4, 0.8f, 0.5f, 0.5f);
  cpgscr(5, 0.8f, 0.8f, 0.8f);
  cpgscr(6, 0.5f, 0.5f, 0.8f);
  cpgscr(7, 0.8f, 0.5f, 0.5f);
  cpgscr(8, 0.3f, 0.5f, 0.3f);

  /* Define PGPLOT viewport. */
  cpgenv(-180.0f, 180.0f, -90.0f, 140.0f, 1, -2);

  /* Loop over CRVAL2, LONPOLE, and LATPOLE with CRVAL1 incrementing by */
  /* 15 degrees each time (it has an uninteresting effect).             */
  crval1 = -180;
  for (crval2 = -90; crval2 <=  90; crval2 += 30) {
    for (lonpole = -180; lonpole <= 180; lonpole += 30) {
      for (latpole = -1; latpole <= 1; latpole += 2) {
        /* For the celestial graticule, set the celestial coordinates of
         * the reference point of the projection (which for Bonne's
         * projection is at the intersection of the native equator and
         * prime meridian), the native longitude of the celestial pole,
         * and extra information needed to determine the celestial
         * latitude of the native pole.  These correspond to FITS keywords
         * CRVAL1, CRVAL2, LONPOLE, and LATPOLE.
         */
        celestial.ref[0] = (double)crval1;
        celestial.ref[1] = (double)crval2;
        celestial.ref[2] = (double)lonpole;
        celestial.ref[3] = (double)latpole;

        /* Skip invalid values of LONPOLE. */
        if (celset(&celestial)) {
          continue;
        }

        /* Skip redundant values of LATPOLE. */
        if (latpole == 1 && fabs(celestial.ref[3]) < 0.1) {
          continue;
        }

        /* Buffer PGPLOT output. */
        cpgbbuf();
        cpgeras();

        /* Write a descriptive title. */
        sprintf(text, "Bonne's projection (BON) - 15 degree graticule");
        printf("\n%s\n", text);
        cpgtext(-180.0f, -100.0f, text);

        sprintf(text, "centred on celestial coordinates (%7.2f,%6.2f)",
          celestial.ref[0], celestial.ref[1]);
        printf("%s\n", text);
        cpgtext (-180.0f, -110.0f, text);

        sprintf(text, "with north celestial pole at native coordinates "
          "(%7.2f,%7.2f)", celestial.ref[2], celestial.ref[3]);
        printf("%s\n", text);
        cpgtext(-180.0f, -120.0f, text);


        /* Draw the native graticule faintly in the background. */
        cpgsci(8);

        /* Draw native meridians of longitude. */
        for (j = 0, ilat = -90; ilat <= 90; ilat++, j++) {
          lat[j] = (double)ilat;
        }

        for (ilng = -180; ilng <= 180; ilng += 15) {
          lng[0] = (double)ilng;
          if (ilng == -180) lng[0] = -179.99;
          if (ilng ==  180) lng[0] =  179.99;

          /* Dash the longitude of the celestial pole. */
          if ((ilng-lonpole)%360 == 0) {
            cpgsls(2);
            cpgslw(5);
          }

          cels2x(&native, 1, 181, 1, 1, lng, lat, phi, theta, x, y, stat);

          k = 0;
          for (j = 0; j < 181; j++) {
            if (stat[j]) {
              if (k > 1) cpgline(k, xr, yr);
              k = 0;
              continue;
            }

            xr[k] = -x[j];
            yr[k] =  y[j];
            k++;
          }

          cpgline(k, xr, yr);
          cpgsls(1);
          cpgslw(1);
        }

        /* Draw native parallels of latitude. */
        lng[0]   = -179.99;
        lng[360] =  179.99;
        for (j = 1, ilng = -179; ilng < 180; ilng++, j++) {
          lng[j] = (double)ilng;
        }

        for (ilat = -90; ilat <= 90; ilat += 15) {
          lat[0] = (double)ilat;

          cels2x(&native, 361, 1, 1, 1, lng, lat, phi, theta, x, y, stat);

          k = 0;
          for (j = 0; j < 361; j++) {
            if (stat[j]) {
              if (k > 1) cpgline(k, xr, yr);
              k = 0;
              continue;
            }

            xr[k] = -x[j];
            yr[k] =  y[j];
            k++;
          }

          cpgline(k, xr, yr);
        }


        /* Draw a colour-coded celestial coordinate graticule. */
        ci = 1;

        /* Draw celestial meridians of longitude. */
        for (j = 0, ilat = -90; ilat <= 90; ilat++, j++) {
          lat[j] = (double)ilat;
        }

        for (ilng = -180; ilng <= 180; ilng += 15) {
          lng[0] = (double)ilng;

          if (++ci > 7) ci = 2;
          cpgsci(ilng?ci:1);

          /* Dash the reference longitude. */
          if ((ilng-crval1)%360 == 0) {
            cpgsls(2);
            cpgslw(5);
          }

          cels2x(&celestial, 1, 181, 1, 1, lng, lat, phi, theta, x, y, stat);

          k = 0;
          for (j = 0; j < 181; j++) {
            if (stat[j]) {
              if (k > 1) cpgline(k, xr, yr);
              k = 0;
              continue;
            }

            /* Test for discontinuities. */
            if (j > 0) {
              if (fabs(x[j]-x[j-1]) > 4.0 || fabs(y[j]-y[j-1]) > 4.0) {
                if (k > 1) cpgline(k, xr, yr);
                k = 0;
              }
            }

            xr[k] = -x[j];
            yr[k] =  y[j];
            k++;
          }

          cpgline(k, xr, yr);
          cpgsls(1);
          cpgslw(1);
        }

        /* Draw celestial parallels of latitude. */
        for (j = 0, ilng = -180; ilng <= 180; ilng++, j++) {
          lng[j] = (double)ilng;
        }

        ci = 1;
        for (ilat = -90; ilat <= 90; ilat += 15) {
          lat[0] = (double)ilat;

          if (++ci > 7) ci = 2;
          cpgsci(ilat?ci:1);

          /* Dash the reference latitude. */
          if (ilat == crval2) {
            cpgsls(2);
            cpgslw(5);
          }

          cels2x(&celestial, 361, 1, 1, 1, lng, lat, phi, theta, x, y, stat);

          k = 0;
          for (j = 0; j < 361; j++) {
            if (stat[j]) {
              if (k > 1) cpgline(k, xr, yr);
              k = 0;
              continue;
            }

            /* Test for discontinuities. */
            if (j > 0) {
              if (fabs(x[j]-x[j-1]) > 4.0 || fabs(y[j]-y[j-1]) > 4.0) {
                if (k > 1) cpgline(k, xr, yr);
                k = 0;
              }
            }

            xr[k] = -x[j];
            yr[k] =  y[j];
            k++;
          }

          cpgline(k, xr, yr);
          cpgsls(1);
          cpgslw(1);
        }

        /* Flush PGPLOT buffer. */
        cpgebuf();
        printf(" Type <RETURN> for next page: ");
        getc(stdin);

        /* Cycle through celestial longitudes. */
        if ((crval1 += 15) > 180) crval1 = -180;

        /* Skip boring celestial latitudes. */
        if (crval2 == 0) break;
      }

      if (crval2 == 0) break;
    }
  }

  cpgask(0);
  cpgend();

  return 0;
}
Пример #5
0
int main(){
	printf("\n====================================================================\n");
	printf("This program is able to simulate the diffusion of heat\n");
	printf("across a metal plate of size %i x %i\n", ENV_SIZE_X, ENV_SIZE_Y);
	printf("====================================================================\n");

	//==========================================================================
	//--------------------------SYSTEM INITIALIZATIONS--------------------------
	//==========================================================================
	
	// initialize random seed
	srand(time(NULL));

	// force print all outputs (remove stdout buffer)
	setbuf(stdout, NULL);

	// initialize pgplot window
	if (!cpgopen("/XWINDOW"))
		errorCase(ERR_PGPLOT);

	cpgpap(0.0, 0.6);						// set window size
	cpgsubp(1,3);						// subdivide window into panels
	// heatmap
	cpgpanl(1,1);
	cpgsvp(0.0, 1.0, 0.0, 1.0);
	cpgswin(0, ENV_SIZE_X, 0, ENV_SIZE_Y);
	// flux plot
	cpgpanl(1,2);
	cpgsvp(0.08, 0.92, 0.08, 0.92);
	cpgswin(LINE_PLOT_X1, LINE_PLOT_X2, FLUX_PLOT_Y1, FLUX_PLOT_Y2);
	cpgbox("ABCINTS", 0.0, 0, "ABCINTS", 0.0, 0);
	cpglab("Time", "Flux", "");
	// heat plot
	cpgpanl(1,3);
	cpgsvp(0.08, 0.92, 0.08, 0.92);
	cpgswin(LINE_PLOT_X1, LINE_PLOT_X2, LINE_PLOT_Y1, LINE_PLOT_Y2);
	cpgbox("ABCINTS", 0.0, 0, "ABCINTS", 0.0, 0);
	cpglab("Time", "Total Heat", "");

	// initialize color table for pgplot display
  	float rl[9] = {-0.5, 0.0, 0.17, 0.33, 0.50, 0.67, 0.83, 1.0, 1.7};
  	float rr[9] = { 0.0, 0.0,  0.0,  0.0,  0.6,  1.0,  1.0, 1.0, 1.0};
  	float rg[9] = { 0.0, 0.0,  0.0,  1.0,  1.0,  1.0,  0.6, 0.0, 1.0};
  	float rb[9] = { 0.0, 0.3,  0.8,  1.0,  0.3,  0.0,  0.0, 0.0, 1.0};
  	cpgctab(rl, rr, rg, rb, 512,  1.0, 0.5);
	cpgscr(10, 0.0, 0.0, 1.0);
	cpgscr(11, 1.0, 0.0, 0.0);
	cpgsfs(3);


	//==========================================================================
	//--------------------------VARIABLE INITIALIZATIONS------------------------
	//==========================================================================

	// generic variables
	int i, j, k;						// counters

	// simulation environment
	float** simEnvEven = allocateArray2D(ENV_SIZE_X, ENV_SIZE_Y);
	float** simEnvOdd = allocateArray2D(ENV_SIZE_X, ENV_SIZE_Y);
	float* simLocal = allocateArray1D(5);

	// mnist handwritten numbers
	float** mnistDatabase = readCSV("mnist_train_100.csv", 100, 785);
	for (i=0; i<100; i++)
		for (j=0; j<785; j++)
			mnistDatabase[i][j] = mnistDatabase[i][j]/255.0;

	// current location and time
	int x,y,z;
	int t, tGlobal;

	// student number
	int studentNumbRaw;
	int studentNumbWorking;
	int studentNumb[7];

	// rates
	float rateDiff = 0.2;
	float delta;

	// flux variables
	float flux;
	float fluxTotal;
	float fluxAverage;
	float fluxHeat;
	float totalHeat;
	int x1, x2, y1, y2;

	// background heat
	float bgHeat;

	// tracking variables
	float totalHeatOld;
	float totalHeatPre;
	float tGlobalOld;
	float fluxOld;

	// pgplot variables
	float* plotImg = allocateArray1D(ENV_SIZE_TOTAL);
	float TR[6] = {0, 0, 1, ENV_SIZE_Y, -1, 0};
	float plotMinBound = 0;
	float plotMaxBound = 1;

	//==========================================================================
	//--------------------------------SETUP-------------------------------------
	//==========================================================================
	
	// ask for student number
	printf("Please enter your student number:\n");
	if (scanf("%i", &studentNumbRaw) == 0)
		errorCase(ERR_INVALID_INPUT);
	studentNumbWorking = studentNumbRaw;
	for (i=0; i<SN_LENGTH; i++){
		studentNumb[6-i] = studentNumbWorking%10;
		studentNumbWorking /= 10;
	}
	printf("\nYour student number is:\n");
	for (i=0; i<SN_LENGTH; i++)
		printf("%i", studentNumb[i]);
	printf("\n\n");

	// set and print diffusion rate based on last digit of student number
	rateDiff = ((((float)(studentNumb[6]))/10.0)*0.19)+0.01;
	printf("Your Diffusion Rate is: \n%f\n\n", rateDiff);

	// set and print background heat added based on last 4 digits of student number
	studentNumbRaw -= 1410000;
	bgHeat = ((float)((studentNumbRaw%97)%10));
	bgHeat += ((float)((studentNumbRaw%101)%8))*10;
	bgHeat /= 100;
	printf("Your Background Heat is: \n%f\n\n", bgHeat*100);

	// set and print domain for calculating flux
	// x1, y1 based on last four digits of student number
	x1 = studentNumbRaw % ENV_SIZE_X;
	y1 = studentNumbRaw % ENV_SIZE_Y;
	// x2, y2 based on last four digits of student number
	x2 = x1 + (studentNumbRaw % (97));
	if (x2 >= ENV_SIZE_X)
		x2 = ENV_SIZE_X - 1;
	y2 = y1 + (studentNumbRaw % (29));
	if (y2 >= ENV_SIZE_Y)
		y2 = ENV_SIZE_Y - 1;
	printf("Your Domain is: \n(%i, %i) X (%i, %i)\n\n", x1, y1, x2, y2);

	// environment initialization:
	// select digits and place into environment
	for (i=0; i<SN_LENGTH; i++){
		if (studentNumb[i] == 0)
			z = 0;
		else if (studentNumb[i] == 1)
			z = 13;
		else if (studentNumb[i] == 2)
			z = 27;
		else if (studentNumb[i] == 3)
			z = 33;
		else if (studentNumb[i] == 4)
			z = 44;
		else if (studentNumb[i] == 5)
			z = 55;
		else if (studentNumb[i] == 6)
			z = 60;
		else if (studentNumb[i] == 7)
			z = 71;
		else if (studentNumb[i] == 8)
			z = 81;
		else
			z = 89;

		for (x=0; x<28; x++)
			for (y=0; y<28; y++) {
				simEnvEven[x+(i*28)+1][y+1] = mnistDatabase[z][y*28+x] + bgHeat;
				if (simEnvEven[x+(i*28)+1][y+1] > 1.0)
					simEnvEven[x+(i*28)+1][y+1] = 1.0;
			}
	}


	//==========================================================================
	//--------------------------ACTUAL CODE-------------------------------------
	//==========================================================================

	// initialize display
	fixBoundaryConditions(simEnvEven);
	copyArray2D(simEnvEven, simEnvOdd, ENV_SIZE_X, ENV_SIZE_Y);
	loadImage(simEnvEven, plotImg);
	cpgpanl(1,1);
	cpgsvp(0.0, 1.0, 0.0, 1.0);
	cpgswin(0, ENV_SIZE_X, 0, ENV_SIZE_Y);
	cpgimag(plotImg, ENV_SIZE_Y, ENV_SIZE_X, 1, ENV_SIZE_Y, 1, ENV_SIZE_X, plotMinBound, plotMaxBound, TR);
	cpgrect(x1, x2, y1, y2);

	// initialize trackers
	tGlobalOld = 0;
	fluxOld = 0;
	totalHeatOld = 0;
	for (x=x1; x<=x2; x++)
		for (y=y1; y<=y2; y++)
			totalHeatOld += simEnvEven[x][y];

	// initial delay to visualize starting matrix
	for (t=0; t<500000000; t++){}
	
	t = 0;
	tGlobal = 0;
	flux = 0;
	fluxAverage = 0;
	fluxTotal = 0;
	while(1){
		flux = 0;
		cpgpanl(1,1);
		cpgsvp(0.0, 1.0, 0.0, 1.0);
		cpgswin(0, ENV_SIZE_X, 0, ENV_SIZE_Y);

		// calculate heat changes using numeric methods
		fixBoundaryConditions(simEnvEven);

		//simEnvEven[50][15] = 100;
		//simEnvEven[60][15] = -10;

		copyArray2D(simEnvEven, simEnvOdd, ENV_SIZE_X, ENV_SIZE_Y);

		for (x=1; x<(ENV_SIZE_X-1); x++)
			for (y=1; y<(ENV_SIZE_Y-1); y++)
				if ((x+y)%2 == 0) {
					delta = rateDiff*(simEnvEven[x][y+1] - 2*simEnvEven[x][y] + simEnvEven[x][y-1]);
					simEnvOdd[x][y] += delta;
					if (INSIDE_BOX)
						flux += delta;
					delta = rateDiff*(simEnvEven[x+1][y] - 2*simEnvEven[x][y] + simEnvEven[x-1][y]);
					simEnvOdd[x][y] += delta;
					if (INSIDE_BOX)
						flux += delta;
				}
		for (x=1; x<(ENV_SIZE_X-1); x++)
			for (y=1; y<(ENV_SIZE_Y-1); y++)
				if ((x+y)%2 == 1) {
					delta = rateDiff*(simEnvOdd[x][y+1] - 2*simEnvOdd[x][y] + simEnvOdd[x][y-1]);
					simEnvOdd[x][y] += delta;
					if (INSIDE_BOX)
						flux += delta;
					delta = rateDiff*(simEnvOdd[x+1][y] - 2*simEnvOdd[x][y] + simEnvOdd[x-1][y]);
					simEnvOdd[x][y] += delta;
					if (INSIDE_BOX)
						flux += delta;
				}
		loadImage(simEnvOdd, plotImg);
		cpgimag(plotImg, ENV_SIZE_Y, ENV_SIZE_X, 1, ENV_SIZE_Y, 1, ENV_SIZE_X, plotMinBound, plotMaxBound, TR);
		cpgrect(x1, x2, y1, y2);
		fluxTotal += flux;
		tGlobal++;

		flux = 0;

		//simEnvOdd[50][15] = 100;
		//simEnvOdd[60][15] = -10;

		fixBoundaryConditions(simEnvOdd);
		
		for (x=1; x<(ENV_SIZE_X-1); x++)
			for (y=1; y<(ENV_SIZE_Y-1); y++)
				if ((x+y)%2 == 1) {
					delta = rateDiff*(simEnvOdd[x][y+1] - 2*simEnvOdd[x][y] + simEnvOdd[x][y-1]);
					simEnvEven[x][y] += delta;
					if (INSIDE_BOX)
						flux += delta;
					delta = rateDiff*(simEnvOdd[x+1][y] - 2*simEnvOdd[x][y] + simEnvOdd[x-1][y]);
					simEnvEven[x][y] += delta;
					if (INSIDE_BOX)
						flux += delta;
				}
		for (x=1; x<(ENV_SIZE_X-1); x++)
			for (y=1; y<(ENV_SIZE_Y-1); y++)
				if ((x+y)%2 == 0) {
					delta = rateDiff*(simEnvEven[x][y+1] - 2*simEnvEven[x][y] + simEnvEven[x][y-1]);
					simEnvEven[x][y] += delta;
					if (INSIDE_BOX)
						flux += delta;
					delta = rateDiff*(simEnvEven[x+1][y] - 2*simEnvEven[x][y] + simEnvEven[x-1][y]);
					simEnvEven[x][y] += delta;
					if (INSIDE_BOX)
						flux += delta;
				}
		loadImage(simEnvEven, plotImg);
		cpgimag(plotImg, ENV_SIZE_Y, ENV_SIZE_X, 1, ENV_SIZE_Y, 1, ENV_SIZE_X, plotMinBound, plotMaxBound, TR);
		cpgrect(x1, x2, y1, y2);
		fluxTotal += flux;
		tGlobal++;



		// flux line plot
		cpgpanl(1,2);
		cpgsvp(0.08, 0.92, 0.08, 0.92);
		cpgswin(LINE_PLOT_X1, LINE_PLOT_X2, FLUX_PLOT_Y1, FLUX_PLOT_Y2);
		cpgmove(tGlobalOld, fluxOld);
		cpgdraw(tGlobal, flux);

		// heat line plot
		totalHeat = 0;
		for (x=x1; x<=x2; x++)
			for (y=y1; y<=y2; y++)
				totalHeat += simEnvEven[x][y];
		cpgpanl(1,3);
		cpgsvp(0.08, 0.92, 0.08, 0.92);
		cpgswin(LINE_PLOT_X1, LINE_PLOT_X2, LINE_PLOT_Y1, LINE_PLOT_Y2);
		cpgmove(tGlobalOld, totalHeatOld);
		cpgdraw(tGlobal, totalHeat);

		// set trackers
		tGlobalOld = tGlobal;
		totalHeatOld = totalHeat;
		fluxOld = flux;

		if (tGlobal%100 == 0) {
			totalHeat = 0;
			for (x=x1; x<=x2; x++)
				for (y=y1; y<=y2; y++)
					totalHeat += simEnvEven[x][y];
			fluxAverage = fluxTotal/tGlobal;
			fluxHeat = totalHeat - totalHeatPre;
			printf("Total Heat: %f \n Current Divergence: %f \n Current Flux:       %f\n\n", totalHeat, flux, fluxHeat);
		}

		totalHeatPre = 0;
		for (x=x1; x<=x2; x++)
			for (y=y1; y<=y2; y++)
				totalHeatPre += simEnvEven[x][y];
	}
}
Пример #6
0
void Plotter2::plot() {
    open();

    if ((width > 0.0) && (aspect > 0.0)) {
        cpgpap(width, aspect);
    }

    cpgscr(0, 1.0, 1.0, 1.0); // set background color white
    cpgscr(1, 0.0, 0.0, 0.0); // set foreground color black

    for (unsigned int i = 0; i < vInfo.size(); ++i) {
        Plotter2ViewportInfo vi = vInfo[i];

	if (vi.showViewport) {
	    resetAttributes(vi);

	    // setup viewport
            cpgsvp(vi.vpPosXMin, vi.vpPosXMax, vi.vpPosYMin, vi.vpPosYMax);
	    cpgswin(vi.vpRangeXMin, vi.vpRangeXMax, vi.vpRangeYMin, vi.vpRangeYMax);

	    // background color (default is transparent)
	    if (vi.vpBColor >= 0) {
	        cpgsci(vi.vpBColor);
	        cpgrect(vi.vpRangeXMin, vi.vpRangeXMax, vi.vpRangeYMin, vi.vpRangeYMax);
	        cpgsci(1);  // reset foreground colour to the initial one (black)
	    }

	    // data
	    for (unsigned int j = 0; j < vi.vData.size(); ++j) {
	        resetAttributes(vi);

	        Plotter2DataInfo di = vi.vData[j];
	        std::vector<float> vxdata = di.xData;
                int ndata = vxdata.size();
	        float* pxdata = new float[ndata];
	        float* pydata = new float[ndata];
	        for (int k = 0; k < ndata; ++k) {
	            pxdata[k] = di.xData[k];
	            pydata[k] = di.yData[k];
	        }

	        if (di.drawLine) {
  	            cpgsls(di.lineStyle);
	            cpgslw(di.lineWidth);
		    int colorIdx = di.lineColor;
		    if (colorIdx < 0) {
		        colorIdx = (j + 1) % 15 + 1;
		    }
	            cpgsci(colorIdx);
	            cpgline(ndata, pxdata, pydata);
	        }

	        if (di.drawMarker) {
	            cpgsch(di.markerSize);
	            cpgsci(di.markerColor);
	            cpgpt(ndata, pxdata, pydata, di.markerType);
	        }

	        delete [] pxdata;
	        delete [] pydata;
	    }

	    //calculate y-range of xmasks
	    std::vector<float> yrange = vi.getRangeY();
	    float yexcess = 0.1*(yrange[1] - yrange[0]);
	    float xmaskymin = yrange[0] - yexcess;
	    float xmaskymax = yrange[1] + yexcess;

	    // masks
	    for (unsigned int j = 0; j < vi.vRect.size(); ++j) {
	        resetAttributes(vi);

	        Plotter2RectInfo ri = vi.vRect[j];
                cpgsci(ri.color);
	        cpgsfs(ri.fill);
	        cpgslw(ri.width);
	        cpgshs(45.0, ri.hsep, 0.0);
	        float* mxdata = new float[4];
	        float* mydata = new float[4];
	        mxdata[0] = ri.xmin;
	        mxdata[1] = ri.xmax;
	        mxdata[2] = ri.xmax;
	        mxdata[3] = ri.xmin;
	        mydata[0] = xmaskymin;
	        mydata[1] = xmaskymin;
	        mydata[2] = xmaskymax;
	        mydata[3] = xmaskymax;
                cpgpoly(4, mxdata, mydata);
	    }

	    // arrows
	    for (unsigned int j = 0; j < vi.vArro.size(); ++j) {
  	        resetAttributes(vi);

		Plotter2ArrowInfo ai = vi.vArro[j];
		cpgsci(ai.color);
		cpgslw(ai.width);
                cpgsls(ai.lineStyle);
		cpgsch(ai.headSize);
		cpgsah(ai.headFillStyle, ai.headAngle, ai.headVent);
		cpgarro(ai.xtail, ai.ytail, ai.xhead, ai.yhead);
	    }

	    // arbitrary texts
	    for (unsigned int j = 0; j < vi.vText.size(); ++j) {
  	        resetAttributes(vi);

		Plotter2TextInfo ti = vi.vText[j];
		cpgsch(ti.size);
		cpgsci(ti.color);
		cpgstbg(ti.bgcolor);
		cpgptxt(ti.posx, ti.posy, ti.angle, ti.fjust, ti.text.c_str());
	    }

	    // viewport outline and ticks
	    resetAttributes(vi);

            cpgbox("BCTS",  vi.majorTickIntervalX, vi.nMinorTickWithinMajorTicksX, 
	           "BCTSV", vi.majorTickIntervalY, vi.nMinorTickWithinMajorTicksY);

	    // viewport numberings
	    std::string numformatx, numformaty;
	    if (vi.numLocationX == "b") {
	        numformatx = "N";
	    } else if (vi.numLocationX == "t") {
	        numformatx = "M";
	    } else if (vi.numLocationX == "") {
	        numformatx = "";
	    }
	    if (vi.numLocationY == "l") {
	        numformaty = "NV";
	    } else if (vi.numLocationY == "r") {
	        numformaty = "MV";
	    } else if (vi.numLocationY == "") {
	        numformaty = "";
	    }

            cpgbox(numformatx.c_str(), vi.majorTickIntervalX * vi.nMajorTickWithinTickNumsX, 0, 
	           numformaty.c_str(), vi.majorTickIntervalY * vi.nMajorTickWithinTickNumsY, 0);

	    float xpos, ypos;

	    // x-label
	    vi.getWorldCoordByWindowCoord(vi.labelXPosX, vi.labelXPosY, &xpos, &ypos);
	    cpgsch(vi.labelXSize);
            cpgsci(vi.labelXColor);
            cpgstbg(vi.labelXBColor); //outside viewports, works ONLY with /xwindow
            cpgptxt(xpos, ypos, vi.labelXAngle, vi.labelXFJust, vi.labelXString.c_str());

	    // y-label
	    vi.getWorldCoordByWindowCoord(vi.labelYPosX, vi.labelYPosY, &xpos, &ypos);
	    cpgsch(vi.labelYSize);
            cpgsci(vi.labelYColor);
            cpgstbg(vi.labelYBColor); //outside viewports, works ONLY with /xwindow
            cpgptxt(xpos, ypos, vi.labelYAngle, vi.labelYFJust, vi.labelYString.c_str());

	    // title
	    vi.getWorldCoordByWindowCoord(vi.titlePosX, vi.titlePosY, &xpos, &ypos);
	    cpgsch(vi.titleSize);
            cpgsci(vi.titleColor);
            cpgstbg(vi.titleBColor); //outside viewports, works ONLY with /xwindow
            cpgptxt(xpos, ypos, vi.titleAngle, vi.titleFJust, vi.titleString.c_str());
	}

    }

    close();
}
Пример #7
0
int main(int argc, char *argv[])
{
   float maxpow = 0.0, inx = 0.0, iny = 0.0;
   double centerr, offsetf;
   int zoomlevel, maxzoom, minzoom, xid, psid;
   char *rootfilenm, inchar;
   fftpart *lofp;
   fftview *fv;

   if (argc == 1) {
      printf("\nusage:  explorefft fftfilename\n\n");
      exit(0);
   }

   printf("\n\n");
   printf("      Interactive FFT Explorer\n");
   printf("         by Scott M. Ransom\n");
   printf("            October, 2001\n");
   print_help();

   {
      int hassuffix = 0;
      char *suffix;

      hassuffix = split_root_suffix(argv[1], &rootfilenm, &suffix);
      if (hassuffix) {
         if (strcmp(suffix, "fft") != 0) {
            printf("\nInput file ('%s') must be a FFT file ('.fft')!\n\n", argv[1]);
            free(suffix);
            exit(0);
         }
         free(suffix);
      } else {
         printf("\nInput file ('%s') must be a FFT file ('.fft')!\n\n", argv[1]);
         exit(0);
      }
   }

   /* Read the info file */

   readinf(&idata, rootfilenm);
   if (strlen(remove_whitespace(idata.object)) > 0) {
      printf("Examining %s data from '%s'.\n\n",
             remove_whitespace(idata.object), argv[1]);
   } else {
      printf("Examining data from '%s'.\n\n", argv[1]);
   }
   N = idata.N;
   T = idata.dt * idata.N;
#ifdef USEMMAP
   printf("Memory mapping the input FFT.  This may take a while...\n");
   mmap_file = open(argv[1], O_RDONLY);
   {
      int rt;
      struct stat buf;

      rt = fstat(mmap_file, &buf);
      if (rt == -1) {
         perror("\nError in fstat() in explorefft.c");
         printf("\n");
         exit(-1);
      }
      Nfft = buf.st_size / sizeof(fcomplex);
   }
   lofp = get_fftpart(0, Nfft);
#else
   {
      int numamps;

      fftfile = chkfopen(argv[1], "rb");
      Nfft = chkfilelen(fftfile, sizeof(fcomplex));
      numamps = (Nfft > MAXBINS) ? (int) MAXBINS : (int) Nfft;
      lofp = get_fftpart(0, numamps);
   }
#endif

   /* Plot the initial data */

   {
      int initnumbins = INITIALNUMBINS;

      if (initnumbins > Nfft) {
         initnumbins = next2_to_n(Nfft) / 2;
         zoomlevel = LOGDISPLAYNUM - (int) (log(initnumbins) / log(2.0));
         minzoom = zoomlevel;
      } else {
         zoomlevel = LOGDISPLAYNUM - LOGINITIALNUMBINS;
         minzoom = LOGDISPLAYNUM - LOGMAXBINS;
      }
      maxzoom = LOGDISPLAYNUM - LOGMINBINS;
      centerr = initnumbins / 2;
   }
   fv = get_fftview(centerr, zoomlevel, lofp);

   /* Prep the XWIN device for PGPLOT */

   xid = cpgopen("/XWIN");
   if (xid <= 0) {
      free(fv);
#ifdef USEMMAP
      close(mmap_file);
#else
      fclose(fftfile);
#endif
      free_fftpart(lofp);
      exit(EXIT_FAILURE);
   }
   cpgscr(15, 0.4, 0.4, 0.4);
   cpgask(0);
   cpgpage();
   offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);

   do {
      cpgcurs(&inx, &iny, &inchar);
      if (DEBUGOUT)
         printf("You pressed '%c'\n", inchar);

      switch (inchar) {
      case 'A':                /* Zoom in */
      case 'a':
         centerr = (inx + offsetf) * T;
      case 'I':
      case 'i':
         if (DEBUGOUT)
            printf("  Zooming in  (zoomlevel = %d)...\n", zoomlevel);
         if (zoomlevel < maxzoom) {
            zoomlevel++;
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         } else
            printf("  Already at maximum zoom level (%d).\n", zoomlevel);
         break;
      case 'X':                /* Zoom out */
      case 'x':
      case 'O':
      case 'o':
         if (DEBUGOUT)
            printf("  Zooming out  (zoomlevel = %d)...\n", zoomlevel);
         if (zoomlevel > minzoom) {
            zoomlevel--;
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         } else
            printf("  Already at minimum zoom level (%d).\n", zoomlevel);
         break;
      case '<':                /* Shift left 1 full screen */
         centerr -= fv->numbins + fv->numbins / 8;
      case ',':                /* Shift left 1/8 screen */
         if (DEBUGOUT)
            printf("  Shifting left...\n");
         centerr -= fv->numbins / 8;
         {                      /* Should probably get the previous chunk from the fftfile... */
            double lowestr;

            lowestr = 0.5 * fv->numbins;
            if (centerr < lowestr)
               centerr = lowestr;
         }
         free(fv);
         fv = get_fftview(centerr, zoomlevel, lofp);
         cpgpage();
         offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         break;
      case '>':                /* Shift right 1 full screen */
         centerr += fv->numbins - fv->numbins / 8;
      case '.':                /* Shift right 1/8 screen */
         if (DEBUGOUT)
            printf("  Shifting right...\n");
         centerr += fv->numbins / 8;
         {                      /* Should probably get the next chunk from the fftfile... */
            double highestr;

            highestr = lofp->rlo + lofp->numamps - 0.5 * fv->numbins;
            if (centerr > highestr)
               centerr = highestr;
         }
         free(fv);
         fv = get_fftview(centerr, zoomlevel, lofp);
         cpgpage();
         offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         break;
      case '+':                /* Increase height of powers */
      case '=':
         if (maxpow == 0.0) {
            printf("  Auto-scaling is off.\n");
            maxpow = 1.1 * fv->maxpow;
         }
         maxpow = 3.0 / 4.0 * maxpow;
         cpgpage();
         offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         break;
      case '-':                /* Decrease height of powers */
      case '_':
         if (maxpow == 0.0) {
            printf("  Auto-scaling is off.\n");
            maxpow = 1.1 * fv->maxpow;
         }
         maxpow = 4.0 / 3.0 * maxpow;
         cpgpage();
         offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         break;
      case 'S':                /* Auto-scale */
      case 's':
         if (maxpow == 0.0)
            break;
         else {
            printf("  Auto-scaling is on.\n");
            maxpow = 0.0;
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
            break;
         }
      case 'G':                /* Goto a frequency */
      case 'g':
         {
            char freqstr[50];
            double freq = -1.0;

            while (freq < 0.0) {
               printf("  Enter the frequency (Hz) to go to:\n");
               fgets(freqstr, 50, stdin);
               freqstr[strlen(freqstr) - 1] = '\0';
               freq = atof(freqstr);
            }
            offsetf = 0.0;
            centerr = freq * T;
            printf("  Moving to frequency %.15g.\n", freq);
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, centerr, 2);
         }
         break;
      case 'H':                /* Show harmonics */
      case 'h':
         {
            double retval;

            retval = harmonic_loop(xid, centerr, zoomlevel, lofp);
            if (retval > 0.0) {
               offsetf = 0.0;
               centerr = retval;
               free(fv);
               fv = get_fftview(centerr, zoomlevel, lofp);
               cpgpage();
               offsetf = plot_fftview(fv, maxpow, 1.0, centerr, 2);
            }
         }
         break;
      case '?':                /* Print help screen */
         print_help();
         break;
      case 'D':                /* Show details about a selected point  */
      case 'd':
         {
            double newr;

            printf("  Searching for peak near freq = %.7g Hz...\n", (inx + offsetf));
            newr = find_peak(inx + offsetf, fv, lofp);
            centerr = newr;
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, centerr, 2);
         }
         break;
      case 'L':                /* Load a zaplist */
      case 'l':
         {
            int ii, len;
            char filename[200];
            double *lobins, *hibins;

            printf("  Enter the filename containing the zaplist to load:\n");
            fgets(filename, 199, stdin);
            len = strlen(filename) - 1;
            filename[len] = '\0';
            numzaplist = get_birdies(filename, T, 0.0, &lobins, &hibins);
            lenzaplist = numzaplist + 20;       /* Allow some room to add more */
            if (lenzaplist)
               free(zaplist);
            zaplist = (bird *) malloc(sizeof(bird) * lenzaplist);
            for (ii = 0; ii < numzaplist; ii++) {
               zaplist[ii].lobin = lobins[ii];
               zaplist[ii].hibin = hibins[ii];
            }
            vect_free(lobins);
            vect_free(hibins);
            printf("\n");
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         }
         break;
      case 'Z':                /* Add a birdie to a zaplist */
      case 'z':
         {
            int badchoice = 2;
            float lox, hix, loy, hiy;
            double rs[2];
            char choice;

            if (numzaplist + 1 > lenzaplist) {
               lenzaplist += 10;
               zaplist = (bird *) realloc(zaplist, sizeof(bird) * lenzaplist);
            }
            cpgqwin(&lox, &hix, &loy, &hiy);
            printf("  Click the left mouse button on the first frequency limit.\n");
            while (badchoice) {
               cpgcurs(&inx, &iny, &choice);
               if (choice == 'A' || choice == 'a') {
                  rs[2 - badchoice] = ((double) inx + offsetf) * T;
                  cpgsave();
                  cpgsci(7);
                  cpgmove(inx, 0.0);
                  cpgdraw(inx, hiy);
                  cpgunsa();
                  badchoice--;
                  if (badchoice == 1)
                     printf
                         ("  Click the left mouse button on the second frequency limit.\n");
               } else {
                  printf("  Option not recognized.\n");
               }
            };
            if (rs[1] > rs[0]) {
               zaplist[numzaplist].lobin = rs[0];
               zaplist[numzaplist].hibin = rs[1];
            } else {
               zaplist[numzaplist].lobin = rs[1];
               zaplist[numzaplist].hibin = rs[0];
            }
            printf("    The new birdie has:  f_avg = %.15g  f_width = %.15g\n\n",
                   0.5 * (zaplist[numzaplist].hibin + zaplist[numzaplist].lobin) / T,
                   (zaplist[numzaplist].hibin - zaplist[numzaplist].lobin) / T);
            numzaplist++;
            qsort(zaplist, numzaplist, sizeof(bird), compare_birds);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         }
         break;
      case 'P':                /* Print the current plot */
      case 'p':
         {
            int len;
            char filename[200];

            printf("  Enter the filename to save the plot as:\n");
            fgets(filename, 196, stdin);
            len = strlen(filename) - 1;
            filename[len + 0] = '/';
            filename[len + 1] = 'P';
            filename[len + 2] = 'S';
            filename[len + 3] = '\0';
            psid = cpgopen(filename);
            cpgslct(psid);
            cpgpap(10.25, 8.5 / 11.0);
            cpgiden();
            cpgscr(15, 0.8, 0.8, 0.8);
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
            cpgclos();
            cpgslct(xid);
            cpgscr(15, 0.4, 0.4, 0.4);
            filename[len] = '\0';
            printf("  Wrote the plot to the file '%s'.\n", filename);
         }
         break;
      case 'N':                /* Changing power normalization */
      case 'n':
         {
            float inx2 = 0.0, iny2 = 0.0;
            char choice;
            unsigned char badchoice = 1;

            printf("  Specify the type of power normalization:\n"
                   "       m,M  :  Median values determined locally\n"
                   "       d,D  :  DC frequency amplitude\n"
                   "       r,R  :  Raw powers (i.e. no normalization)\n"
                   "       u,U  :  User specified interval (the average powers)\n");
            while (badchoice) {
               cpgcurs(&inx2, &iny2, &choice);
               switch (choice) {
               case 'M':
               case 'm':
                  norm_const = 0.0;
                  maxpow = 0.0;
                  badchoice = 0;
                  printf
                      ("  Using local median normalization.  Autoscaling is on.\n");
                  break;
               case 'D':
               case 'd':
                  norm_const = 1.0 / r0;
                  maxpow = 0.0;
                  badchoice = 0;
                  printf
                      ("  Using DC frequency (%f) normalization.  Autoscaling is on.\n",
                       r0);
                  break;
               case 'R':
               case 'r':
                  norm_const = 1.0;
                  maxpow = 0.0;
                  badchoice = 0;
                  printf
                      ("  Using raw powers (i.e. no normalization).  Autoscaling is on.\n");
                  break;
               case 'U':
               case 'u':
                  {
                     char choice2;
                     float xx = inx, yy = iny;
                     int lor, hir, numr;
                     double avg, var;

                     printf
                         ("  Use the left mouse button to select a left and right boundary\n"
                          "  of a region to calculate the average power.\n");
                     do {
                        cpgcurs(&xx, &yy, &choice2);
                     } while (choice2 != 'A' && choice2 != 'a');
                     lor = (int) ((xx + offsetf) * T);
                     cpgsci(7);
                     cpgmove(xx, 0.0);
                     cpgdraw(xx, 10.0 * fv->maxpow);
                     do {
                        cpgcurs(&xx, &yy, &choice2);
                     } while (choice2 != 'A' && choice2 != 'a');
                     hir = (int) ((xx + offsetf) * T);
                     cpgmove(xx, 0.0);
                     cpgdraw(xx, 10.0 * fv->maxpow);
                     cpgsci(1);
                     if (lor > hir) {
                        int tempr;
                        tempr = hir;
                        hir = lor;
                        lor = tempr;
                     }
                     numr = hir - lor + 1;
                     avg_var(lofp->rawpowers + lor - lofp->rlo, numr, &avg, &var);
                     printf("  Selection has:  average = %.5g\n"
                            "                  std dev = %.5g\n", avg, sqrt(var));
                     norm_const = 1.0 / avg;
                     maxpow = 0.0;
                     badchoice = 0;
                     printf
                         ("  Using %.5g as the normalization constant.  Autoscaling is on.\n",
                          avg);
                     break;
                  }
               default:
                  printf("  Unrecognized choice '%c'.\n", choice);
                  break;
               }
            }
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         }
         break;
      case 'Q':                /* Quit */
      case 'q':
         printf("  Quitting...\n");
         free(fv);
         cpgclos();
         break;
      default:
         printf("  Unrecognized option '%c'.\n", inchar);
         break;
      }
   } while (inchar != 'Q' && inchar != 'q');

   free_fftpart(lofp);
#ifdef USEMMAP
   close(mmap_file);
#else
   fclose(fftfile);
#endif
   if (lenzaplist)
      free(zaplist);
   printf("Done\n\n");
   return 0;
}
Пример #8
0
static double harmonic_loop(int xid, double rr, int zoomlevel, fftpart * fp)
{
   float inx = 0.0, iny = 0.0;
   double retval = 0.0;
   int xid2, psid, badchoice = 1;
   char choice;

   xid2 = cpgopen("/XWIN");
   cpgpap(10.25, 8.5 / 11.0);
   cpgask(0);
   cpgslct(xid2);
   plot_harmonics(rr, zoomlevel, fp);
   printf("  Click on the harmonic to go it,\n"
          "    press 'P' to print, or press 'Q' to close.\n");
   while (badchoice) {
      cpgcurs(&inx, &iny, &choice);
      if (choice == 'Q' || choice == 'q') {
         badchoice = 0;
      } else if (choice == 'P' || choice == 'p') {
         int len, numharmbins;
         double offsetf;
         char filename[200];
         fftpart *harmpart;
         fftview *harmview;

         printf("  Enter the filename to save the plot as:\n");
         fgets(filename, 195, stdin);
         len = strlen(filename) - 1;
         strcpy(filename + len, "/CPS");
         psid = cpgopen(filename);
         cpgslct(psid);
         cpgpap(10.25, 8.5 / 11.0);
         cpgiden();
         cpgscr(15, 0.8, 0.8, 0.8);
         numharmbins = (1 << (LOGDISPLAYNUM - zoomlevel));
         harmpart = get_fftpart((int) (rr - numharmbins), 2 * numharmbins);
         harmview = get_fftview(rr, zoomlevel, harmpart);
         free_fftpart(harmpart);
         offsetf = plot_fftview(harmview, 0.0, 1.0, rr, 2);
         cpgpage();
         plot_harmonics(rr, zoomlevel, fp);
         cpgclos();
         cpgslct(xid2);
         cpgscr(15, 0.4, 0.4, 0.4);
         filename[len] = '\0';
         printf("  Wrote the plot to the file '%s'.\n", filename);
      } else if (choice == 'A' || choice == 'a') {
         if (iny > 1.0)
            retval = rr * (int) (inx);
         else if (iny > 0.0)
            retval = rr * ((int) (inx) + 4.0);
         else if (iny > -1.0)
            retval = rr / (int) (inx);
         else
            retval = rr / ((int) (inx) + 4.0);
         badchoice = 0;
      } else {
         printf("  Option not recognized.\n");
      }
   };
   cpgclos();
   cpgslct(xid);
   return retval;
}
Пример #9
0
int main()

{
  /* Set up the lookup table. */
  const int M  = 2;
  const int K[] = {K1, K2};
  const int map[] = {0, 1};
  const double crval[] = {135.0, 95.0};

  char text[80];
  int ci, i, ilat, ilng, j, k, m, stat[K2][K1], status;
  float xr[361], yr[361];
  double *dp, world[361][2], x[K1], xy[361][2], y[K2];
  struct tabprm tab;
  struct prjprm prj;

  printf(
    "Testing WCSLIB inverse coordinate lookup table routines (ttab3.c)\n"
    "-----------------------------------------------------------------\n");

  /* List status return messages. */
  printf("\nList of tab status return values:\n");
  for (status = 1; status <= 5; status++) {
    printf("%4d: %s.\n", status, tab_errmsg[status]);
  }

  printf("\n");


  /* PGPLOT initialization. */
  strcpy(text, "/xwindow");
  cpgbeg(0, text, 1, 1);
  cpgvstd();
  cpgsch(0.7f);
  cpgwnad(-135.0f, 135.0f, -95.0f, 140.0f);
  cpgbox("BC", 0.0f, 0, "BC", 0.0f, 0);

  cpgscr(0, 0.00f, 0.00f, 0.00f);
  cpgscr(1, 1.00f, 1.00f, 0.00f);
  cpgscr(2, 1.00f, 1.00f, 1.00f);
  cpgscr(3, 0.50f, 0.50f, 0.80f);
  cpgscr(4, 0.80f, 0.50f, 0.50f);
  cpgscr(5, 0.80f, 0.80f, 0.80f);
  cpgscr(6, 0.50f, 0.50f, 0.80f);
  cpgscr(7, 0.80f, 0.50f, 0.50f);
  cpgscr(8, 0.30f, 0.50f, 0.30f);


  /* Set up the lookup table. */
  tab.flag = -1;
  if ((status = tabini(1, M, K, &tab))) {
    printf("tabini ERROR %d: %s.\n", status, tab_errmsg[status]);
    return 1;
  }

  tab.M = M;
  for (m = 0; m < tab.M; m++) {
    tab.K[m] = K[m];
    tab.map[m] = map[m];
    tab.crval[m] = crval[m];

    for (k = 0; k < tab.K[m]; k++) {
      tab.index[m][k] = (double)k;
    }
  }

  /* Set up the lookup table to approximate Bonne's projection. */
  for (i = 0; i < K1; i++) {
    x[i] = 135 - i;
  }
  for (j = 0; j < K2; j++) {
    y[j] = j - 95;
  }

  prjini(&prj);
  prj.pv[1] = 35.0;
  status = bonx2s(&prj, K1, K2, 1, 2, x, y, tab.coord, tab.coord+1,
                  (int *)stat);

  dp = tab.coord;
  for (j = 0; j < K2; j++) {
    for (i = 0; i < K1; i++) {
      if (stat[j][i]) {
        *dp = 999.0;
        *(dp+1) = 999.0;
      }
      dp += 2;
    }
  }


  /* Draw meridians. */
  ci = 1;
  for (ilng = -180; ilng <= 180; ilng += 15) {
    if (++ci > 7) ci = 2;
    cpgsci(ilng?ci:1);

    for (j = 0, ilat = -90; ilat <= 90; ilat++, j++) {
      world[j][0] = (double)ilng;
      world[j][1] = (double)ilat;
    }

    /* A fudge to account for the singularity at the poles. */
    world[0][0] = 0.0;
    world[180][0] = 0.0;

    status = tabs2x(&tab, 181, 2, (double *)world, (double *)xy,
                    (int *)stat);

    k = 0;
    for (j = 0; j < 181; j++) {
      if (stat[0][j]) {
        if (k > 1) cpgline(k, xr, yr);
        k = 0;
        continue;
      }

      xr[k] = xy[j][0];
      yr[k] = xy[j][1];
      k++;
    }

    cpgline(k, xr, yr);
  }


  /* Draw parallels. */
  ci = 1;
  for (ilat = -75; ilat <= 75; ilat += 15) {
    if (++ci > 7) ci = 2;
    cpgsci(ilat?ci:1);

    for (j = 0, ilng = -180; ilng <= 180; ilng++, j++) {
      world[j][0] = (double)ilng;
      world[j][1] = (double)ilat;
    }

    status = tabs2x(&tab, 361, 2, (double *)world, (double *)xy,
                    (int *)stat);

    k = 0;
    for (j = 0; j < 361; j++) {
      if (stat[0][j]) {
        if (k > 1) cpgline(k, xr, yr);
        k = 0;
        continue;
      }

      xr[k] = xy[j][0];
      yr[k] = xy[j][1];
      k++;
    }

    cpgline(k, xr, yr);
  }

  cpgend();

  return 0;
}
Пример #10
0
int main()

{
  void prjplt();
  int  status;
  char text[80], text1[80], text2[80];
  struct prjprm prj;


  printf("Testing WCSLIB spherical projection routines (tprj2.c)\n"
         "------------------------------------------------------\n");

  /* List status return messages. */
  printf("\nList of prj status return values:\n");
  for (status = 1; status <= 4; status++) {
    printf("%4d: %s.\n", status, prj_errmsg[status]);
  }

  printf("\n");


  /* PGPLOT initialization. */
  strcpy(text, "/xwindow");
  cpgbeg(0, text, 1, 1);

  /* Define pen colours. */
  cpgscr(0, 0.00f, 0.00f, 0.00f);
  cpgscr(1, 1.00f, 1.00f, 0.00f);
  cpgscr(2, 1.00f, 1.00f, 1.00f);
  cpgscr(3, 0.50f, 0.50f, 0.80f);
  cpgscr(4, 0.80f, 0.50f, 0.50f);
  cpgscr(5, 0.80f, 0.80f, 0.80f);
  cpgscr(6, 0.50f, 0.50f, 0.80f);
  cpgscr(7, 0.80f, 0.50f, 0.50f);
  cpgscr(8, 0.30f, 0.50f, 0.30f);

  strcpy(text1, "\n%s projection\n");
  strcpy(text2, "\n%s projection\nParameters:");

  prjini(&prj);

  /* AZP: zenithal/azimuthal perspective. */
  prj.pv[1] =   2.0;
  prj.pv[2] =  30.0;
  printf(text2, "Zenithal/azimuthal perspective");
  printf("%12.5f%12.5f\n", prj.pv[1], prj.pv[2]);
  prjplt("AZP", 90, -90, &prj);

  /* SZP: slant zenithal perspective. */
  prj.pv[1] =   2.0;
  prj.pv[2] = 210.0;
  prj.pv[3] =  60.0;
  printf(text2, "Slant zenithal perspective");
  printf("%12.5f%12.5f%12.5f\n", prj.pv[1], prj.pv[2], prj.pv[3]);
  prjplt("SZP", 90, -90, &prj);

  /* TAN: gnomonic. */
  printf(text1, "Gnomonic");
  prjplt("TAN", 90,   5, &prj);

  /* STG: stereographic. */
  printf(text1, "Stereographic");
  prjplt("STG", 90, -85, &prj);

  /* SIN: orthographic. */
  prj.pv[1] = -0.3;
  prj.pv[2] =  0.5;
  printf(text2, "Orthographic/synthesis");
  printf("%12.5f%12.5f\n", prj.pv[1], prj.pv[2]);
  prjplt("SIN", 90, -90, &prj);

  /* ARC: zenithal/azimuthal equidistant. */
  printf(text1, "Zenithal/azimuthal equidistant");
  prjplt("ARC", 90, -90, &prj);

  /* ZPN: zenithal/azimuthal polynomial. */
  prj.pv[0] =  0.05000;
  prj.pv[1] =  0.95000;
  prj.pv[2] = -0.02500;
  prj.pv[3] = -0.15833;
  prj.pv[4] =  0.00208;
  prj.pv[5] =  0.00792;
  prj.pv[6] = -0.00007;
  prj.pv[7] = -0.00019;
  prj.pv[8] =  0.00000;
  prj.pv[9] =  0.00000;
  printf(text2, "Zenithal/azimuthal polynomial");
  printf("%12.5f%12.5f%12.5f%12.5f%12.5f\n",
    prj.pv[0], prj.pv[1], prj.pv[2], prj.pv[3], prj.pv[4]);
  printf("           %12.5f%12.5f%12.5f%12.5f%12.5f\n",
    prj.pv[5], prj.pv[6], prj.pv[7], prj.pv[8], prj.pv[9]);
  prjplt("ZPN", 90,  10, &prj);

  /* ZEA: zenithal/azimuthal equal area. */
  printf(text1, "Zenithal/azimuthal equal area");
  prjplt("ZEA", 90, -90, &prj);

  /* AIR: Airy's zenithal projection. */
  prj.pv[1] = 45.0;
  printf(text2, "Airy's zenithal");
  printf("%12.5f\n", prj.pv[1]);
  prjplt("AIR", 90, -85, &prj);

  /* CYP: cylindrical perspective. */
  prj.pv[1] = 3.0;
  prj.pv[2] = 0.8;
  printf(text2, "Cylindrical perspective");
  printf("%12.5f%12.5f\n", prj.pv[1], prj.pv[2]);
  prjplt("CYP", 90, -90, &prj);

  /* CEA: cylindrical equal area. */
  prj.pv[1] = 0.75;
  printf(text2, "Cylindrical equal area");
  printf("%12.5f\n", prj.pv[1]);
  prjplt("CEA", 90, -90, &prj);

  /* CAR: plate carree. */
  printf(text1, "Plate carree");
  prjplt("CAR", 90, -90, &prj);

  /* MER: Mercator's. */
  printf(text1, "Mercator's");
  prjplt("MER", 85, -85, &prj);

  /* SFL: Sanson-Flamsteed. */
  printf(text1, "Sanson-Flamsteed (global sinusoid)");
  prjplt("SFL", 90, -90, &prj);

  /* PAR: parabolic. */
  printf(text1, "Parabolic");
  prjplt("PAR", 90, -90, &prj);

  /* MOL: Mollweide's projection. */
  printf(text1, "Mollweide's");
  prjplt("MOL", 90, -90, &prj);

  /* AIT: Hammer-Aitoff. */
  printf(text1, "Hammer-Aitoff");
  prjplt("AIT", 90, -90, &prj);

  /* COP: conic perspective. */
  prj.pv[1] =  60.0;
  prj.pv[2] =  15.0;
  printf(text2, "Conic perspective");
  printf("%12.5f%12.5f\n", prj.pv[1], prj.pv[2]);
  prjplt("COP", 90, -25, &prj);

  /* COE: conic equal area. */
  prj.pv[1] =  60.0;
  prj.pv[2] = -15.0;
  printf(text2, "Conic equal area");
  printf("%12.5f%12.5f\n", prj.pv[1], prj.pv[2]);
  prjplt("COE", 90, -90, &prj);

  /* COD: conic equidistant. */
  prj.pv[1] = -60.0;
  prj.pv[2] =  15.0;
  printf(text2, "Conic equidistant");
  printf("%12.5f%12.5f\n", prj.pv[1], prj.pv[2]);
  prjplt("COD", 90, -90, &prj);

  /* COO: conic orthomorphic. */
  prj.pv[1] = -60.0;
  prj.pv[2] = -15.0;
  printf(text2, "Conic orthomorphic");
  printf("%12.5f%12.5f\n", prj.pv[1], prj.pv[2]);
  prjplt("COO", 85, -90, &prj);

  /* BON: Bonne's projection. */
  prj.pv[1] = 30.0;
  printf(text2, "Bonne's");
  printf("%12.5f\n", prj.pv[1]);
  prjplt("BON", 90, -90, &prj);

  /* PCO: polyconic. */
  printf(text1, "Polyconic");
  prjplt("PCO", 90, -90, &prj);

  /* TSC: tangential spherical cube. */
  printf(text1, "Tangential spherical cube");
  prjplt("TSC", 90, -90, &prj);

  /* CSC: COBE quadrilateralized spherical cube. */
  printf(text1, "COBE quadrilateralized spherical cube");
  prjplt("CSC", 90, -90, &prj);

  /* QSC: quadrilateralized spherical cube. */
  printf(text1, "Quadrilateralized spherical cube");
  prjplt("QSC", 90, -90, &prj);

  /* HPX: HEALPix projection. */
  prj.pv[1] = 4.0;
  prj.pv[2] = 3.0;
  printf(text1, "HEALPix");
  prjplt("HPX", 90, -90, &prj);

  /* XPH: HEALPix polar, aka "butterfly" projection. */
  printf(text1, "Butterfly");
  prjplt("XPH", 90, -90, &prj);

  cpgask(0);
  cpgend();

  return 0;
}
Пример #11
0
int main()
{
	//
	printf("\n====================================================================\n");
	printf("This program is able to simulate a variety of ecological\n");
	printf("situations in a 2D lattice\n");
	printf("====================================================================\n");

	//==========================================================================
	//--------------------------SYSTEM INITIALIZATIONS--------------------------
	//==========================================================================
	
	// initialize random seed
	srand(time(NULL));

	// force print all outputs (remove stdout buffer)
	setbuf(stdout, NULL);

	// initialize pgplot window
	if (!cpgopen("/XWINDOW"))
		errorCase(ERR_PGPLOT);
	cpgpap(20.0, 0.33);						// set window size
	cpgsubp(3,1);							// subdivide window into panels

	// color indexes (R, G, B)
	cpgscr(0, 0.0, 0.0, 0.0);				// empty space, black
	cpgscr(1, 1.0, 1.0, 1.0);
	cpgscr(10, 0.0, 0.0, 0.0);				// empty space, black
	cpgscr(11, 0.5, 0.5, 0.5);				// Trophic 1, gray
	cpgscr(12, 0.5, 1.0, 1.0);				// Trophic 2, cyan
	cpgscr(13, 1.0, 0.5, 0.0);				// Trophic 3, orange
	cpgscr(14, 1.0, 0.0, 0.0);
	cpgscir(10,NUMB_TROPHIC+10);


	//==========================================================================
	//--------------------------VARIABLE INITIALIZATIONS------------------------
	//==========================================================================

	// generic variables
	int i, j, k;						// counters

	// simulation environment
	int** simEnv = allocateArray2DInt(ENV_SIZE_X, ENV_SIZE_Y);
	int** simEnvAge = allocateArray2DInt(ENV_SIZE_X, ENV_SIZE_Y);
	int* simLocal = allocateArray1DInt(5);

	// inputs
	char input;

	// current location and time
	int x,y;
	int tGlobal,t;
	int flagUpdate;

	// rates
	float predationRates[NUMB_TROPHIC-1] = RATE_PRED;
	float deathRates[NUMB_TROPHIC] = RATE_DEATH;

	//float aBirth = 0;			// A+0 -> A+A
//	float abPred = 0;			// B+A -> B+B
//	float bDeath = 0;			//   B ->   0

//	int aFlag; int abFlag; int bFlag;

	// population counts;
	int popCount[NUMB_TROPHIC];
	float popDens[NUMB_TROPHIC];
	float popDensOld[NUMB_TROPHIC];
	for (i=0; i<NUMB_TROPHIC; i++){
		popCount[i] = 0;
		popDens[i] = 0.0;
		popDensOld[i] = 1.0/(float)INIT_DENSITY;
	}
	float* ageStructure = allocateArray1D(ENV_SIZE_TOTAL);


	// pgplot variables
	float* plotImg = allocateArray1D(ENV_SIZE_TOTAL);
	//float TR[6] = {0, 1, 0, 0, 0, 1};
	float TR[6] = {0, 0, 1, ENV_SIZE_Y, -1, 0};
	float plotMinBound = 0.0;
	float plotMaxBound = (float)NUMB_TROPHIC;


	//==========================================================================
	//--------------------------ACTUAL CODE-------------------------------------
	//==========================================================================
	
	// environment initialization
	randomizeArray2DInt(simEnv, ENV_SIZE_X, ENV_SIZE_Y, NUMB_TROPHIC);

	// load initial display
	for (i=0; i<ENV_SIZE_X; i++)
		for (j=0; j<ENV_SIZE_Y; j++)
			plotImg[i*ENV_SIZE_Y+j] = (float)(simEnv[i][j]);
	cpgpanl(1,1);
	cpgswin(0, ENV_SIZE_X-1, 0, ENV_SIZE_Y-1);
	cpgsvp(0.01, 0.99, 0.01, 0.99);
	cpgimag(plotImg, ENV_SIZE_Y, ENV_SIZE_X, 1, ENV_SIZE_Y, 1, ENV_SIZE_X, plotMinBound, plotMaxBound, TR);

	// Load graph labels
	// Population Density vs Time Plot
	cpgpanl(2,1);
	cpgsvp(0.08, 0.92, 0.08, 0.92);
	cpgswin(0, ENV_SIZE_X, 0, 1);
	cpgbox("ABCINTS", 0.0, 0, "ABCINTS", 0.0, 0);
	cpglab("Time", "Population Density", "");

	// Phase Portrait Plot
	cpgpanl(3,1);
	cpgsvp(0.08, 0.92, 0.08, 0.92);
	cpgswin(0, 1, 0, 1);
	cpgbox("ABCINTS", 0.0, 0, "ABCINTS", 0.0, 0);
	cpglab("", "", "Phase Portrait");
	cpgsci(11);
	cpglab("Population Density SpA", "", "");
	cpgsci(12);
	cpglab("", "Population Density SpB", "");
	
	// initial delay to visualize starting matrix
	for (t=0; t<500000000; t++){}

	tGlobal = 1;
	while(1){
		//aFlag = 0; abFlag = 0; bFlag = 0;

		// run simulation for a full Monte Carlo timestep (ENV_SIZE_X*ENV_SIZE_Y)
		for (t=0; t<ENV_SIZE_TOTAL; t++){
			ecoRun(simEnv, simEnvAge, simLocal, predationRates, deathRates);
		}
		incrementAge(simEnvAge);

	

		// plot stuffs
		if ((tGlobal%1) == 0){

			// calculate population densities
			updatePopDens(simEnv, popCount, popDens);

			// PLOT population densities
			cpgpanl(2,1);
			cpgsvp(0.08, 0.92, 0.08, 0.92);
			cpgswin(0, ENV_SIZE_X, 0, 1);
			for (i=0; i<NUMB_TROPHIC; i++){
				cpgsls(1); cpgsci(i+11);				// line style and color
				cpgmove((tGlobal-1), popDensOld[i]);
				cpgdraw(tGlobal, popDens[i]);
			}

			//printArray2DInt(simEnvAge, ENV_SIZE_X, ENV_SIZE_Y);

			// PLOT age structure
			/*updateAgeStructure(simEnv, simEnvAge, ageStructure, 1);
			cpgpanl(3,1);
			cpgsvp(0.08, 0.92, 0.08, 0.92);
			cpgswin(0, 10, 0, (ENV_SIZE_TOTAL/10));
			cpgsls(1); cpgsci(1);						// line style and color
			cpgeras();
			cpgbox("ABCINTS", 0.0, 0, "ABCINTS", 0.0, 0);
			cpglab("Age", "Number of Individuals", "Age Structure");
			cpghist(popCount[1], ageStructure, 0, 10, 10, 1);*/

			
			// PLOT phase portrait
			cpgpanl(3,1);
			cpgsvp(0.08, 0.92, 0.08, 0.92);
			cpgswin(0, 1, 0, 1);
			cpgsls(1); cpgsci(1);						// line style and color
			cpgmove(popDensOld[0], popDensOld[1]);
			cpgdraw(popDens[0], popDens[1]);

			for (i=0; i<NUMB_TROPHIC; i++)
				popDensOld[i] = popDens[i];
		}

		// load array and display on pgplot
		if ((tGlobal%1) == 0){
			cpgpanl(1,1);
			cpgswin(0, ENV_SIZE_X, 0, ENV_SIZE_Y);
			cpgsvp(0.01, 0.99, 0.01, 0.99);
			for (i=0; i<ENV_SIZE_X; i++)
				for (j=0; j<ENV_SIZE_Y; j++)
					plotImg[i*ENV_SIZE_Y+j] = (float)(simEnv[i][j]);
			cpgimag(plotImg, ENV_SIZE_Y, ENV_SIZE_X, 1, ENV_SIZE_Y, 1, ENV_SIZE_X, plotMinBound, plotMaxBound, TR);
		}


		tGlobal++;
		//for (t=0; t<10000000; t++){}
	}
}
Пример #12
0
/* assign RGB color to a color index */
static void _pgscr (int *ci, double *red, double *green, double *blue)
{
   cpgscr (*ci,  (float) *red, (float) *green, (float) *blue);
}
Пример #13
0
int main()

{
  char   text[80];
  register int status;


  printf("Testing WCSLIB wcsmix() routine (twcsmix.c)\n"
         "-------------------------------------------\n");

  /* List status return messages. */
  printf("\nList of wcs status return values:\n");
  for (status = 1; status <= 13; status++) {
    printf("%4d: %s.\n", status, wcs_errmsg[status]);
  }


  /* PGPLOT initialization. */
  strcpy(text, "/xwindow");
  cpgbeg(0, text, 1, 1);

  /* Define pen colours. */
  cpgscr(0, 0.00f, 0.00f, 0.00f);
  cpgscr(1, 1.00f, 1.00f, 0.00f);
  cpgscr(2, 1.00f, 1.00f, 1.00f);
  cpgscr(3, 0.50f, 0.50f, 0.80f);
  cpgscr(4, 0.80f, 0.50f, 0.50f);
  cpgscr(5, 0.80f, 0.80f, 0.80f);
  cpgscr(6, 0.50f, 0.50f, 0.80f);
  cpgscr(7, 0.80f, 0.50f, 0.50f);
  cpgscr(8, 0.30f, 0.50f, 0.30f);
  cpgscr(9, 1.00f, 0.75f, 0.00f);


  /*----------------------------------------------------------*/
  /* Set the PVi_m keyvalues for the longitude axis so that   */
  /* the fiducial native coordinates are at the native pole,  */
  /* i.e. (phi0,theta0) = (0,90), but without any fiducial    */
  /* offset.  We do this as a test, and also so that all      */
  /* projections will be exercised with the same obliquity    */
  /* parameters.                                              */
  /*----------------------------------------------------------*/
  PV[0].i = 4;			/* Longitude is on axis 4.     */
  PV[0].m = 1;			/* Parameter number 1.         */
  PV[0].value =  0.0;		/* Fiducial native longitude.  */

  PV[1].i = 4;			/* Longitude is on axis 4.     */
  PV[1].m = 2;			/* Parameter number 2.         */
  PV[1].value = 90.0;		/* Fiducial native latitude.   */

  /* Set the PVi_m keyvalues for the latitude axis.           */
  PV[2].i = 2;			/* Latitude is on axis 2.      */
  PV[2].m = 1;			/* Parameter number 1.         */
  PV[2].value = 0.0;		/* PVi_1 (set below).          */

  PV[3].i = 2;			/* Latitude is on axis 2.      */
  PV[3].m = 2;			/* Parameter number 2.         */
  PV[3].value = 0.0;		/* PVi_2 (set below).          */

  /* ARC: zenithal/azimuthal equidistant. */
  strncpy(&CTYPE[1][5], "ARC", 3);
  strncpy(&CTYPE[3][5], "ARC", 3);
  NPV = 2;
  mixex(-190.0, 190.0, -190.0, 190.0);

  /* ZEA: zenithal/azimuthal equal area. */
  strncpy(&CTYPE[1][5], "ZEA", 3);
  strncpy(&CTYPE[3][5], "ZEA", 3);
  NPV = 2;
  mixex(-120.0, 120.0, -120.0, 120.0);

  /* CYP: cylindrical perspective. */
  strncpy(&CTYPE[1][5], "CYP", 3);
  strncpy(&CTYPE[3][5], "CYP", 3);
  NPV = 4;
  PV[2].value = 3.0;
  PV[3].value = 0.8;
  mixex(-170.0, 170.0, -170.0, 170.0);

  /* CEA: cylindrical equal area. */
  strncpy(&CTYPE[1][5], "CEA", 3);
  strncpy(&CTYPE[3][5], "CEA", 3);
  NPV = 3;
  PV[2].value = 0.75;
  mixex(-200.0, 200.0, -200.0, 200.0);

  /* CAR: plate carree. */
  strncpy(&CTYPE[1][5], "CAR", 3);
  strncpy(&CTYPE[3][5], "CAR", 3);
  NPV = 2;
  mixex(-210.0, 210.0, -210.0, 210.0);

  /* SFL: Sanson-Flamsteed. */
  strncpy(&CTYPE[1][5], "SFL", 3);
  strncpy(&CTYPE[3][5], "SFL", 3);
  NPV = 2;
  mixex(-190.0, 190.0, -190.0, 190.0);

  /* PAR: parabolic. */
  strncpy(&CTYPE[1][5], "PAR", 3);
  strncpy(&CTYPE[3][5], "PAR", 3);
  NPV = 2;
  mixex(-190.0, 190.0, -190.0, 190.0);

  /* MOL: Mollweide's projection. */
  strncpy(&CTYPE[1][5], "MOL", 3);
  strncpy(&CTYPE[3][5], "MOL", 3);
  NPV = 2;
  mixex(-170.0, 170.0, -170.0, 170.0);

  /* AIT: Hammer-Aitoff. */
  strncpy(&CTYPE[1][5], "AIT", 3);
  strncpy(&CTYPE[3][5], "AIT", 3);
  NPV = 2;
  mixex(-170.0, 170.0, -170.0, 170.0);

  /* COE: conic equal area. */
  strncpy(&CTYPE[1][5], "COE", 3);
  strncpy(&CTYPE[3][5], "COE", 3);
  NPV = 4;
  PV[2].value = 60.0;
  PV[3].value = 15.0;
  mixex(-140.0, 140.0, -120.0, 160.0);

  /* COD: conic equidistant. */
  strncpy(&CTYPE[1][5], "COD", 3);
  strncpy(&CTYPE[3][5], "COD", 3);
  NPV = 4;
  PV[2].value = 60.0;
  PV[3].value = 15.0;
  mixex(-200.0, 200.0, -180.0, 220.0);

  /* BON: Bonne's projection. */
  strncpy(&CTYPE[1][5], "BON", 3);
  strncpy(&CTYPE[3][5], "BON", 3);
  NPV = 3;
  PV[2].value = 30.0;
  mixex(-160.0, 160.0, -160.0, 160.0);

  /* PCO: polyconic. */
  strncpy(&CTYPE[1][5], "PCO", 3);
  strncpy(&CTYPE[3][5], "PCO", 3);
  NPV = 2;
  mixex(-190.0, 190.0, -190.0, 190.0);

  /* TSC: tangential spherical cube. */
  strncpy(&CTYPE[1][5], "TSC", 3);
  strncpy(&CTYPE[3][5], "TSC", 3);
  NPV = 2;
  mixex(-340.0, 80.0, -210.0, 210.0);

  /* QSC: quadrilateralized spherical cube. */
  strncpy(&CTYPE[1][5], "QSC", 3);
  strncpy(&CTYPE[3][5], "QSC", 3);
  NPV = 2;
  mixex(-340.0, 80.0, -210.0, 210.0);

  cpgend();

  return 0;
}