Пример #1
0
/* Subroutine */ int cerrpo_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    real r__1, r__2;
    complex q__1;

    /* Local variables */
    complex a[16]	/* was [4][4] */, b[4];
    integer i__, j;
    real r__[4];
    complex w[8], x[4];
    char c2[2];
    real r1[4], r2[4];
    complex af[16]	/* was [4][4] */;
    integer info;
    real anrm, rcond;

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CERRPO tests the error exits for the COMPLEX routines */
/*  for Hermitian positive definite matrices. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    i__1 = i__ + (j << 2) - 5;
	    r__1 = 1.f / (real) (i__ + j);
	    r__2 = -1.f / (real) (i__ + j);
	    q__1.r = r__1, q__1.i = r__2;
	    a[i__1].r = q__1.r, a[i__1].i = q__1.i;
	    i__1 = i__ + (j << 2) - 5;
	    r__1 = 1.f / (real) (i__ + j);
	    r__2 = -1.f / (real) (i__ + j);
	    q__1.r = r__1, q__1.i = r__2;
	    af[i__1].r = q__1.r, af[i__1].i = q__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0.f, b[i__1].i = 0.f;
	r1[j - 1] = 0.f;
	r2[j - 1] = 0.f;
	i__1 = j - 1;
	w[i__1].r = 0.f, w[i__1].i = 0.f;
	i__1 = j - 1;
	x[i__1].r = 0.f, x[i__1].i = 0.f;
/* L20: */
    }
    anrm = 1.f;
    infoc_1.ok = TRUE_;

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite matrix. */

    if (lsamen_(&c__2, c2, "PO")) {

/*        CPOTRF */

	s_copy(srnamc_1.srnamt, "CPOTRF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpotrf_("/", &c__0, a, &c__1, &info);
	chkxer_("CPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpotrf_("U", &c_n1, a, &c__1, &info);
	chkxer_("CPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpotrf_("U", &c__2, a, &c__1, &info);
	chkxer_("CPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPOTF2 */

	s_copy(srnamc_1.srnamt, "CPOTF2", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpotf2_("/", &c__0, a, &c__1, &info);
	chkxer_("CPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpotf2_("U", &c_n1, a, &c__1, &info);
	chkxer_("CPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpotf2_("U", &c__2, a, &c__1, &info);
	chkxer_("CPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPOTRI */

	s_copy(srnamc_1.srnamt, "CPOTRI", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpotri_("/", &c__0, a, &c__1, &info);
	chkxer_("CPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpotri_("U", &c_n1, a, &c__1, &info);
	chkxer_("CPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpotri_("U", &c__2, a, &c__1, &info);
	chkxer_("CPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPOTRS */

	s_copy(srnamc_1.srnamt, "CPOTRS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpotrs_("/", &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpotrs_("U", &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpotrs_("U", &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cpotrs_("U", &c__2, &c__1, a, &c__1, b, &c__2, &info);
	chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	cpotrs_("U", &c__2, &c__1, a, &c__2, b, &c__1, &info);
	chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPORFS */

	s_copy(srnamc_1.srnamt, "CPORFS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cporfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cporfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cporfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cporfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	cporfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	cporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__1, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	cporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__2, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPOCON */

	s_copy(srnamc_1.srnamt, "CPOCON", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpocon_("/", &c__0, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("CPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpocon_("U", &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("CPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpocon_("U", &c__2, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("CPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	r__1 = -anrm;
	cpocon_("U", &c__1, a, &c__1, &r__1, &rcond, w, r__, &info)
		;
	chkxer_("CPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPOEQU */

	s_copy(srnamc_1.srnamt, "CPOEQU", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpoequ_(&c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpoequ_(&c__2, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite packed matrix. */

    } else if (lsamen_(&c__2, c2, "PP")) {

/*        CPPTRF */

	s_copy(srnamc_1.srnamt, "CPPTRF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpptrf_("/", &c__0, a, &info);
	chkxer_("CPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpptrf_("U", &c_n1, a, &info);
	chkxer_("CPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPPTRI */

	s_copy(srnamc_1.srnamt, "CPPTRI", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpptri_("/", &c__0, a, &info);
	chkxer_("CPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpptri_("U", &c_n1, a, &info);
	chkxer_("CPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPPTRS */

	s_copy(srnamc_1.srnamt, "CPPTRS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpptrs_("/", &c__0, &c__0, a, b, &c__1, &info);
	chkxer_("CPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpptrs_("U", &c_n1, &c__0, a, b, &c__1, &info);
	chkxer_("CPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpptrs_("U", &c__0, &c_n1, a, b, &c__1, &info);
	chkxer_("CPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	cpptrs_("U", &c__2, &c__1, a, b, &c__1, &info);
	chkxer_("CPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPPRFS */

	s_copy(srnamc_1.srnamt, "CPPRFS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpprfs_("/", &c__0, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpprfs_("U", &c_n1, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpprfs_("U", &c__0, &c_n1, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	cpprfs_("U", &c__2, &c__1, a, af, b, &c__1, x, &c__2, r1, r2, w, r__, 
		&info);
	chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	cpprfs_("U", &c__2, &c__1, a, af, b, &c__2, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPPCON */

	s_copy(srnamc_1.srnamt, "CPPCON", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cppcon_("/", &c__0, a, &anrm, &rcond, w, r__, &info);
	chkxer_("CPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cppcon_("U", &c_n1, a, &anrm, &rcond, w, r__, &info);
	chkxer_("CPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	r__1 = -anrm;
	cppcon_("U", &c__1, a, &r__1, &rcond, w, r__, &info);
	chkxer_("CPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPPEQU */

	s_copy(srnamc_1.srnamt, "CPPEQU", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cppequ_("/", &c__0, a, r1, &rcond, &anrm, &info);
	chkxer_("CPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cppequ_("U", &c_n1, a, r1, &rcond, &anrm, &info);
	chkxer_("CPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite band matrix. */

    } else if (lsamen_(&c__2, c2, "PB")) {

/*        CPBTRF */

	s_copy(srnamc_1.srnamt, "CPBTRF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbtrf_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("CPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbtrf_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("CPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbtrf_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("CPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cpbtrf_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("CPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPBTF2 */

	s_copy(srnamc_1.srnamt, "CPBTF2", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbtf2_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("CPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbtf2_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("CPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbtf2_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("CPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cpbtf2_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("CPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPBTRS */

	s_copy(srnamc_1.srnamt, "CPBTRS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbtrs_("/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbtrs_("U", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbtrs_("U", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpbtrs_("U", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	cpbtrs_("U", &c__2, &c__1, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	cpbtrs_("U", &c__2, &c__0, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPBRFS */

	s_copy(srnamc_1.srnamt, "CPBRFS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbrfs_("/", &c__0, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbrfs_("U", &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbrfs_("U", &c__1, &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpbrfs_("U", &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	cpbrfs_("U", &c__2, &c__1, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	cpbrfs_("U", &c__2, &c__1, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	cpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	cpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__2, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPBCON */

	s_copy(srnamc_1.srnamt, "CPBCON", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbcon_("/", &c__0, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbcon_("U", &c_n1, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbcon_("U", &c__1, &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cpbcon_("U", &c__2, &c__1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	r__1 = -anrm;
	cpbcon_("U", &c__1, &c__0, a, &c__1, &r__1, &rcond, w, r__, &info);
	chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPBEQU */

	s_copy(srnamc_1.srnamt, "CPBEQU", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbequ_("/", &c__0, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbequ_("U", &c_n1, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbequ_("U", &c__1, &c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cpbequ_("U", &c__2, &c__1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of CERRPO */

} /* cerrpo_ */
Пример #2
0
/* Subroutine */ int cdrvpp_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, real *thresh, logical *tsterr, integer *nmax, complex *
	a, complex *afac, complex *asav, complex *b, complex *bsav, complex *
	x, complex *xact, real *s, complex *work, real *rwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";
    static char facts[1*3] = "F" "N" "E";
    static char packs[1*2] = "C" "R";
    static char equeds[1*2] = "N" "Y";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i1,\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9997[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a"
	    "1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i1,\002"
	    ", test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a"
	    "1,\002', N=\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)"
	    "=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    char ch__1[2];

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    static char fact[1];
    static integer ioff, mode;
    static real amax;
    static char path[3];
    static integer imat, info;
    static char dist[1], uplo[1], type__[1];
    static integer nrun, i__, k, n, ifact;
    extern /* Subroutine */ int cget04_(integer *, integer *, complex *, 
	    integer *, complex *, integer *, real *, real *);
    static integer nfail, iseed[4], nfact;
    extern logical lsame_(char *, char *);
    static char equed[1];
    static real roldc, rcond, scond;
    extern /* Subroutine */ int cppt01_(char *, integer *, complex *, complex 
	    *, real *, real *);
    static integer nimat;
    extern doublereal sget06_(real *, real *);
    extern /* Subroutine */ int cppt02_(char *, integer *, integer *, complex 
	    *, complex *, integer *, complex *, integer *, real *, real *), cppt05_(char *, integer *, integer *, complex *, complex 
	    *, integer *, complex *, integer *, complex *, integer *, real *, 
	    real *, real *);
    static real anorm;
    extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
	    complex *, integer *);
    static logical equil;
    static integer iuplo, izero, nerrs;
    extern /* Subroutine */ int cppsv_(char *, integer *, integer *, complex *
	    , complex *, integer *, integer *);
    static integer k1;
    static logical zerot;
    static char xtype[1];
    extern /* Subroutine */ int clatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, real *, integer *, real *, char *
	    ), aladhd_(integer *, char *);
    static integer in, kl;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *), claipd_(integer *, complex *, integer *, integer *);
    static logical prefac;
    static integer ku, nt;
    extern doublereal clanhp_(char *, char *, integer *, complex *, real *);
    static real rcondc;
    extern /* Subroutine */ int claqhp_(char *, integer *, complex *, real *, 
	    real *, real *, char *);
    static logical nofact;
    static char packit[1];
    static integer iequed;
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *), clarhs_(char *, char 
	    *, char *, char *, integer *, integer *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, integer *, complex *, 
	    integer *, integer *, integer *), 
	    claset_(char *, integer *, integer *, complex *, complex *, 
	    complex *, integer *), alasvm_(char *, integer *, integer 
	    *, integer *, integer *);
    static real cndnum;
    extern /* Subroutine */ int clatms_(integer *, integer *, char *, integer 
	    *, char *, real *, integer *, real *, real *, integer *, integer *
	    , char *, complex *, integer *, complex *, integer *);
    static real ainvnm;
    extern /* Subroutine */ int cppequ_(char *, integer *, complex *, real *, 
	    real *, real *, integer *), cpptrf_(char *, integer *, 
	    complex *, integer *), cpptri_(char *, integer *, complex 
	    *, integer *), cerrvx_(char *, integer *);
    static real result[6];
    extern /* Subroutine */ int cppsvx_(char *, char *, integer *, integer *, 
	    complex *, complex *, char *, real *, complex *, integer *, 
	    complex *, integer *, real *, real *, real *, complex *, real *, 
	    integer *);
    static integer lda, npp;

    /* Fortran I/O blocks */
    static cilist io___49 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    CDRVPP tests the driver routines CPPSV and -SVX.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix dimension N.   

    NRHS    (input) INTEGER   
            The number of right hand side vectors to be generated for   
            each linear system.   

    THRESH  (input) REAL   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    NMAX    (input) INTEGER   
            The maximum value permitted for N, used in dimensioning the   
            work arrays.   

    A       (workspace) COMPLEX array, dimension (NMAX*(NMAX+1)/2)   

    AFAC    (workspace) COMPLEX array, dimension (NMAX*(NMAX+1)/2)   

    ASAV    (workspace) COMPLEX array, dimension (NMAX*(NMAX+1)/2)   

    B       (workspace) COMPLEX array, dimension (NMAX*NRHS)   

    BSAV    (workspace) COMPLEX array, dimension (NMAX*NRHS)   

    X       (workspace) COMPLEX array, dimension (NMAX*NRHS)   

    XACT    (workspace) COMPLEX array, dimension (NMAX*NRHS)   

    S       (workspace) REAL array, dimension (NMAX)   

    WORK    (workspace) COMPLEX array, dimension   
                        (NMAX*max(3,NRHS))   

    RWORK   (workspace) REAL array, dimension (NMAX+2*NRHS)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "PP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	cerrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	npp = n * (n + 1) / 2;
	*(unsigned char *)xtype = 'N';
	nimat = 9;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L130;
	    }

/*           Skip types 3, 4, or 5 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 5;
	    if (zerot && n < imat - 2) {
		goto L130;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];
		*(unsigned char *)packit = *(unsigned char *)&packs[iuplo - 1]
			;

/*              Set up parameters with CLATB4 and generate a test matrix   
                with CLATMS. */

		clatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);
		rcondc = 1.f / cndnum;

		s_copy(srnamc_1.srnamt, "CLATMS", (ftnlen)6, (ftnlen)6);
		clatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[
			1], &info);

/*              Check error code from CLATMS. */

		if (info != 0) {
		    alaerh_(path, "CLATMS", &info, &c__0, uplo, &n, &n, &c_n1,
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L120;
		}

/*              For types 3-5, zero one row and column of the matrix to   
                test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }

/*                 Set row and column IZERO of A to 0. */

		    if (iuplo == 1) {
			ioff = (izero - 1) * izero / 2;
			i__3 = izero - 1;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = ioff + i__;
			    a[i__4].r = 0.f, a[i__4].i = 0.f;
/* L20: */
			}
			ioff += izero;
			i__3 = n;
			for (i__ = izero; i__ <= i__3; ++i__) {
			    i__4 = ioff;
			    a[i__4].r = 0.f, a[i__4].i = 0.f;
			    ioff += i__;
/* L30: */
			}
		    } else {
			ioff = izero;
			i__3 = izero - 1;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    i__4 = ioff;
			    a[i__4].r = 0.f, a[i__4].i = 0.f;
			    ioff = ioff + n - i__;
/* L40: */
			}
			ioff -= izero;
			i__3 = n;
			for (i__ = izero; i__ <= i__3; ++i__) {
			    i__4 = ioff + i__;
			    a[i__4].r = 0.f, a[i__4].i = 0.f;
/* L50: */
			}
		    }
		} else {
		    izero = 0;
		}

/*              Set the imaginary part of the diagonals. */

		if (iuplo == 1) {
		    claipd_(&n, &a[1], &c__2, &c__1);
		} else {
		    claipd_(&n, &a[1], &n, &c_n1);
		}

/*              Save a copy of the matrix A in ASAV. */

		ccopy_(&npp, &a[1], &c__1, &asav[1], &c__1);

		for (iequed = 1; iequed <= 2; ++iequed) {
		    *(unsigned char *)equed = *(unsigned char *)&equeds[
			    iequed - 1];
		    if (iequed == 1) {
			nfact = 3;
		    } else {
			nfact = 1;
		    }

		    i__3 = nfact;
		    for (ifact = 1; ifact <= i__3; ++ifact) {
			*(unsigned char *)fact = *(unsigned char *)&facts[
				ifact - 1];
			prefac = lsame_(fact, "F");
			nofact = lsame_(fact, "N");
			equil = lsame_(fact, "E");

			if (zerot) {
			    if (prefac) {
				goto L100;
			    }
			    rcondc = 0.f;

			} else if (! lsame_(fact, "N")) 
				{

/*                       Compute the condition number for comparison with   
                         the value returned by CPPSVX (FACT = 'N' reuses   
                         the condition number from the previous iteration   
                            with FACT = 'F'). */

			    ccopy_(&npp, &asav[1], &c__1, &afac[1], &c__1);
			    if (equil || iequed > 1) {

/*                          Compute row and column scale factors to   
                            equilibrate the matrix A. */

				cppequ_(uplo, &n, &afac[1], &s[1], &scond, &
					amax, &info);
				if (info == 0 && n > 0) {
				    if (iequed > 1) {
					scond = 0.f;
				    }

/*                             Equilibrate the matrix. */

				    claqhp_(uplo, &n, &afac[1], &s[1], &scond,
					     &amax, equed);
				}
			    }

/*                       Save the condition number of the   
                         non-equilibrated system for use in CGET04. */

			    if (equil) {
				roldc = rcondc;
			    }

/*                       Compute the 1-norm of A. */

			    anorm = clanhp_("1", uplo, &n, &afac[1], &rwork[1]
				    );

/*                       Factor the matrix A. */

			    cpptrf_(uplo, &n, &afac[1], &info);

/*                       Form the inverse of A. */

			    ccopy_(&npp, &afac[1], &c__1, &a[1], &c__1);
			    cpptri_(uplo, &n, &a[1], &info);

/*                       Compute the 1-norm condition number of A. */

			    ainvnm = clanhp_("1", uplo, &n, &a[1], &rwork[1]);
			    if (anorm <= 0.f || ainvnm <= 0.f) {
				rcondc = 1.f;
			    } else {
				rcondc = 1.f / anorm / ainvnm;
			    }
			}

/*                    Restore the matrix A. */

			ccopy_(&npp, &asav[1], &c__1, &a[1], &c__1);

/*                    Form an exact solution and set the right hand side. */

			s_copy(srnamc_1.srnamt, "CLARHS", (ftnlen)6, (ftnlen)
				6);
			clarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, 
				nrhs, &a[1], &lda, &xact[1], &lda, &b[1], &
				lda, iseed, &info);
			*(unsigned char *)xtype = 'C';
			clacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda);

			if (nofact) {

/*                       --- Test CPPSV  ---   

                         Compute the L*L' or U'*U factorization of the   
                         matrix and solve the system. */

			    ccopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
			    clacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &
				    lda);

			    s_copy(srnamc_1.srnamt, "CPPSV ", (ftnlen)6, (
				    ftnlen)6);
			    cppsv_(uplo, &n, nrhs, &afac[1], &x[1], &lda, &
				    info);

/*                       Check error code from CPPSV . */

			    if (info != izero) {
				alaerh_(path, "CPPSV ", &info, &izero, uplo, &
					n, &n, &c_n1, &c_n1, nrhs, &imat, &
					nfail, &nerrs, nout);
				goto L70;
			    } else if (info != 0) {
				goto L70;
			    }

/*                       Reconstruct matrix from factors and compute   
                         residual. */

			    cppt01_(uplo, &n, &a[1], &afac[1], &rwork[1], 
				    result);

/*                       Compute residual of the computed solution. */

			    clacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &
				    lda);
			    cppt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[
				    1], &lda, &rwork[1], &result[1]);

/*                       Check solution from generated exact solution. */

			    cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				    rcondc, &result[2]);
			    nt = 3;

/*                       Print information about the tests that did not   
                         pass the threshold. */

			    i__4 = nt;
			    for (k = 1; k <= i__4; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    io___49.ciunit = *nout;
				    s_wsfe(&io___49);
				    do_fio(&c__1, "CPPSV ", (ftnlen)6);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(real));
				    e_wsfe();
				    ++nfail;
				}
/* L60: */
			    }
			    nrun += nt;
L70:
			    ;
			}

/*                    --- Test CPPSVX --- */

			if (! prefac && npp > 0) {
			    claset_("Full", &npp, &c__1, &c_b63, &c_b63, &
				    afac[1], &npp);
			}
			claset_("Full", &n, nrhs, &c_b63, &c_b63, &x[1], &lda);
			if (iequed > 1 && n > 0) {

/*                       Equilibrate the matrix if FACT='F' and   
                         EQUED='Y'. */

			    claqhp_(uplo, &n, &a[1], &s[1], &scond, &amax, 
				    equed);
			}

/*                    Solve the system and compute the condition number   
                      and error bounds using CPPSVX. */

			s_copy(srnamc_1.srnamt, "CPPSVX", (ftnlen)6, (ftnlen)
				6);
			cppsvx_(fact, uplo, &n, nrhs, &a[1], &afac[1], equed, 
				&s[1], &b[1], &lda, &x[1], &lda, &rcond, &
				rwork[1], &rwork[*nrhs + 1], &work[1], &rwork[
				(*nrhs << 1) + 1], &info);

/*                    Check the error code from CPPSVX. */

			if (info != izero) {
/* Writing concatenation */
			    i__5[0] = 1, a__1[0] = fact;
			    i__5[1] = 1, a__1[1] = uplo;
			    s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			    alaerh_(path, "CPPSVX", &info, &izero, ch__1, &n, 
				    &n, &c_n1, &c_n1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			    goto L90;
			}

			if (info == 0) {
			    if (! prefac) {

/*                          Reconstruct matrix from factors and compute   
                            residual. */

				cppt01_(uplo, &n, &a[1], &afac[1], &rwork[(*
					nrhs << 1) + 1], result);
				k1 = 1;
			    } else {
				k1 = 2;
			    }

/*                       Compute residual of the computed solution. */

			    clacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1]
				    , &lda);
			    cppt02_(uplo, &n, nrhs, &asav[1], &x[1], &lda, &
				    work[1], &lda, &rwork[(*nrhs << 1) + 1], &
				    result[1]);

/*                       Check solution from generated exact solution. */

			    if (nofact || prefac && lsame_(equed, "N")) {
				cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda,
					 &rcondc, &result[2]);
			    } else {
				cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda,
					 &roldc, &result[2]);
			    }

/*                       Check the error bounds from iterative   
                         refinement. */

			    cppt05_(uplo, &n, nrhs, &asav[1], &b[1], &lda, &x[
				    1], &lda, &xact[1], &lda, &rwork[1], &
				    rwork[*nrhs + 1], &result[3]);
			} else {
			    k1 = 6;
			}

/*                    Compare RCOND from CPPSVX with the computed value   
                      in RCONDC. */

			result[5] = sget06_(&rcond, &rcondc);

/*                    Print information about the tests that did not pass   
                      the threshold. */

			for (k = k1; k <= 6; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___52.ciunit = *nout;
				    s_wsfe(&io___52);
				    do_fio(&c__1, "CPPSVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(real));
				    e_wsfe();
				} else {
				    io___53.ciunit = *nout;
				    s_wsfe(&io___53);
				    do_fio(&c__1, "CPPSVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, uplo, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(real));
				    e_wsfe();
				}
				++nfail;
			    }
/* L80: */
			}
			nrun = nrun + 7 - k1;
L90:
L100:
			;
		    }
/* L110: */
		}
L120:
		;
	    }
L130:
	    ;
	}
/* L140: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of CDRVPP */

} /* cdrvpp_ */
Пример #3
0
/* Subroutine */ int chpgv_(integer *itype, char *jobz, char *uplo, integer *
	n, complex *ap, complex *bp, real *w, complex *z__, integer *ldz, 
	complex *work, real *rwork, integer *info, ftnlen jobz_len, ftnlen 
	uplo_len)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1;

    /* Local variables */
    static integer j, neig;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    extern /* Subroutine */ int chpev_(char *, char *, integer *, complex *, 
	    real *, complex *, integer *, complex *, real *, integer *, 
	    ftnlen, ftnlen);
    static char trans[1];
    extern /* Subroutine */ int ctpmv_(char *, char *, char *, integer *, 
	    complex *, complex *, integer *, ftnlen, ftnlen, ftnlen);
    static logical upper;
    extern /* Subroutine */ int ctpsv_(char *, char *, char *, integer *, 
	    complex *, complex *, integer *, ftnlen, ftnlen, ftnlen);
    static logical wantz;
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), chpgst_(
	    integer *, char *, integer *, complex *, complex *, integer *, 
	    ftnlen), cpptrf_(char *, integer *, complex *, integer *, ftnlen);


/*  -- LAPACK driver routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     September 30, 1994 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CHPGV computes all the eigenvalues and, optionally, the eigenvectors */
/*  of a complex generalized Hermitian-definite eigenproblem, of the form */
/*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x. */
/*  Here A and B are assumed to be Hermitian, stored in packed format, */
/*  and B is also positive definite. */

/*  Arguments */
/*  ========= */

/*  ITYPE   (input) INTEGER */
/*          Specifies the problem type to be solved: */
/*          = 1:  A*x = (lambda)*B*x */
/*          = 2:  A*B*x = (lambda)*x */
/*          = 3:  B*A*x = (lambda)*x */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangles of A and B are stored; */
/*          = 'L':  Lower triangles of A and B are stored. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  AP      (input/output) COMPLEX array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the Hermitian matrix */
/*          A, packed columnwise in a linear array.  The j-th column of A */
/*          is stored in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */

/*          On exit, the contents of AP are destroyed. */

/*  BP      (input/output) COMPLEX array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the Hermitian matrix */
/*          B, packed columnwise in a linear array.  The j-th column of B */
/*          is stored in the array BP as follows: */
/*          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */

/*          On exit, the triangular factor U or L from the Cholesky */
/*          factorization B = U**H*U or B = L*L**H, in the same storage */
/*          format as B. */

/*  W       (output) REAL array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) COMPLEX array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
/*          eigenvectors.  The eigenvectors are normalized as follows: */
/*          if ITYPE = 1 or 2, Z**H*B*Z = I; */
/*          if ITYPE = 3, Z**H*inv(B)*Z = I. */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace) COMPLEX array, dimension (max(1, 2*N-1)) */

/*  RWORK   (workspace) REAL array, dimension (max(1, 3*N-2)) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  CPPTRF or CHPEV returned an error code: */
/*             <= N:  if INFO = i, CHPEV failed to converge; */
/*                    i off-diagonal elements of an intermediate */
/*                    tridiagonal form did not convergeto zero; */
/*             > N:   if INFO = N + i, for 1 <= i <= n, then the leading */
/*                    minor of order i of B is not positive definite. */
/*                    The factorization of B could not be completed and */
/*                    no eigenvalues or eigenvectors were computed. */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --bp;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;

    /* Function Body */
    wantz = lsame_(jobz, "V", (ftnlen)1, (ftnlen)1);
    upper = lsame_(uplo, "U", (ftnlen)1, (ftnlen)1);

    *info = 0;
    if (*itype < 0 || *itype > 3) {
	*info = -1;
    } else if (! (wantz || lsame_(jobz, "N", (ftnlen)1, (ftnlen)1))) {
	*info = -2;
    } else if (! (upper || lsame_(uplo, "L", (ftnlen)1, (ftnlen)1))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CHPGV ", &i__1, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Form a Cholesky factorization of B. */

    cpptrf_(uplo, n, &bp[1], info, (ftnlen)1);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem and solve. */

    chpgst_(itype, uplo, n, &ap[1], &bp[1], info, (ftnlen)1);
    chpev_(jobz, uplo, n, &ap[1], &w[1], &z__[z_offset], ldz, &work[1], &
	    rwork[1], info, (ftnlen)1, (ftnlen)1);

    if (wantz) {

/*        Backtransform eigenvectors to the original problem. */

	neig = *n;
	if (*info > 0) {
	    neig = *info - 1;
	}
	if (*itype == 1 || *itype == 2) {

/*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
/*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */

	    if (upper) {
		*(unsigned char *)trans = 'N';
	    } else {
		*(unsigned char *)trans = 'C';
	    }

	    i__1 = neig;
	    for (j = 1; j <= i__1; ++j) {
		ctpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 
			1], &c__1, (ftnlen)1, (ftnlen)1, (ftnlen)8);
/* L10: */
	    }

	} else if (*itype == 3) {

/*           For B*A*x=(lambda)*x; */
/*           backtransform eigenvectors: x = L*y or U'*y */

	    if (upper) {
		*(unsigned char *)trans = 'C';
	    } else {
		*(unsigned char *)trans = 'N';
	    }

	    i__1 = neig;
	    for (j = 1; j <= i__1; ++j) {
		ctpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 
			1], &c__1, (ftnlen)1, (ftnlen)1, (ftnlen)8);
/* L20: */
	    }
	}
    }
    return 0;

/*     End of CHPGV */

} /* chpgv_ */
Пример #4
0
/* Subroutine */ int cppsvx_(char *fact, char *uplo, integer *n, integer *
	nrhs, complex *ap, complex *afp, char *equed, real *s, complex *b, 
	integer *ldb, complex *x, integer *ldx, real *rcond, real *ferr, real 
	*berr, complex *work, real *rwork, integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
    real r__1, r__2;
    complex q__1;

    /* Local variables */
    integer i__, j;
    real amax, smin, smax;
    real scond, anorm;
    logical equil, rcequ;
    logical nofact;
    real bignum;
    integer infequ;
    real smlnum;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  CPPSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to */
/*  compute the solution to a complex system of linear equations */
/*     A * X = B, */
/*  where A is an N-by-N Hermitian positive definite matrix stored in */
/*  packed format and X and B are N-by-NRHS matrices. */

/*  Error bounds on the solution and a condition estimate are also */
/*  provided. */

/*  Description */
/*  =========== */

/*  The following steps are performed: */

/*  1. If FACT = 'E', real scaling factors are computed to equilibrate */
/*     the system: */
/*        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B */
/*     Whether or not the system will be equilibrated depends on the */
/*     scaling of the matrix A, but if equilibration is used, A is */
/*     overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */

/*  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
/*     factor the matrix A (after equilibration if FACT = 'E') as */
/*        A = U'* U ,  if UPLO = 'U', or */
/*        A = L * L',  if UPLO = 'L', */
/*     where U is an upper triangular matrix, L is a lower triangular */
/*     matrix, and ' indicates conjugate transpose. */

/*  3. If the leading i-by-i principal minor is not positive definite, */
/*     then the routine returns with INFO = i. Otherwise, the factored */
/*     form of A is used to estimate the condition number of the matrix */
/*     A.  If the reciprocal of the condition number is less than machine */
/*     precision, INFO = N+1 is returned as a warning, but the routine */
/*     still goes on to solve for X and compute error bounds as */
/*     described below. */

/*  4. The system of equations is solved for X using the factored form */
/*     of A. */

/*  5. Iterative refinement is applied to improve the computed solution */
/*     matrix and calculate error bounds and backward error estimates */
/*     for it. */

/*  6. If equilibration was used, the matrix X is premultiplied by */
/*     diag(S) so that it solves the original system before */
/*     equilibration. */

/*  Arguments */
/*  ========= */

/*  FACT    (input) CHARACTER*1 */
/*          Specifies whether or not the factored form of the matrix A is */
/*          supplied on entry, and if not, whether the matrix A should be */
/*          equilibrated before it is factored. */
/*          = 'F':  On entry, AFP contains the factored form of A. */
/*                  If EQUED = 'Y', the matrix A has been equilibrated */
/*                  with scaling factors given by S.  AP and AFP will not */
/*                  be modified. */
/*          = 'N':  The matrix A will be copied to AFP and factored. */
/*          = 'E':  The matrix A will be equilibrated if necessary, then */
/*                  copied to AFP and factored. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The number of linear equations, i.e., the order of the */
/*          matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrices B and X.  NRHS >= 0. */

/*  AP      (input/output) COMPLEX array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the Hermitian matrix */
/*          A, packed columnwise in a linear array, except if FACT = 'F' */
/*          and EQUED = 'Y', then A must contain the equilibrated matrix */
/*          diag(S)*A*diag(S).  The j-th column of A is stored in the */
/*          array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/*          See below for further details.  A is not modified if */
/*          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. */

/*          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
/*          diag(S)*A*diag(S). */

/*  AFP     (input or output) COMPLEX array, dimension (N*(N+1)/2) */
/*          If FACT = 'F', then AFP is an input argument and on entry */
/*          contains the triangular factor U or L from the Cholesky */
/*          factorization A = U**H*U or A = L*L**H, in the same storage */
/*          format as A.  If EQUED .ne. 'N', then AFP is the factored */
/*          form of the equilibrated matrix A. */

/*          If FACT = 'N', then AFP is an output argument and on exit */
/*          returns the triangular factor U or L from the Cholesky */
/*          factorization A = U**H*U or A = L*L**H of the original */
/*          matrix A. */

/*          If FACT = 'E', then AFP is an output argument and on exit */
/*          returns the triangular factor U or L from the Cholesky */
/*          factorization A = U**H*U or A = L*L**H of the equilibrated */
/*          matrix A (see the description of AP for the form of the */
/*          equilibrated matrix). */

/*  EQUED   (input or output) CHARACTER*1 */
/*          Specifies the form of equilibration that was done. */
/*          = 'N':  No equilibration (always true if FACT = 'N'). */
/*          = 'Y':  Equilibration was done, i.e., A has been replaced by */
/*                  diag(S) * A * diag(S). */
/*          EQUED is an input argument if FACT = 'F'; otherwise, it is an */
/*          output argument. */

/*  S       (input or output) REAL array, dimension (N) */
/*          The scale factors for A; not accessed if EQUED = 'N'.  S is */
/*          an input argument if FACT = 'F'; otherwise, S is an output */
/*          argument.  If FACT = 'F' and EQUED = 'Y', each element of S */
/*          must be positive. */

/*  B       (input/output) COMPLEX array, dimension (LDB,NRHS) */
/*          On entry, the N-by-NRHS right hand side matrix B. */
/*          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', */
/*          B is overwritten by diag(S) * B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  X       (output) COMPLEX array, dimension (LDX,NRHS) */
/*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to */
/*          the original system of equations.  Note that if EQUED = 'Y', */
/*          A and B are modified on exit, and the solution to the */
/*          equilibrated system is inv(diag(S))*X. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= max(1,N). */

/*  RCOND   (output) REAL */
/*          The estimate of the reciprocal condition number of the matrix */
/*          A after equilibration (if done).  If RCOND is less than the */
/*          machine precision (in particular, if RCOND = 0), the matrix */
/*          is singular to working precision.  This condition is */
/*          indicated by a return code of INFO > 0. */

/*  FERR    (output) REAL array, dimension (NRHS) */
/*          The estimated forward error bound for each solution vector */
/*          X(j) (the j-th column of the solution matrix X). */
/*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
/*          is an estimated upper bound for the magnitude of the largest */
/*          element in (X(j) - XTRUE) divided by the magnitude of the */
/*          largest element in X(j).  The estimate is as reliable as */
/*          the estimate for RCOND, and is almost always a slight */
/*          overestimate of the true error. */

/*  BERR    (output) REAL array, dimension (NRHS) */
/*          The componentwise relative backward error of each solution */
/*          vector X(j) (i.e., the smallest relative change in */
/*          any element of A or B that makes X(j) an exact solution). */

/*  WORK    (workspace) COMPLEX array, dimension (2*N) */

/*  RWORK   (workspace) REAL array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, and i is */
/*                <= N:  the leading minor of order i of A is */
/*                       not positive definite, so the factorization */
/*                       could not be completed, and the solution has not */
/*                       been computed. RCOND = 0 is returned. */
/*                = N+1: U is nonsingular, but RCOND is less than machine */
/*                       precision, meaning that the matrix is singular */
/*                       to working precision.  Nevertheless, the */
/*                       solution and error bounds are computed because */
/*                       there are a number of situations where the */
/*                       computed solution can be more accurate than the */
/*                       value of RCOND would suggest. */

/*  Further Details */
/*  =============== */

/*  The packed storage scheme is illustrated by the following example */
/*  when N = 4, UPLO = 'U': */

/*  Two-dimensional storage of the Hermitian matrix A: */

/*     a11 a12 a13 a14 */
/*         a22 a23 a24 */
/*             a33 a34     (aij = conjg(aji)) */
/*                 a44 */

/*  Packed storage of the upper triangle of A: */

/*  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */

/*  ===================================================================== */

    /* Parameter adjustments */
    --ap;
    --afp;
    --s;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    nofact = lsame_(fact, "N");
    equil = lsame_(fact, "E");
    if (nofact || equil) {
	*(unsigned char *)equed = 'N';
	rcequ = FALSE_;
    } else {
	rcequ = lsame_(equed, "Y");
	smlnum = slamch_("Safe minimum");
	bignum = 1.f / smlnum;
    }

/*     Test the input parameters. */

    if (! nofact && ! equil && ! lsame_(fact, "F")) {
	*info = -1;
    } else if (! lsame_(uplo, "U") && ! lsame_(uplo, 
	    "L")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*nrhs < 0) {
	*info = -4;
    } else if (lsame_(fact, "F") && ! (rcequ || lsame_(
	    equed, "N"))) {
	*info = -7;
    } else {
	if (rcequ) {
	    smin = bignum;
	    smax = 0.f;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		r__1 = smin, r__2 = s[j];
		smin = dmin(r__1,r__2);
/* Computing MAX */
		r__1 = smax, r__2 = s[j];
		smax = dmax(r__1,r__2);
	    }
	    if (smin <= 0.f) {
		*info = -8;
	    } else if (*n > 0) {
		scond = dmax(smin,smlnum) / dmin(smax,bignum);
	    } else {
		scond = 1.f;
	    }
	}
	if (*info == 0) {
	    if (*ldb < max(1,*n)) {
		*info = -10;
	    } else if (*ldx < max(1,*n)) {
		*info = -12;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CPPSVX", &i__1);
	return 0;
    }

    if (equil) {

/*        Compute row and column scalings to equilibrate the matrix A. */

	cppequ_(uplo, n, &ap[1], &s[1], &scond, &amax, &infequ);
	if (infequ == 0) {

/*           Equilibrate the matrix. */

	    claqhp_(uplo, n, &ap[1], &s[1], &scond, &amax, equed);
	    rcequ = lsame_(equed, "Y");
	}
    }

/*     Scale the right-hand side. */

    if (rcequ) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *n;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		i__3 = i__ + j * b_dim1;
		i__4 = i__;
		i__5 = i__ + j * b_dim1;
		q__1.r = s[i__4] * b[i__5].r, q__1.i = s[i__4] * b[i__5].i;
		b[i__3].r = q__1.r, b[i__3].i = q__1.i;
	    }
	}
    }

    if (nofact || equil) {

/*        Compute the Cholesky factorization A = U'*U or A = L*L'. */

	i__1 = *n * (*n + 1) / 2;
	ccopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1);
	cpptrf_(uplo, n, &afp[1], info);

/*        Return if INFO is non-zero. */

	if (*info > 0) {
	    *rcond = 0.f;
	    return 0;
	}
    }

/*     Compute the norm of the matrix A. */

    anorm = clanhp_("I", uplo, n, &ap[1], &rwork[1]);

/*     Compute the reciprocal of the condition number of A. */

    cppcon_(uplo, n, &afp[1], &anorm, rcond, &work[1], &rwork[1], info);

/*     Compute the solution matrix X. */

    clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
    cpptrs_(uplo, n, nrhs, &afp[1], &x[x_offset], ldx, info);

/*     Use iterative refinement to improve the computed solution and */
/*     compute error bounds and backward error estimates for it. */

    cpprfs_(uplo, n, nrhs, &ap[1], &afp[1], &b[b_offset], ldb, &x[x_offset], 
	    ldx, &ferr[1], &berr[1], &work[1], &rwork[1], info);

/*     Transform the solution matrix X to a solution of the original */
/*     system. */

    if (rcequ) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *n;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		i__3 = i__ + j * x_dim1;
		i__4 = i__;
		i__5 = i__ + j * x_dim1;
		q__1.r = s[i__4] * x[i__5].r, q__1.i = s[i__4] * x[i__5].i;
		x[i__3].r = q__1.r, x[i__3].i = q__1.i;
	    }
	}
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    ferr[j] /= scond;
	}
    }

/*     Set INFO = N+1 if the matrix is singular to working precision. */

    if (*rcond < slamch_("Epsilon")) {
	*info = *n + 1;
    }

    return 0;

/*     End of CPPSVX */

} /* cppsvx_ */
Пример #5
0
/* Subroutine */
int chpgvx_(integer *itype, char *jobz, char *range, char * uplo, integer *n, complex *ap, complex *bp, real *vl, real *vu, integer *il, integer *iu, real *abstol, integer *m, real *w, complex * z__, integer *ldz, complex *work, real *rwork, integer *iwork, integer *ifail, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    /* Local variables */
    integer j;
    extern logical lsame_(char *, char *);
    char trans[1];
    extern /* Subroutine */
    int ctpmv_(char *, char *, char *, integer *, complex *, complex *, integer *);
    logical upper;
    extern /* Subroutine */
    int ctpsv_(char *, char *, char *, integer *, complex *, complex *, integer *);
    logical wantz, alleig, indeig, valeig;
    extern /* Subroutine */
    int xerbla_(char *, integer *), chpgst_( integer *, char *, integer *, complex *, complex *, integer *), chpevx_(char *, char *, char *, integer *, complex *, real *, real *, integer *, integer *, real *, integer *, real *, complex *, integer *, complex *, real *, integer *, integer *, integer *), cpptrf_(char *, integer *, complex *, integer *);
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    --ap;
    --bp;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;
    --ifail;
    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    *info = 0;
    if (*itype < 1 || *itype > 3)
    {
        *info = -1;
    }
    else if (! (wantz || lsame_(jobz, "N")))
    {
        *info = -2;
    }
    else if (! (alleig || valeig || indeig))
    {
        *info = -3;
    }
    else if (! (upper || lsame_(uplo, "L")))
    {
        *info = -4;
    }
    else if (*n < 0)
    {
        *info = -5;
    }
    else
    {
        if (valeig)
        {
            if (*n > 0 && *vu <= *vl)
            {
                *info = -9;
            }
        }
        else if (indeig)
        {
            if (*il < 1)
            {
                *info = -10;
            }
            else if (*iu < min(*n,*il) || *iu > *n)
            {
                *info = -11;
            }
        }
    }
    if (*info == 0)
    {
        if (*ldz < 1 || wantz && *ldz < *n)
        {
            *info = -16;
        }
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("CHPGVX", &i__1);
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0)
    {
        return 0;
    }
    /* Form a Cholesky factorization of B. */
    cpptrf_(uplo, n, &bp[1], info);
    if (*info != 0)
    {
        *info = *n + *info;
        return 0;
    }
    /* Transform problem to standard eigenvalue problem and solve. */
    chpgst_(itype, uplo, n, &ap[1], &bp[1], info);
    chpevx_(jobz, range, uplo, n, &ap[1], vl, vu, il, iu, abstol, m, &w[1], & z__[z_offset], ldz, &work[1], &rwork[1], &iwork[1], &ifail[1], info);
    if (wantz)
    {
        /* Backtransform eigenvectors to the original problem. */
        if (*info > 0)
        {
            *m = *info - 1;
        }
        if (*itype == 1 || *itype == 2)
        {
            /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
            */
            /* backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y */
            if (upper)
            {
                *(unsigned char *)trans = 'N';
            }
            else
            {
                *(unsigned char *)trans = 'C';
            }
            i__1 = *m;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                ctpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 1], &c__1);
                /* L10: */
            }
        }
        else if (*itype == 3)
        {
            /* For B*A*x=(lambda)*x;
            */
            /* backtransform eigenvectors: x = L*y or U**H*y */
            if (upper)
            {
                *(unsigned char *)trans = 'C';
            }
            else
            {
                *(unsigned char *)trans = 'N';
            }
            i__1 = *m;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                ctpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 + 1], &c__1);
                /* L20: */
            }
        }
    }
    return 0;
    /* End of CHPGVX */
}
Пример #6
0
int main(void)
{
    /* Local scalars */
    char uplo, uplo_i;
    lapack_int n, n_i;
    lapack_int info, info_i;
    lapack_int i;
    int failed;

    /* Local arrays */
    lapack_complex_float *ap = NULL, *ap_i = NULL;
    lapack_complex_float *ap_save = NULL;
    lapack_complex_float *ap_r = NULL;

    /* Iniitialize the scalar parameters */
    init_scalars_cpptrf( &uplo, &n );
    uplo_i = uplo;
    n_i = n;

    /* Allocate memory for the LAPACK routine arrays */
    ap = (lapack_complex_float *)
        LAPACKE_malloc( ((n*(n+1)/2)) * sizeof(lapack_complex_float) );

    /* Allocate memory for the C interface function arrays */
    ap_i = (lapack_complex_float *)
        LAPACKE_malloc( ((n*(n+1)/2)) * sizeof(lapack_complex_float) );

    /* Allocate memory for the backup arrays */
    ap_save = (lapack_complex_float *)
        LAPACKE_malloc( ((n*(n+1)/2)) * sizeof(lapack_complex_float) );

    /* Allocate memory for the row-major arrays */
    ap_r = (lapack_complex_float *)
        LAPACKE_malloc( n*(n+1)/2 * sizeof(lapack_complex_float) );

    /* Initialize input arrays */
    init_ap( (n*(n+1)/2), ap );

    /* Backup the ouptut arrays */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_save[i] = ap[i];
    }

    /* Call the LAPACK routine */
    cpptrf_( &uplo, &n, ap, &info );

    /* Initialize input data, call the column-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap_save[i];
    }
    info_i = LAPACKE_cpptrf_work( LAPACK_COL_MAJOR, uplo_i, n_i, ap_i );

    failed = compare_cpptrf( ap, ap_i, info, info_i, n );
    if( failed == 0 ) {
        printf( "PASSED: column-major middle-level interface to cpptrf\n" );
    } else {
        printf( "FAILED: column-major middle-level interface to cpptrf\n" );
    }

    /* Initialize input data, call the column-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap_save[i];
    }
    info_i = LAPACKE_cpptrf( LAPACK_COL_MAJOR, uplo_i, n_i, ap_i );

    failed = compare_cpptrf( ap, ap_i, info, info_i, n );
    if( failed == 0 ) {
        printf( "PASSED: column-major high-level interface to cpptrf\n" );
    } else {
        printf( "FAILED: column-major high-level interface to cpptrf\n" );
    }

    /* Initialize input data, call the row-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap_save[i];
    }

    LAPACKE_cpp_trans( LAPACK_COL_MAJOR, uplo, n, ap_i, ap_r );
    info_i = LAPACKE_cpptrf_work( LAPACK_ROW_MAJOR, uplo_i, n_i, ap_r );

    LAPACKE_cpp_trans( LAPACK_ROW_MAJOR, uplo, n, ap_r, ap_i );

    failed = compare_cpptrf( ap, ap_i, info, info_i, n );
    if( failed == 0 ) {
        printf( "PASSED: row-major middle-level interface to cpptrf\n" );
    } else {
        printf( "FAILED: row-major middle-level interface to cpptrf\n" );
    }

    /* Initialize input data, call the row-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap_save[i];
    }

    /* Init row_major arrays */
    LAPACKE_cpp_trans( LAPACK_COL_MAJOR, uplo, n, ap_i, ap_r );
    info_i = LAPACKE_cpptrf( LAPACK_ROW_MAJOR, uplo_i, n_i, ap_r );

    LAPACKE_cpp_trans( LAPACK_ROW_MAJOR, uplo, n, ap_r, ap_i );

    failed = compare_cpptrf( ap, ap_i, info, info_i, n );
    if( failed == 0 ) {
        printf( "PASSED: row-major high-level interface to cpptrf\n" );
    } else {
        printf( "FAILED: row-major high-level interface to cpptrf\n" );
    }

    /* Release memory */
    if( ap != NULL ) {
        LAPACKE_free( ap );
    }
    if( ap_i != NULL ) {
        LAPACKE_free( ap_i );
    }
    if( ap_r != NULL ) {
        LAPACKE_free( ap_r );
    }
    if( ap_save != NULL ) {
        LAPACKE_free( ap_save );
    }

    return 0;
}
Пример #7
0
/* Subroutine */ int cppsv_(char *uplo, integer *n, integer *nrhs, complex *
	ap, complex *b, integer *ldb, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    CPPSV computes the solution to a complex system of linear equations   
       A * X = B,   
    where A is an N-by-N Hermitian positive definite matrix stored in   
    packed format and X and B are N-by-NRHS matrices.   

    The Cholesky decomposition is used to factor A as   
       A = U**H* U,  if UPLO = 'U', or   
       A = L * L**H,  if UPLO = 'L',   
    where U is an upper triangular matrix and L is a lower triangular   
    matrix.  The factored form of A is then used to solve the system of   
    equations A * X = B.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The number of linear equations, i.e., the order of the   
            matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrix B.  NRHS >= 0.   

    AP      (input/output) COMPLEX array, dimension (N*(N+1)/2)   
            On entry, the upper or lower triangle of the Hermitian matrix   
            A, packed columnwise in a linear array.  The j-th column of A   
            is stored in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.   
            See below for further details.   

            On exit, if INFO = 0, the factor U or L from the Cholesky   
            factorization A = U**H*U or A = L*L**H, in the same storage   
            format as A.   

    B       (input/output) COMPLEX array, dimension (LDB,NRHS)   
            On entry, the N-by-NRHS right hand side matrix B.   
            On exit, if INFO = 0, the N-by-NRHS solution matrix X.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, the leading minor of order i of A is not   
                  positive definite, so the factorization could not be   
                  completed, and the solution has not been computed.   

    Further Details   
    ===============   

    The packed storage scheme is illustrated by the following example   
    when N = 4, UPLO = 'U':   

    Two-dimensional storage of the Hermitian matrix A:   

       a11 a12 a13 a14   
           a22 a23 a24   
               a33 a34     (aij = conjg(aji))   
                   a44   

    Packed storage of the upper triangle of A:   

    AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* System generated locals */
    integer b_dim1, b_offset, i__1;
    /* Local variables */
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int xerbla_(char *, integer *), cpptrf_(
	    char *, integer *, complex *, integer *), cpptrs_(char *, 
	    integer *, integer *, complex *, complex *, integer *, integer *);

    --ap;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < max(1,*n)) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CPPSV ", &i__1);
	return 0;
    }

/*     Compute the Cholesky factorization A = U'*U or A = L*L'. */

    cpptrf_(uplo, n, &ap[1], info);
    if (*info == 0) {

/*        Solve the system A*X = B, overwriting B with X. */

	cpptrs_(uplo, n, nrhs, &ap[1], &b[b_offset], ldb, info);

    }
    return 0;

/*     End of CPPSV */

} /* cppsv_ */
Пример #8
0
/* Subroutine */ int cppsv_(char *uplo, integer *n, integer *nrhs, complex *
	ap, complex *b, integer *ldb, integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, i__1;

    /* Local variables */

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  CPPSV computes the solution to a complex system of linear equations */
/*     A * X = B, */
/*  where A is an N-by-N Hermitian positive definite matrix stored in */
/*  packed format and X and B are N-by-NRHS matrices. */

/*  The Cholesky decomposition is used to factor A as */
/*     A = U**H* U,  if UPLO = 'U', or */
/*     A = L * L**H,  if UPLO = 'L', */
/*  where U is an upper triangular matrix and L is a lower triangular */
/*  matrix.  The factored form of A is then used to solve the system of */
/*  equations A * X = B. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The number of linear equations, i.e., the order of the */
/*          matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  AP      (input/output) COMPLEX array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the Hermitian matrix */
/*          A, packed columnwise in a linear array.  The j-th column of A */
/*          is stored in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/*          See below for further details. */

/*          On exit, if INFO = 0, the factor U or L from the Cholesky */
/*          factorization A = U**H*U or A = L*L**H, in the same storage */
/*          format as A. */

/*  B       (input/output) COMPLEX array, dimension (LDB,NRHS) */
/*          On entry, the N-by-NRHS right hand side matrix B. */
/*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the leading minor of order i of A is not */
/*                positive definite, so the factorization could not be */
/*                completed, and the solution has not been computed. */

/*  Further Details */
/*  =============== */

/*  The packed storage scheme is illustrated by the following example */
/*  when N = 4, UPLO = 'U': */

/*  Two-dimensional storage of the Hermitian matrix A: */

/*     a11 a12 a13 a14 */
/*         a22 a23 a24 */
/*             a33 a34     (aij = conjg(aji)) */
/*                 a44 */

/*  Packed storage of the upper triangle of A: */

/*  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < max(1,*n)) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CPPSV ", &i__1);
	return 0;
    }

/*     Compute the Cholesky factorization A = U'*U or A = L*L'. */

    cpptrf_(uplo, n, &ap[1], info);
    if (*info == 0) {

/*        Solve the system A*X = B, overwriting B with X. */

	cpptrs_(uplo, n, nrhs, &ap[1], &b[b_offset], ldb, info);

    }
    return 0;

/*     End of CPPSV */

} /* cppsv_ */