Пример #1
0
int pkcs1_encrypt(int block_type, struct crypto_rsa_key *key,
		  int use_private, const u8 *in, size_t inlen,
		  u8 *out, size_t *outlen)
{
	size_t modlen;

	modlen = crypto_rsa_get_modulus_len(key);

	if (pkcs1_generate_encryption_block(block_type, modlen, in, inlen,
					    out, outlen) < 0)
		return -1;

	return crypto_rsa_exptmod(out, modlen, out, outlen, key, use_private);
}
Пример #2
0
/**
 * crypto_rsa_exptmod - RSA modular exponentiation
 * @in: Input data
 * @inlen: Input data length
 * @out: Buffer for output data
 * @outlen: Maximum size of the output buffer and used size on success
 * @key: RSA key
 * @use_private: 1 = Use RSA private key, 0 = Use RSA public key
 * Returns: 0 on success, -1 on failure
 */
int crypto_rsa_exptmod(const u8 *in, size_t inlen, u8 *out, size_t *outlen,
		       struct crypto_rsa_key *key, int use_private)
{
	struct bignum *tmp, *a = NULL, *b = NULL;
	int ret = -1;
	size_t modlen;

	if (use_private && !key->private_key)
		return -1;

	tmp = bignum_init();
	if (tmp == NULL)
		return -1;

	if (bignum_set_unsigned_bin(tmp, in, inlen) < 0)
		goto error;
	if (bignum_cmp(key->n, tmp) < 0) {
		/* Too large input value for the RSA key modulus */
		goto error;
	}

	if (use_private) {
		/*
		 * Decrypt (or sign) using Chinese remainer theorem to speed
		 * up calculation. This is equivalent to tmp = tmp^d mod n
		 * (which would require more CPU to calculate directly).
		 *
		 * dmp1 = (1/e) mod (p-1)
		 * dmq1 = (1/e) mod (q-1)
		 * iqmp = (1/q) mod p, where p > q
		 * m1 = c^dmp1 mod p
		 * m2 = c^dmq1 mod q
		 * h = q^-1 (m1 - m2) mod p
		 * m = m2 + hq
		 */
		a = bignum_init();
		b = bignum_init();
		if (a == NULL || b == NULL)
			goto error;

		/* a = tmp^dmp1 mod p */
		if (bignum_exptmod(tmp, key->dmp1, key->p, a) < 0)
			goto error;

		/* b = tmp^dmq1 mod q */
		if (bignum_exptmod(tmp, key->dmq1, key->q, b) < 0)
			goto error;

		/* tmp = (a - b) * (1/q mod p) (mod p) */
		if (bignum_sub(a, b, tmp) < 0 ||
		    bignum_mulmod(tmp, key->iqmp, key->p, tmp) < 0)
			goto error;

		/* tmp = b + q * tmp */
		if (bignum_mul(tmp, key->q, tmp) < 0 ||
		    bignum_add(tmp, b, tmp) < 0)
			goto error;
	} else {
		/* Encrypt (or verify signature) */
		/* tmp = tmp^e mod N */
		if (bignum_exptmod(tmp, key->e, key->n, tmp) < 0)
			goto error;
	}

	modlen = crypto_rsa_get_modulus_len(key);
	if (modlen > *outlen) {
		*outlen = modlen;
		goto error;
	}

	if (bignum_get_unsigned_bin_len(tmp) > modlen)
		goto error; /* should never happen */

	*outlen = modlen;
	os_memset(out, 0, modlen);
	if (bignum_get_unsigned_bin(
		    tmp, out +
		    (modlen - bignum_get_unsigned_bin_len(tmp)), NULL) < 0)
		goto error;

	ret = 0;

error:
	bignum_deinit(tmp);
	bignum_deinit(a);
	bignum_deinit(b);
	return ret;
}