Пример #1
0
static int qce_ablkcipher_crypt(struct ablkcipher_request *req, int encrypt)
{
	struct crypto_tfm *tfm =
			crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
	struct qce_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req);
	struct qce_alg_template *tmpl = to_cipher_tmpl(tfm);
	int ret;

	rctx->flags = tmpl->alg_flags;
	rctx->flags |= encrypt ? QCE_ENCRYPT : QCE_DECRYPT;

	if (IS_AES(rctx->flags) && ctx->enc_keylen != AES_KEYSIZE_128 &&
	    ctx->enc_keylen != AES_KEYSIZE_256) {
		SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);

		skcipher_request_set_sync_tfm(subreq, ctx->fallback);
		skcipher_request_set_callback(subreq, req->base.flags,
					      NULL, NULL);
		skcipher_request_set_crypt(subreq, req->src, req->dst,
					   req->nbytes, req->info);
		ret = encrypt ? crypto_skcipher_encrypt(subreq) :
				crypto_skcipher_decrypt(subreq);
		skcipher_request_zero(subreq);
		return ret;
	}

	return tmpl->qce->async_req_enqueue(tmpl->qce, &req->base);
}
Пример #2
0
static int crypto_rfc3686_crypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct crypto_rfc3686_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct crypto_skcipher *child = ctx->child;
	unsigned long align = crypto_skcipher_alignmask(tfm);
	struct crypto_rfc3686_req_ctx *rctx =
		(void *)PTR_ALIGN((u8 *)skcipher_request_ctx(req), align + 1);
	struct skcipher_request *subreq = &rctx->subreq;
	u8 *iv = rctx->iv;

	/* set up counter block */
	memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
	memcpy(iv + CTR_RFC3686_NONCE_SIZE, req->iv, CTR_RFC3686_IV_SIZE);

	/* initialize counter portion of counter block */
	*(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
		cpu_to_be32(1);

	skcipher_request_set_tfm(subreq, child);
	skcipher_request_set_callback(subreq, req->base.flags,
				      req->base.complete, req->base.data);
	skcipher_request_set_crypt(subreq, req->src, req->dst,
				   req->cryptlen, iv);

	return crypto_skcipher_encrypt(subreq);
}
Пример #3
0
/*
 * Encrypt/decrypt big_key data
 */
static int big_key_crypt(enum big_key_op op, u8 *data, size_t datalen, u8 *key)
{
	int ret = -EINVAL;
	struct scatterlist sgio;
	SKCIPHER_REQUEST_ON_STACK(req, big_key_skcipher);

	if (crypto_skcipher_setkey(big_key_skcipher, key, ENC_KEY_SIZE)) {
		ret = -EAGAIN;
		goto error;
	}

	skcipher_request_set_tfm(req, big_key_skcipher);
	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
				      NULL, NULL);

	sg_init_one(&sgio, data, datalen);
	skcipher_request_set_crypt(req, &sgio, &sgio, datalen, NULL);

	if (op == BIG_KEY_ENC)
		ret = crypto_skcipher_encrypt(req);
	else
		ret = crypto_skcipher_decrypt(req);

	skcipher_request_zero(req);

error:
	return ret;
}
Пример #4
0
static int do_page_crypto(struct inode *inode,
			fscrypt_direction_t rw, pgoff_t index,
			struct page *src_page, struct page *dest_page,
			gfp_t gfp_flags)
{
	struct {
		__le64 index;
		u8 padding[FS_XTS_TWEAK_SIZE - sizeof(__le64)];
	} xts_tweak;
	struct skcipher_request *req = NULL;
	DECLARE_FS_COMPLETION_RESULT(ecr);
	struct scatterlist dst, src;
	struct fscrypt_info *ci = inode->i_crypt_info;
	struct crypto_skcipher *tfm = ci->ci_ctfm;
	int res = 0;

	req = skcipher_request_alloc(tfm, gfp_flags);
	if (!req) {
		printk_ratelimited(KERN_ERR
				"%s: crypto_request_alloc() failed\n",
				__func__);
		return -ENOMEM;
	}

	skcipher_request_set_callback(
		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
		page_crypt_complete, &ecr);

	BUILD_BUG_ON(sizeof(xts_tweak) != FS_XTS_TWEAK_SIZE);
	xts_tweak.index = cpu_to_le64(index);
	memset(xts_tweak.padding, 0, sizeof(xts_tweak.padding));

	sg_init_table(&dst, 1);
	sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
	sg_init_table(&src, 1);
	sg_set_page(&src, src_page, PAGE_SIZE, 0);
	skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE, &xts_tweak);
	if (rw == FS_DECRYPT)
		res = crypto_skcipher_decrypt(req);
	else
		res = crypto_skcipher_encrypt(req);
	if (res == -EINPROGRESS || res == -EBUSY) {
		BUG_ON(req->base.data != &ecr);
		wait_for_completion(&ecr.completion);
		res = ecr.res;
	}
	skcipher_request_free(req);
	if (res) {
		printk_ratelimited(KERN_ERR
			"%s: crypto_skcipher_encrypt() returned %d\n",
			__func__, res);
		return res;
	}
	return 0;
}
Пример #5
0
static int p8_aes_ctr_crypt(struct blkcipher_desc *desc,
			    struct scatterlist *dst,
			    struct scatterlist *src, unsigned int nbytes)
{
	int ret;
	u64 inc;
	struct blkcipher_walk walk;
	struct p8_aes_ctr_ctx *ctx =
		crypto_tfm_ctx(crypto_blkcipher_tfm(desc->tfm));

	if (in_interrupt()) {
		SYNC_SKCIPHER_REQUEST_ON_STACK(req, ctx->fallback);
		skcipher_request_set_sync_tfm(req, ctx->fallback);
		skcipher_request_set_callback(req, desc->flags, NULL, NULL);
		skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
		ret = crypto_skcipher_encrypt(req);
		skcipher_request_zero(req);
	} else {
		blkcipher_walk_init(&walk, dst, src, nbytes);
		ret = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
		while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
			preempt_disable();
			pagefault_disable();
			enable_kernel_vsx();
			aes_p8_ctr32_encrypt_blocks(walk.src.virt.addr,
						    walk.dst.virt.addr,
						    (nbytes &
						     AES_BLOCK_MASK) /
						    AES_BLOCK_SIZE,
						    &ctx->enc_key,
						    walk.iv);
			disable_kernel_vsx();
			pagefault_enable();
			preempt_enable();

			/* We need to update IV mostly for last bytes/round */
			inc = (nbytes & AES_BLOCK_MASK) / AES_BLOCK_SIZE;
			if (inc > 0)
				while (inc--)
					crypto_inc(walk.iv, AES_BLOCK_SIZE);

			nbytes &= AES_BLOCK_SIZE - 1;
			ret = blkcipher_walk_done(desc, &walk, nbytes);
		}
		if (walk.nbytes) {
			p8_aes_ctr_final(ctx, &walk);
			ret = blkcipher_walk_done(desc, &walk, 0);
		}
	}

	return ret;
}
static int p8_aes_xts_crypt(struct blkcipher_desc *desc,
			    struct scatterlist *dst,
			    struct scatterlist *src,
			    unsigned int nbytes, int enc)
{
	int ret;
	u8 tweak[AES_BLOCK_SIZE];
	u8 *iv;
	struct blkcipher_walk walk;
	struct p8_aes_xts_ctx *ctx =
		crypto_tfm_ctx(crypto_blkcipher_tfm(desc->tfm));

	if (in_interrupt()) {
		SKCIPHER_REQUEST_ON_STACK(req, ctx->fallback);
		skcipher_request_set_tfm(req, ctx->fallback);
		skcipher_request_set_callback(req, desc->flags, NULL, NULL);
		skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
		ret = enc? crypto_skcipher_encrypt(req) : crypto_skcipher_decrypt(req);
		skcipher_request_zero(req);
	} else {
		preempt_disable();
		pagefault_disable();
		enable_kernel_vsx();

		blkcipher_walk_init(&walk, dst, src, nbytes);

		ret = blkcipher_walk_virt(desc, &walk);
		iv = walk.iv;
		memset(tweak, 0, AES_BLOCK_SIZE);
		aes_p8_encrypt(iv, tweak, &ctx->tweak_key);

		while ((nbytes = walk.nbytes)) {
			if (enc)
				aes_p8_xts_encrypt(walk.src.virt.addr, walk.dst.virt.addr,
						nbytes & AES_BLOCK_MASK, &ctx->enc_key, NULL, tweak);
			else
				aes_p8_xts_decrypt(walk.src.virt.addr, walk.dst.virt.addr,
						nbytes & AES_BLOCK_MASK, &ctx->dec_key, NULL, tweak);

			nbytes &= AES_BLOCK_SIZE - 1;
			ret = blkcipher_walk_done(desc, &walk, nbytes);
		}

		disable_kernel_vsx();
		pagefault_enable();
		preempt_enable();
	}
	return ret;
}
Пример #7
0
static int do_encrypt_iv(struct aead_request *req, u32 *tag, u32 *iv)
{
	struct scatterlist iv_sg, tag_sg;
	struct skcipher_request *sk_req;
	struct omap_aes_gcm_result result;
	struct omap_aes_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
	int ret = 0;

	sk_req = skcipher_request_alloc(ctx->ctr, GFP_KERNEL);
	if (!sk_req) {
		pr_err("skcipher: Failed to allocate request\n");
		return -ENOMEM;
	}

	init_completion(&result.completion);

	sg_init_one(&iv_sg, iv, AES_BLOCK_SIZE);
	sg_init_one(&tag_sg, tag, AES_BLOCK_SIZE);
	skcipher_request_set_callback(sk_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
				      omap_aes_gcm_complete, &result);
	ret = crypto_skcipher_setkey(ctx->ctr, (u8 *)ctx->key, ctx->keylen);
	skcipher_request_set_crypt(sk_req, &iv_sg, &tag_sg, AES_BLOCK_SIZE,
				   NULL);
	ret = crypto_skcipher_encrypt(sk_req);
	switch (ret) {
	case 0:
		break;
	case -EINPROGRESS:
	case -EBUSY:
		ret = wait_for_completion_interruptible(&result.completion);
		if (!ret) {
			ret = result.err;
			if (!ret) {
				reinit_completion(&result.completion);
				break;
			}
		}
		/* fall through */
	default:
		pr_err("Encryption of IV failed for GCM mode\n");
		break;
	}

	skcipher_request_free(sk_req);
	return ret;
}
Пример #8
0
/**
 * fname_encrypt() - encrypt a filename
 *
 * The output buffer must be at least as large as the input buffer.
 * Any extra space is filled with NUL padding before encryption.
 *
 * Return: 0 on success, -errno on failure
 */
int fname_encrypt(struct inode *inode, const struct qstr *iname,
		  u8 *out, unsigned int olen)
{
	struct skcipher_request *req = NULL;
	DECLARE_CRYPTO_WAIT(wait);
	struct fscrypt_info *ci = inode->i_crypt_info;
	struct crypto_skcipher *tfm = ci->ci_ctfm;
	union fscrypt_iv iv;
	struct scatterlist sg;
	int res;

	/*
	 * Copy the filename to the output buffer for encrypting in-place and
	 * pad it with the needed number of NUL bytes.
	 */
	if (WARN_ON(olen < iname->len))
		return -ENOBUFS;
	memcpy(out, iname->name, iname->len);
	memset(out + iname->len, 0, olen - iname->len);

	/* Initialize the IV */
	fscrypt_generate_iv(&iv, 0, ci);

	/* Set up the encryption request */
	req = skcipher_request_alloc(tfm, GFP_NOFS);
	if (!req)
		return -ENOMEM;
	skcipher_request_set_callback(req,
			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
			crypto_req_done, &wait);
	sg_init_one(&sg, out, olen);
	skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);

	/* Do the encryption */
	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
	skcipher_request_free(req);
	if (res < 0) {
		fscrypt_err(inode->i_sb,
			    "Filename encryption failed for inode %lu: %d",
			    inode->i_ino, res);
		return res;
	}

	return 0;
}
Пример #9
0
/* Before returning data to userspace, encrypt decrypted data. */
static int derived_key_encrypt(struct encrypted_key_payload *epayload,
			       const u8 *derived_key,
			       unsigned int derived_keylen)
{
	struct scatterlist sg_in[2];
	struct scatterlist sg_out[1];
	struct crypto_skcipher *tfm;
	struct skcipher_request *req;
	unsigned int encrypted_datalen;
	u8 iv[AES_BLOCK_SIZE];
	unsigned int padlen;
	char pad[16];
	int ret;

	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
	padlen = encrypted_datalen - epayload->decrypted_datalen;

	req = init_skcipher_req(derived_key, derived_keylen);
	ret = PTR_ERR(req);
	if (IS_ERR(req))
		goto out;
	dump_decrypted_data(epayload);

	memset(pad, 0, sizeof pad);
	sg_init_table(sg_in, 2);
	sg_set_buf(&sg_in[0], epayload->decrypted_data,
		   epayload->decrypted_datalen);
	sg_set_buf(&sg_in[1], pad, padlen);

	sg_init_table(sg_out, 1);
	sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);

	memcpy(iv, epayload->iv, sizeof(iv));
	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
	ret = crypto_skcipher_encrypt(req);
	tfm = crypto_skcipher_reqtfm(req);
	skcipher_request_free(req);
	crypto_free_skcipher(tfm);
	if (ret < 0)
		pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
	else
		dump_encrypted_data(epayload, encrypted_datalen);
out:
	return ret;
}
Пример #10
0
/**
 * f2fs_derive_key_aes() - Derive a key using AES-128-ECB
 * @deriving_key: Encryption key used for derivatio.
 * @source_key:   Source key to which to apply derivation.
 * @derived_key:  Derived key.
 *
 * Return: Zero on success; non-zero otherwise.
 */
static int f2fs_derive_key_aes(char deriving_key[F2FS_AES_128_ECB_KEY_SIZE],
				char source_key[F2FS_AES_256_XTS_KEY_SIZE],
				char derived_key[F2FS_AES_256_XTS_KEY_SIZE])
{
	int res = 0;
	struct skcipher_request *req = NULL;
	DECLARE_F2FS_COMPLETION_RESULT(ecr);
	struct scatterlist src_sg, dst_sg;
	struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0);

	if (IS_ERR(tfm)) {
		res = PTR_ERR(tfm);
		tfm = NULL;
		goto out;
	}
	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
	req = skcipher_request_alloc(tfm, GFP_NOFS);
	if (!req) {
		res = -ENOMEM;
		goto out;
	}
	skcipher_request_set_callback(req,
			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
			derive_crypt_complete, &ecr);
	res = crypto_skcipher_setkey(tfm, deriving_key,
				F2FS_AES_128_ECB_KEY_SIZE);
	if (res < 0)
		goto out;

	sg_init_one(&src_sg, source_key, F2FS_AES_256_XTS_KEY_SIZE);
	sg_init_one(&dst_sg, derived_key, F2FS_AES_256_XTS_KEY_SIZE);
	skcipher_request_set_crypt(req, &src_sg, &dst_sg,
					F2FS_AES_256_XTS_KEY_SIZE, NULL);
	res = crypto_skcipher_encrypt(req);
	if (res == -EINPROGRESS || res == -EBUSY) {
		BUG_ON(req->base.data != &ecr);
		wait_for_completion(&ecr.completion);
		res = ecr.res;
	}
out:
	skcipher_request_free(req);
	crypto_free_skcipher(tfm);
	return res;
}
Пример #11
0
int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
			   u64 lblk_num, struct page *src_page,
			   struct page *dest_page, unsigned int len,
			   unsigned int offs, gfp_t gfp_flags)
{
	union fscrypt_iv iv;
	struct skcipher_request *req = NULL;
	DECLARE_CRYPTO_WAIT(wait);
	struct scatterlist dst, src;
	struct fscrypt_info *ci = inode->i_crypt_info;
	struct crypto_skcipher *tfm = ci->ci_ctfm;
	int res = 0;

	BUG_ON(len == 0);

	fscrypt_generate_iv(&iv, lblk_num, ci);

	req = skcipher_request_alloc(tfm, gfp_flags);
	if (!req)
		return -ENOMEM;

	skcipher_request_set_callback(
		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
		crypto_req_done, &wait);

	sg_init_table(&dst, 1);
	sg_set_page(&dst, dest_page, len, offs);
	sg_init_table(&src, 1);
	sg_set_page(&src, src_page, len, offs);
	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
	if (rw == FS_DECRYPT)
		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
	else
		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
	skcipher_request_free(req);
	if (res) {
		fscrypt_err(inode->i_sb,
			    "%scryption failed for inode %lu, block %llu: %d",
			    (rw == FS_DECRYPT ? "de" : "en"),
			    inode->i_ino, lblk_num, res);
		return res;
	}
	return 0;
}
Пример #12
0
static int simd_skcipher_encrypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct skcipher_request *subreq;
	struct crypto_skcipher *child;

	subreq = skcipher_request_ctx(req);
	*subreq = *req;

	if (!crypto_simd_usable() ||
	    (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
		child = &ctx->cryptd_tfm->base;
	else
		child = cryptd_skcipher_child(ctx->cryptd_tfm);

	skcipher_request_set_tfm(subreq, child);

	return crypto_skcipher_encrypt(subreq);
}
Пример #13
0
/*
 * CC-MAC function WUSB1.0[6.5]
 *
 * Take a data string and produce the encrypted CBC Counter-mode MIC
 *
 * Note the names for most function arguments are made to (more or
 * less) match those used in the pseudo-function definition given in
 * WUSB1.0[6.5].
 *
 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
 *
 * @tfm_aes: AES cipher handle (initialized)
 *
 * @mic: buffer for placing the computed MIC (Message Integrity
 *       Code). This is exactly 8 bytes, and we expect the buffer to
 *       be at least eight bytes in length.
 *
 * @key: 128 bit symmetric key
 *
 * @n: CCM nonce
 *
 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
 *     we use exactly 14 bytes).
 *
 * @b: data stream to be processed; cannot be a global or const local
 *     (will confuse the scatterlists)
 *
 * @blen: size of b...
 *
 * Still not very clear how this is done, but looks like this: we
 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
 * take the payload and divide it in blocks (16 bytes), xor them with
 * the previous crypto result (16 bytes) and crypt it, repeat the next
 * block with the output of the previous one, rinse wash (I guess this
 * is what AES CBC mode means...but I truly have no idea). So we use
 * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
 * Vector) is 16 bytes and is set to zero, so
 *
 * See rfc3610. Linux crypto has a CBC implementation, but the
 * documentation is scarce, to say the least, and the example code is
 * so intricated that is difficult to understand how things work. Most
 * of this is guess work -- bite me.
 *
 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
 *     using the 14 bytes of @a to fill up
 *     b1.{mac_header,e0,security_reserved,padding}.
 *
 * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
 *       l(m) is orthogonal, they bear no relationship, so it is not
 *       in conflict with the parameter's relation that
 *       WUSB1.0[6.4.2]) defines.
 *
 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
 *       first errata released on 2005/07.
 *
 * NOTE: we need to clean IV to zero at each invocation to make sure
 *       we start with a fresh empty Initial Vector, so that the CBC
 *       works ok.
 *
 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
 *       what sg[4] is for. Maybe there is a smarter way to do this.
 */
static int wusb_ccm_mac(struct crypto_skcipher *tfm_cbc,
			struct crypto_cipher *tfm_aes, void *mic,
			const struct aes_ccm_nonce *n,
			const struct aes_ccm_label *a, const void *b,
			size_t blen)
{
	int result = 0;
	SKCIPHER_REQUEST_ON_STACK(req, tfm_cbc);
	struct aes_ccm_b0 b0;
	struct aes_ccm_b1 b1;
	struct aes_ccm_a ax;
	struct scatterlist sg[4], sg_dst;
	void *dst_buf;
	size_t dst_size;
	const u8 bzero[16] = { 0 };
	u8 iv[crypto_skcipher_ivsize(tfm_cbc)];
	size_t zero_padding;

	/*
	 * These checks should be compile time optimized out
	 * ensure @a fills b1's mac_header and following fields
	 */
	WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
	WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
	WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
	WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));

	result = -ENOMEM;
	zero_padding = blen % sizeof(struct aes_ccm_block);
	if (zero_padding)
		zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
	dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
	dst_buf = kzalloc(dst_size, GFP_KERNEL);
	if (!dst_buf)
		goto error_dst_buf;

	memset(iv, 0, sizeof(iv));

	/* Setup B0 */
	b0.flags = 0x59;	/* Format B0 */
	b0.ccm_nonce = *n;
	b0.lm = cpu_to_be16(0);	/* WUSB1.0[6.5] sez l(m) is 0 */

	/* Setup B1
	 *
	 * The WUSB spec is anything but clear! WUSB1.0[6.5]
	 * says that to initialize B1 from A with 'l(a) = blen +
	 * 14'--after clarification, it means to use A's contents
	 * for MAC Header, EO, sec reserved and padding.
	 */
	b1.la = cpu_to_be16(blen + 14);
	memcpy(&b1.mac_header, a, sizeof(*a));

	sg_init_table(sg, ARRAY_SIZE(sg));
	sg_set_buf(&sg[0], &b0, sizeof(b0));
	sg_set_buf(&sg[1], &b1, sizeof(b1));
	sg_set_buf(&sg[2], b, blen);
	/* 0 if well behaved :) */
	sg_set_buf(&sg[3], bzero, zero_padding);
	sg_init_one(&sg_dst, dst_buf, dst_size);

	skcipher_request_set_tfm(req, tfm_cbc);
	skcipher_request_set_callback(req, 0, NULL, NULL);
	skcipher_request_set_crypt(req, sg, &sg_dst, dst_size, iv);
	result = crypto_skcipher_encrypt(req);
	skcipher_request_zero(req);
	if (result < 0) {
		printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
		       result);
		goto error_cbc_crypt;
	}

	/* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
	 * The procedure is to AES crypt the A0 block and XOR the MIC
	 * Tag against it; we only do the first 8 bytes and place it
	 * directly in the destination buffer.
	 *
	 * POS Crypto API: size is assumed to be AES's block size.
	 * Thanks for documenting it -- tip taken from airo.c
	 */
	ax.flags = 0x01;		/* as per WUSB 1.0 spec */
	ax.ccm_nonce = *n;
	ax.counter = 0;
	crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
	bytewise_xor(mic, &ax, iv, 8);
	result = 8;
error_cbc_crypt:
	kfree(dst_buf);
error_dst_buf:
	return result;
}
Пример #14
0
/**
 * fname_encrypt() - encrypt a filename
 *
 * The caller must have allocated sufficient memory for the @oname string.
 *
 * Return: 0 on success, -errno on failure
 */
static int fname_encrypt(struct inode *inode,
			const struct qstr *iname, struct fscrypt_str *oname)
{
	struct skcipher_request *req = NULL;
	DECLARE_FS_COMPLETION_RESULT(ecr);
	struct fscrypt_info *ci = inode->i_crypt_info;
	struct crypto_skcipher *tfm = ci->ci_ctfm;
	int res = 0;
	char iv[FS_CRYPTO_BLOCK_SIZE];
	struct scatterlist sg;
	int padding = 4 << (ci->ci_flags & FS_POLICY_FLAGS_PAD_MASK);
	unsigned int lim;
	unsigned int cryptlen;

	lim = inode->i_sb->s_cop->max_namelen(inode);
	if (iname->len <= 0 || iname->len > lim)
		return -EIO;

	/*
	 * Copy the filename to the output buffer for encrypting in-place and
	 * pad it with the needed number of NUL bytes.
	 */
	cryptlen = max_t(unsigned int, iname->len, FS_CRYPTO_BLOCK_SIZE);
	cryptlen = round_up(cryptlen, padding);
	cryptlen = min(cryptlen, lim);
	memcpy(oname->name, iname->name, iname->len);
	memset(oname->name + iname->len, 0, cryptlen - iname->len);

	/* Initialize the IV */
	memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);

	/* Set up the encryption request */
	req = skcipher_request_alloc(tfm, GFP_NOFS);
	if (!req) {
		printk_ratelimited(KERN_ERR
			"%s: skcipher_request_alloc() failed\n", __func__);
		return -ENOMEM;
	}
	skcipher_request_set_callback(req,
			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
			fname_crypt_complete, &ecr);
	sg_init_one(&sg, oname->name, cryptlen);
	skcipher_request_set_crypt(req, &sg, &sg, cryptlen, iv);

	/* Do the encryption */
	res = crypto_skcipher_encrypt(req);
	if (res == -EINPROGRESS || res == -EBUSY) {
		/* Request is being completed asynchronously; wait for it */
		wait_for_completion(&ecr.completion);
		res = ecr.res;
	}
	skcipher_request_free(req);
	if (res < 0) {
		printk_ratelimited(KERN_ERR
				"%s: Error (error code %d)\n", __func__, res);
		return res;
	}

	oname->len = cryptlen;
	return 0;
}
Пример #15
0
/**
 * ext4_fname_encrypt() -
 *
 * This function encrypts the input filename, and returns the length of the
 * ciphertext. Errors are returned as negative numbers.  We trust the caller to
 * allocate sufficient memory to oname string.
 */
static int ext4_fname_encrypt(struct inode *inode,
			      const struct qstr *iname,
			      struct ext4_str *oname)
{
	u32 ciphertext_len;
	struct skcipher_request *req = NULL;
	DECLARE_EXT4_COMPLETION_RESULT(ecr);
	struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
	struct crypto_skcipher *tfm = ci->ci_ctfm;
	int res = 0;
	char iv[EXT4_CRYPTO_BLOCK_SIZE];
	struct scatterlist src_sg, dst_sg;
	int padding = 4 << (ci->ci_flags & EXT4_POLICY_FLAGS_PAD_MASK);
	char *workbuf, buf[32], *alloc_buf = NULL;
	unsigned lim = max_name_len(inode);

	if (iname->len <= 0 || iname->len > lim)
		return -EIO;

	ciphertext_len = (iname->len < EXT4_CRYPTO_BLOCK_SIZE) ?
		EXT4_CRYPTO_BLOCK_SIZE : iname->len;
	ciphertext_len = ext4_fname_crypto_round_up(ciphertext_len, padding);
	ciphertext_len = (ciphertext_len > lim)
			? lim : ciphertext_len;

	if (ciphertext_len <= sizeof(buf)) {
		workbuf = buf;
	} else {
		alloc_buf = kmalloc(ciphertext_len, GFP_NOFS);
		if (!alloc_buf)
			return -ENOMEM;
		workbuf = alloc_buf;
	}

	/* Allocate request */
	req = skcipher_request_alloc(tfm, GFP_NOFS);
	if (!req) {
		printk_ratelimited(
		    KERN_ERR "%s: crypto_request_alloc() failed\n", __func__);
		kfree(alloc_buf);
		return -ENOMEM;
	}
	skcipher_request_set_callback(req,
		CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
		ext4_dir_crypt_complete, &ecr);

	/* Copy the input */
	memcpy(workbuf, iname->name, iname->len);
	if (iname->len < ciphertext_len)
		memset(workbuf + iname->len, 0, ciphertext_len - iname->len);

	/* Initialize IV */
	memset(iv, 0, EXT4_CRYPTO_BLOCK_SIZE);

	/* Create encryption request */
	sg_init_one(&src_sg, workbuf, ciphertext_len);
	sg_init_one(&dst_sg, oname->name, ciphertext_len);
	skcipher_request_set_crypt(req, &src_sg, &dst_sg, ciphertext_len, iv);
	res = crypto_skcipher_encrypt(req);
	if (res == -EINPROGRESS || res == -EBUSY) {
		wait_for_completion(&ecr.completion);
		res = ecr.res;
	}
	kfree(alloc_buf);
	skcipher_request_free(req);
	if (res < 0) {
		printk_ratelimited(
		    KERN_ERR "%s: Error (error code %d)\n", __func__, res);
	}
	oname->len = ciphertext_len;
	return res;
}
Пример #16
0
static int seqiv_aead_encrypt(struct aead_request *req)
{
	struct crypto_aead *geniv = crypto_aead_reqtfm(req);
	struct aead_geniv_ctx *ctx = crypto_aead_ctx(geniv);
	struct aead_request *subreq = aead_request_ctx(req);
	crypto_completion_t compl;
	void *data;
	u8 *info;
	unsigned int ivsize = 8;
	int err;

	if (req->cryptlen < ivsize)
		return -EINVAL;

	aead_request_set_tfm(subreq, ctx->child);

	compl = req->base.complete;
	data = req->base.data;
	info = req->iv;

	if (req->src != req->dst) {
		SKCIPHER_REQUEST_ON_STACK(nreq, ctx->sknull);

		skcipher_request_set_tfm(nreq, ctx->sknull);
		skcipher_request_set_callback(nreq, req->base.flags,
					      NULL, NULL);
		skcipher_request_set_crypt(nreq, req->src, req->dst,
					   req->assoclen + req->cryptlen,
					   NULL);

		err = crypto_skcipher_encrypt(nreq);
		if (err)
			return err;
	}

	if (unlikely(!IS_ALIGNED((unsigned long)info,
				 crypto_aead_alignmask(geniv) + 1))) {
		info = kmalloc(ivsize, req->base.flags &
				       CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL:
								  GFP_ATOMIC);
		if (!info)
			return -ENOMEM;

		memcpy(info, req->iv, ivsize);
		compl = seqiv_aead_encrypt_complete;
		data = req;
	}

	aead_request_set_callback(subreq, req->base.flags, compl, data);
	aead_request_set_crypt(subreq, req->dst, req->dst,
			       req->cryptlen - ivsize, info);
	aead_request_set_ad(subreq, req->assoclen + ivsize);

	crypto_xor(info, ctx->salt, ivsize);
	scatterwalk_map_and_copy(info, req->dst, req->assoclen, ivsize, 1);

	err = crypto_aead_encrypt(subreq);
	if (unlikely(info != req->iv))
		seqiv_aead_encrypt_complete2(req, err);
	return err;
}