Пример #1
0
/*
 Create the system admittance matrix from power system data. Note that this function is called transparently from GetPSFromFile once power system data has been populated (if the file read is successful).
 */
int CreateYBus(PS ps, int *ids){

	int i, from, to, num_buses = ps->num_buses, num_branches = ps->num_branches, nnz = num_buses + 2*num_branches;
	double r, x, b;
	double _Complex y, *diags = malloc(num_buses*sizeof(double _Complex));
	
	//allocate a ybus
	cs_ci *ybus = cs_ci_spalloc(num_buses, num_buses, nnz, 1, 1), *ybus_comp, *ybus_comp_t;
	
	//check memory
	if(!ybus) return 1;
		
	//loop through ybus branches
	for(i=0; i<num_branches; i++)
	{
		//get branch from/to bus indices
		from = ps->branches[i].from_index;
		to = ps->branches[i].to_index;
	
		//determine line admittance
		r = ps->branches[i].r;
		x = ps->branches[i].x;
		b = ps->branches[i].b;		
		y = (1.0+0.0*I)/(r+x*I);

		//add off-diagonals to ybus and increment diagonal entries
		cs_ci_entry(ybus, from, to, -y);
		cs_ci_entry(ybus, to, from, -y);
		diags[from]+=(y+I*b/2.0);
		diags[to]+=(y+I*b/2.0);
	}
		
	//add diogonal entries to ybus.
	for(i=0; i<num_buses; i++) cs_ci_entry(ybus, i, i, diags[i]);
		
	//compress ybus
	ybus_comp=cs_ci_compress(ybus);	
	
	//check that memory allocation was okay
	if(!ybus_comp){cs_ci_spfree(ybus); return 1;}
		
	//free the old ybus and sum duplicates in the compressed matrix (i.e., parallel branches)
	cs_ci_spfree(ybus);
	cs_ci_dupl(ybus_comp);
	
	//sort the columns of ybus using the transpose-transpose trick
	ybus_comp_t = cs_ci_transpose(ybus_comp, 1);
	if(!ybus_comp_t){free(ybus_comp); return 1;}
	free(ybus_comp);
	ybus_comp = cs_ci_transpose(ybus_comp_t, 1);
	if(!ybus_comp){free(ybus_comp_t); return 1;}
	free(ybus_comp_t);
	
	//assign the ps ybus pointer to the compressed, summed ybus matrix	
	ps->ybus = ybus_comp;
		
	//free the diagonal workspace and return
	free(diags);
	return 0;
}
Пример #2
0
/* read a problem from a file */
problem *get_problem (FILE *f, double tol)
{
    cs_ci *T, *A, *C ;
    int sym, m, n, mn, nz1, nz2 ;
    problem *Prob ;
    Prob = cs_ci_calloc (1, sizeof (problem)) ;
    if (!Prob) return (NULL) ;
    T = cs_ci_load (f) ;                   /* load triplet matrix T from a file */
    Prob->A = A = cs_ci_compress (T) ;     /* A = compressed-column form of T */
    cs_ci_spfree (T) ;                     /* clear T */
    if (!cs_ci_dupl (A)) return (free_problem (Prob)) ; /* sum up duplicates */
    Prob->sym = sym = is_sym (A) ;      /* determine if A is symmetric */
    m = A->m ; n = A->n ;
    mn = CS_MAX (m,n) ;
    nz1 = A->p [n] ;
    cs_ci_dropzeros (A) ;                  /* drop zero entries */
    nz2 = A->p [n] ;
    if (tol > 0) cs_ci_droptol (A, tol) ;  /* drop tiny entries (just to test) */
    Prob->C = C = sym ? make_sym (A) : A ;  /* C = A + triu(A,1)', or C=A */
    if (!C) return (free_problem (Prob)) ;
    printf ("\n--- Matrix: %d-by-%d, nnz: %d (sym: %d: nnz %d), norm: %8.2e\n",
            m, n, A->p [n], sym, sym ? C->p [n] : 0, cs_ci_norm (C)) ;
    if (nz1 != nz2) printf ("zero entries dropped: %d\n", nz1 - nz2) ;
    if (nz2 != A->p [n]) printf ("tiny entries dropped: %d\n", nz2 - A->p [n]) ;
    Prob->b = cs_ci_malloc (mn, sizeof (cs_complex_t)) ;
    Prob->x = cs_ci_malloc (mn, sizeof (cs_complex_t)) ;
    Prob->resid = cs_ci_malloc (mn, sizeof (cs_complex_t)) ;
    return ((!Prob->b || !Prob->x || !Prob->resid) ? free_problem (Prob) : Prob) ;
}