/* Subroutine */ int csyrfs_(char *uplo, integer *n, integer *nrhs, complex * a, integer *lda, complex *af, integer *ldaf, integer *ipiv, complex * b, integer *ldb, complex *x, integer *ldx, real *ferr, real *berr, complex *work, real *rwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5; real r__1, r__2, r__3, r__4; complex q__1; /* Builtin functions */ double r_imag(complex *); /* Local variables */ integer i__, j, k; real s, xk; integer nz; real eps; integer kase; real safe1, safe2; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *), caxpy_(integer *, complex *, complex *, integer *, complex *, integer *); integer count; logical upper; extern /* Subroutine */ int csymv_(char *, integer *, complex *, complex * , integer *, complex *, integer *, complex *, complex *, integer * ), clacn2_(integer *, complex *, complex *, real *, integer *, integer *); extern doublereal slamch_(char *); real safmin; extern /* Subroutine */ int xerbla_(char *, integer *); real lstres; extern /* Subroutine */ int csytrs_(char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CSYRFS improves the computed solution to a system of linear */ /* equations when the coefficient matrix is symmetric indefinite, and */ /* provides error bounds and backward error estimates for the solution. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices B and X. NRHS >= 0. */ /* A (input) COMPLEX array, dimension (LDA,N) */ /* The symmetric matrix A. If UPLO = 'U', the leading N-by-N */ /* upper triangular part of A contains the upper triangular part */ /* of the matrix A, and the strictly lower triangular part of A */ /* is not referenced. If UPLO = 'L', the leading N-by-N lower */ /* triangular part of A contains the lower triangular part of */ /* the matrix A, and the strictly upper triangular part of A is */ /* not referenced. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* AF (input) COMPLEX array, dimension (LDAF,N) */ /* The factored form of the matrix A. AF contains the block */ /* diagonal matrix D and the multipliers used to obtain the */ /* factor U or L from the factorization A = U*D*U**T or */ /* A = L*D*L**T as computed by CSYTRF. */ /* LDAF (input) INTEGER */ /* The leading dimension of the array AF. LDAF >= max(1,N). */ /* IPIV (input) INTEGER array, dimension (N) */ /* Details of the interchanges and the block structure of D */ /* as determined by CSYTRF. */ /* B (input) COMPLEX array, dimension (LDB,NRHS) */ /* The right hand side matrix B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (input/output) COMPLEX array, dimension (LDX,NRHS) */ /* On entry, the solution matrix X, as computed by CSYTRS. */ /* On exit, the improved solution matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* FERR (output) REAL array, dimension (NRHS) */ /* The estimated forward error bound for each solution vector */ /* X(j) (the j-th column of the solution matrix X). */ /* If XTRUE is the true solution corresponding to X(j), FERR(j) */ /* is an estimated upper bound for the magnitude of the largest */ /* element in (X(j) - XTRUE) divided by the magnitude of the */ /* largest element in X(j). The estimate is as reliable as */ /* the estimate for RCOND, and is almost always a slight */ /* overestimate of the true error. */ /* BERR (output) REAL array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector X(j) (i.e., the smallest relative change in */ /* any element of A or B that makes X(j) an exact solution). */ /* WORK (workspace) COMPLEX array, dimension (2*N) */ /* RWORK (workspace) REAL array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Internal Parameters */ /* =================== */ /* ITMAX is the maximum number of steps of iterative refinement. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --rwork; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldaf < max(1,*n)) { *info = -7; } else if (*ldb < max(1,*n)) { *info = -10; } else if (*ldx < max(1,*n)) { *info = -12; } if (*info != 0) { i__1 = -(*info); xerbla_("CSYRFS", &i__1); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { ferr[j] = 0.f; berr[j] = 0.f; /* L10: */ } return 0; } /* NZ = maximum number of nonzero elements in each row of A, plus 1 */ nz = *n + 1; eps = slamch_("Epsilon"); safmin = slamch_("Safe minimum"); safe1 = nz * safmin; safe2 = safe1 / eps; /* Do for each right hand side */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { count = 1; lstres = 3.f; L20: /* Loop until stopping criterion is satisfied. */ /* Compute residual R = B - A * X */ ccopy_(n, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); q__1.r = -1.f, q__1.i = -0.f; csymv_(uplo, n, &q__1, &a[a_offset], lda, &x[j * x_dim1 + 1], &c__1, & c_b1, &work[1], &c__1); /* Compute componentwise relative backward error from formula */ /* max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */ /* where abs(Z) is the componentwise absolute value of the matrix */ /* or vector Z. If the i-th component of the denominator is less */ /* than SAFE2, then SAFE1 is added to the i-th components of the */ /* numerator and denominator before dividing. */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; rwork[i__] = (r__1 = b[i__3].r, dabs(r__1)) + (r__2 = r_imag(&b[ i__ + j * b_dim1]), dabs(r__2)); /* L30: */ } /* Compute abs(A)*abs(X) + abs(B). */ if (upper) { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = 0.f; i__3 = k + j * x_dim1; xk = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[k + j * x_dim1]), dabs(r__2)); i__3 = k - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__ + k * a_dim1; rwork[i__] += ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = r_imag(&a[i__ + k * a_dim1]), dabs(r__2))) * xk; i__4 = i__ + k * a_dim1; i__5 = i__ + j * x_dim1; s += ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = r_imag(&a[ i__ + k * a_dim1]), dabs(r__2))) * ((r__3 = x[ i__5].r, dabs(r__3)) + (r__4 = r_imag(&x[i__ + j * x_dim1]), dabs(r__4))); /* L40: */ } i__3 = k + k * a_dim1; rwork[k] = rwork[k] + ((r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[k + k * a_dim1]), dabs(r__2))) * xk + s; /* L50: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = 0.f; i__3 = k + j * x_dim1; xk = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[k + j * x_dim1]), dabs(r__2)); i__3 = k + k * a_dim1; rwork[k] += ((r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(& a[k + k * a_dim1]), dabs(r__2))) * xk; i__3 = *n; for (i__ = k + 1; i__ <= i__3; ++i__) { i__4 = i__ + k * a_dim1; rwork[i__] += ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = r_imag(&a[i__ + k * a_dim1]), dabs(r__2))) * xk; i__4 = i__ + k * a_dim1; i__5 = i__ + j * x_dim1; s += ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = r_imag(&a[ i__ + k * a_dim1]), dabs(r__2))) * ((r__3 = x[ i__5].r, dabs(r__3)) + (r__4 = r_imag(&x[i__ + j * x_dim1]), dabs(r__4))); /* L60: */ } rwork[k] += s; /* L70: */ } } s = 0.f; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (rwork[i__] > safe2) { /* Computing MAX */ i__3 = i__; r__3 = s, r__4 = ((r__1 = work[i__3].r, dabs(r__1)) + (r__2 = r_imag(&work[i__]), dabs(r__2))) / rwork[i__]; s = dmax(r__3,r__4); } else { /* Computing MAX */ i__3 = i__; r__3 = s, r__4 = ((r__1 = work[i__3].r, dabs(r__1)) + (r__2 = r_imag(&work[i__]), dabs(r__2)) + safe1) / (rwork[i__] + safe1); s = dmax(r__3,r__4); } /* L80: */ } berr[j] = s; /* Test stopping criterion. Continue iterating if */ /* 1) The residual BERR(J) is larger than machine epsilon, and */ /* 2) BERR(J) decreased by at least a factor of 2 during the */ /* last iteration, and */ /* 3) At most ITMAX iterations tried. */ if (berr[j] > eps && berr[j] * 2.f <= lstres && count <= 5) { /* Update solution and try again. */ csytrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[1], n, info); caxpy_(n, &c_b1, &work[1], &c__1, &x[j * x_dim1 + 1], &c__1); lstres = berr[j]; ++count; goto L20; } /* Bound error from formula */ /* norm(X - XTRUE) / norm(X) .le. FERR = */ /* norm( abs(inv(A))* */ /* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */ /* where */ /* norm(Z) is the magnitude of the largest component of Z */ /* inv(A) is the inverse of A */ /* abs(Z) is the componentwise absolute value of the matrix or */ /* vector Z */ /* NZ is the maximum number of nonzeros in any row of A, plus 1 */ /* EPS is machine epsilon */ /* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */ /* is incremented by SAFE1 if the i-th component of */ /* abs(A)*abs(X) + abs(B) is less than SAFE2. */ /* Use CLACN2 to estimate the infinity-norm of the matrix */ /* inv(A) * diag(W), */ /* where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (rwork[i__] > safe2) { i__3 = i__; rwork[i__] = (r__1 = work[i__3].r, dabs(r__1)) + (r__2 = r_imag(&work[i__]), dabs(r__2)) + nz * eps * rwork[ i__]; } else { i__3 = i__; rwork[i__] = (r__1 = work[i__3].r, dabs(r__1)) + (r__2 = r_imag(&work[i__]), dabs(r__2)) + nz * eps * rwork[ i__] + safe1; } /* L90: */ } kase = 0; L100: clacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave); if (kase != 0) { if (kase == 1) { /* Multiply by diag(W)*inv(A'). */ csytrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[ 1], n, info); i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__; i__4 = i__; i__5 = i__; q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4] * work[i__5].i; work[i__3].r = q__1.r, work[i__3].i = q__1.i; /* L110: */ } } else if (kase == 2) { /* Multiply by inv(A)*diag(W). */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__; i__4 = i__; i__5 = i__; q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4] * work[i__5].i; work[i__3].r = q__1.r, work[i__3].i = q__1.i; /* L120: */ } csytrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[ 1], n, info); } goto L100; } /* Normalize error. */ lstres = 0.f; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ i__3 = i__ + j * x_dim1; r__3 = lstres, r__4 = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[i__ + j * x_dim1]), dabs(r__2)); lstres = dmax(r__3,r__4); /* L130: */ } if (lstres != 0.f) { ferr[j] /= lstres; } /* L140: */ } return 0; /* End of CSYRFS */ } /* csyrfs_ */
/* Subroutine */ int cla_syrfsx_extended_(integer *prec_type__, char *uplo, integer *n, integer *nrhs, complex *a, integer *lda, complex *af, integer *ldaf, integer *ipiv, logical *colequ, real *c__, complex *b, integer *ldb, complex *y, integer *ldy, real *berr_out__, integer * n_norms__, real *err_bnds_norm__, real *err_bnds_comp__, complex *res, real *ayb, complex *dy, complex *y_tail__, real *rcond, integer * ithresh, real *rthresh, real *dz_ub__, logical *ignore_cwise__, integer *info) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, y_dim1, y_offset, err_bnds_norm_dim1, err_bnds_norm_offset, err_bnds_comp_dim1, err_bnds_comp_offset, i__1, i__2, i__3, i__4; real r__1, r__2; /* Builtin functions */ double r_imag(complex *); /* Local variables */ real dxratmax, dzratmax; integer i__, j; logical incr_prec__; extern /* Subroutine */ int cla_syamv_(integer *, integer *, real *, complex *, integer *, complex *, integer *, real *, real *, integer *); real prev_dz_z__, yk, final_dx_x__; extern /* Subroutine */ int cla_wwaddw_(integer *, complex *, complex *, complex *); real final_dz_z__, prevnormdx; integer cnt; real dyk, eps, incr_thresh__, dx_x__, dz_z__; extern /* Subroutine */ int cla_lin_berr_(integer *, integer *, integer * , complex *, real *, real *); real ymin; integer y_prec_state__; extern /* Subroutine */ int blas_csymv_x_(integer *, integer *, complex * , complex *, integer *, complex *, integer *, complex *, complex * , integer *, integer *); integer uplo2; extern logical lsame_(char *, char *); extern /* Subroutine */ int blas_csymv2_x_(integer *, integer *, complex *, complex *, integer *, complex *, complex *, integer *, complex *, complex *, integer *, integer *), ccopy_(integer *, complex *, integer *, complex *, integer *); real dxrat, dzrat; extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, integer *, complex *, integer *); logical upper; extern /* Subroutine */ int csymv_(char *, integer *, complex *, complex * , integer *, complex *, integer *, complex *, complex *, integer * ); real normx, normy; extern real slamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *); real normdx; extern /* Subroutine */ int csytrs_(char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); real hugeval; extern integer ilauplo_(char *); integer x_state__, z_state__; /* -- LAPACK computational routine (version 3.4.2) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* September 2012 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. Parameters .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function Definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ err_bnds_comp_dim1 = *nrhs; err_bnds_comp_offset = 1 + err_bnds_comp_dim1; err_bnds_comp__ -= err_bnds_comp_offset; err_bnds_norm_dim1 = *nrhs; err_bnds_norm_offset = 1 + err_bnds_norm_dim1; err_bnds_norm__ -= err_bnds_norm_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; --c__; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; y_dim1 = *ldy; y_offset = 1 + y_dim1; y -= y_offset; --berr_out__; --res; --ayb; --dy; --y_tail__; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*nrhs < 0) { *info = -4; } else if (*lda < max(1,*n)) { *info = -6; } else if (*ldaf < max(1,*n)) { *info = -8; } else if (*ldb < max(1,*n)) { *info = -13; } else if (*ldy < max(1,*n)) { *info = -15; } if (*info != 0) { i__1 = -(*info); xerbla_("CLA_SYRFSX_EXTENDED", &i__1); return 0; } eps = slamch_("Epsilon"); hugeval = slamch_("Overflow"); /* Force HUGEVAL to Inf */ hugeval *= hugeval; /* Using HUGEVAL may lead to spurious underflows. */ incr_thresh__ = (real) (*n) * eps; if (lsame_(uplo, "L")) { uplo2 = ilauplo_("L"); } else { uplo2 = ilauplo_("U"); } i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { y_prec_state__ = 1; if (y_prec_state__ == 2) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__; y_tail__[i__3].r = 0.f; y_tail__[i__3].i = 0.f; // , expr subst } } dxrat = 0.f; dxratmax = 0.f; dzrat = 0.f; dzratmax = 0.f; final_dx_x__ = hugeval; final_dz_z__ = hugeval; prevnormdx = hugeval; prev_dz_z__ = hugeval; dz_z__ = hugeval; dx_x__ = hugeval; x_state__ = 1; z_state__ = 0; incr_prec__ = FALSE_; i__2 = *ithresh; for (cnt = 1; cnt <= i__2; ++cnt) { /* Compute residual RES = B_s - op(A_s) * Y, */ /* op(A) = A, A**T, or A**H depending on TRANS (and type). */ ccopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1); if (y_prec_state__ == 0) { csymv_(uplo, n, &c_b14, &a[a_offset], lda, &y[j * y_dim1 + 1], &c__1, &c_b15, &res[1], &c__1); } else if (y_prec_state__ == 1) { blas_csymv_x_(&uplo2, n, &c_b14, &a[a_offset], lda, &y[j * y_dim1 + 1], &c__1, &c_b15, &res[1], &c__1, prec_type__); } else { blas_csymv2_x_(&uplo2, n, &c_b14, &a[a_offset], lda, &y[j * y_dim1 + 1], &y_tail__[1], &c__1, &c_b15, &res[1], & c__1, prec_type__); } /* XXX: RES is no longer needed. */ ccopy_(n, &res[1], &c__1, &dy[1], &c__1); csytrs_(uplo, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &dy[1], n, info); /* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT. */ normx = 0.f; normy = 0.f; normdx = 0.f; dz_z__ = 0.f; ymin = hugeval; i__3 = *n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__ + j * y_dim1; yk = (r__1 = y[i__4].r, f2c_abs(r__1)) + (r__2 = r_imag(&y[i__ + j * y_dim1]), f2c_abs(r__2)); i__4 = i__; dyk = (r__1 = dy[i__4].r, f2c_abs(r__1)) + (r__2 = r_imag(&dy[i__] ), f2c_abs(r__2)); if (yk != 0.f) { /* Computing MAX */ r__1 = dz_z__; r__2 = dyk / yk; // , expr subst dz_z__ = max(r__1,r__2); } else if (dyk != 0.f) { dz_z__ = hugeval; } ymin = min(ymin,yk); normy = max(normy,yk); if (*colequ) { /* Computing MAX */ r__1 = normx; r__2 = yk * c__[i__]; // , expr subst normx = max(r__1,r__2); /* Computing MAX */ r__1 = normdx; r__2 = dyk * c__[i__]; // , expr subst normdx = max(r__1,r__2); } else { normx = normy; normdx = max(normdx,dyk); } } if (normx != 0.f) { dx_x__ = normdx / normx; } else if (normdx == 0.f) { dx_x__ = 0.f; } else { dx_x__ = hugeval; } dxrat = normdx / prevnormdx; dzrat = dz_z__ / prev_dz_z__; /* Check termination criteria. */ if (ymin * *rcond < incr_thresh__ * normy && y_prec_state__ < 2) { incr_prec__ = TRUE_; } if (x_state__ == 3 && dxrat <= *rthresh) { x_state__ = 1; } if (x_state__ == 1) { if (dx_x__ <= eps) { x_state__ = 2; } else if (dxrat > *rthresh) { if (y_prec_state__ != 2) { incr_prec__ = TRUE_; } else { x_state__ = 3; } } else { if (dxrat > dxratmax) { dxratmax = dxrat; } } if (x_state__ > 1) { final_dx_x__ = dx_x__; } } if (z_state__ == 0 && dz_z__ <= *dz_ub__) { z_state__ = 1; } if (z_state__ == 3 && dzrat <= *rthresh) { z_state__ = 1; } if (z_state__ == 1) { if (dz_z__ <= eps) { z_state__ = 2; } else if (dz_z__ > *dz_ub__) { z_state__ = 0; dzratmax = 0.f; final_dz_z__ = hugeval; } else if (dzrat > *rthresh) { if (y_prec_state__ != 2) { incr_prec__ = TRUE_; } else { z_state__ = 3; } } else { if (dzrat > dzratmax) { dzratmax = dzrat; } } if (z_state__ > 1) { final_dz_z__ = dz_z__; } } if (x_state__ != 1 && (*ignore_cwise__ || z_state__ != 1)) { goto L666; } if (incr_prec__) { incr_prec__ = FALSE_; ++y_prec_state__; i__3 = *n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__; y_tail__[i__4].r = 0.f; y_tail__[i__4].i = 0.f; // , expr subst } } prevnormdx = normdx; prev_dz_z__ = dz_z__; /* Update soluton. */ if (y_prec_state__ < 2) { caxpy_(n, &c_b15, &dy[1], &c__1, &y[j * y_dim1 + 1], &c__1); } else { cla_wwaddw_(n, &y[j * y_dim1 + 1], &y_tail__[1], &dy[1]); } } /* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't CALL F90_EXIT. */ L666: /* Set final_* when cnt hits ithresh. */ if (x_state__ == 1) { final_dx_x__ = dx_x__; } if (z_state__ == 1) { final_dz_z__ = dz_z__; } /* Compute error bounds. */ if (*n_norms__ >= 1) { err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = final_dx_x__ / ( 1 - dxratmax); } if (*n_norms__ >= 2) { err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = final_dz_z__ / ( 1 - dzratmax); } /* Compute componentwise relative backward error from formula */ /* max(i) ( f2c_abs(R(i)) / ( f2c_abs(op(A_s))*f2c_abs(Y) + f2c_abs(B_s) )(i) ) */ /* where f2c_abs(Z) is the componentwise absolute value of the matrix */ /* or vector Z. */ /* Compute residual RES = B_s - op(A_s) * Y, */ /* op(A) = A, A**T, or A**H depending on TRANS (and type). */ ccopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1); csymv_(uplo, n, &c_b14, &a[a_offset], lda, &y[j * y_dim1 + 1], &c__1, &c_b15, &res[1], &c__1); i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; ayb[i__] = (r__1 = b[i__3].r, f2c_abs(r__1)) + (r__2 = r_imag(&b[i__ + j * b_dim1]), f2c_abs(r__2)); } /* Compute f2c_abs(op(A_s))*f2c_abs(Y) + f2c_abs(B_s). */ cla_syamv_(&uplo2, n, &c_b37, &a[a_offset], lda, &y[j * y_dim1 + 1], &c__1, &c_b37, &ayb[1], &c__1); cla_lin_berr_(n, n, &c__1, &res[1], &ayb[1], &berr_out__[j]); /* End of loop for each RHS. */ } return 0; }
/* Subroutine */ int csysvx_(char *fact, char *uplo, integer *n, integer * nrhs, complex *a, integer *lda, complex *af, integer *ldaf, integer * ipiv, complex *b, integer *ldb, complex *x, integer *ldx, real *rcond, real *ferr, real *berr, complex *work, integer *lwork, real *rwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2; /* Local variables */ integer nb; extern logical lsame_(char *, char *); real anorm; extern doublereal slamch_(char *); logical nofact; extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern doublereal clansy_(char *, char *, integer *, complex *, integer *, real *); extern /* Subroutine */ int csycon_(char *, integer *, complex *, integer *, integer *, real *, real *, complex *, integer *), csyrfs_(char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *, complex *, integer *, complex *, integer *, real *, real *, complex *, real *, integer *), csytrf_(char *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); integer lwkopt; logical lquery; extern /* Subroutine */ int csytrs_(char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CSYSVX uses the diagonal pivoting factorization to compute the */ /* solution to a complex system of linear equations A * X = B, */ /* where A is an N-by-N symmetric matrix and X and B are N-by-NRHS */ /* matrices. */ /* Error bounds on the solution and a condition estimate are also */ /* provided. */ /* Description */ /* =========== */ /* The following steps are performed: */ /* 1. If FACT = 'N', the diagonal pivoting method is used to factor A. */ /* The form of the factorization is */ /* A = U * D * U**T, if UPLO = 'U', or */ /* A = L * D * L**T, if UPLO = 'L', */ /* where U (or L) is a product of permutation and unit upper (lower) */ /* triangular matrices, and D is symmetric and block diagonal with */ /* 1-by-1 and 2-by-2 diagonal blocks. */ /* 2. If some D(i,i)=0, so that D is exactly singular, then the routine */ /* returns with INFO = i. Otherwise, the factored form of A is used */ /* to estimate the condition number of the matrix A. If the */ /* reciprocal of the condition number is less than machine precision, */ /* INFO = N+1 is returned as a warning, but the routine still goes on */ /* to solve for X and compute error bounds as described below. */ /* 3. The system of equations is solved for X using the factored form */ /* of A. */ /* 4. Iterative refinement is applied to improve the computed solution */ /* matrix and calculate error bounds and backward error estimates */ /* for it. */ /* Arguments */ /* ========= */ /* FACT (input) CHARACTER*1 */ /* Specifies whether or not the factored form of A has been */ /* supplied on entry. */ /* = 'F': On entry, AF and IPIV contain the factored form */ /* of A. A, AF and IPIV will not be modified. */ /* = 'N': The matrix A will be copied to AF and factored. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The number of linear equations, i.e., the order of the */ /* matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices B and X. NRHS >= 0. */ /* A (input) COMPLEX array, dimension (LDA,N) */ /* The symmetric matrix A. If UPLO = 'U', the leading N-by-N */ /* upper triangular part of A contains the upper triangular part */ /* of the matrix A, and the strictly lower triangular part of A */ /* is not referenced. If UPLO = 'L', the leading N-by-N lower */ /* triangular part of A contains the lower triangular part of */ /* the matrix A, and the strictly upper triangular part of A is */ /* not referenced. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* AF (input or output) COMPLEX array, dimension (LDAF,N) */ /* If FACT = 'F', then AF is an input argument and on entry */ /* contains the block diagonal matrix D and the multipliers used */ /* to obtain the factor U or L from the factorization */ /* A = U*D*U**T or A = L*D*L**T as computed by CSYTRF. */ /* If FACT = 'N', then AF is an output argument and on exit */ /* returns the block diagonal matrix D and the multipliers used */ /* to obtain the factor U or L from the factorization */ /* A = U*D*U**T or A = L*D*L**T. */ /* LDAF (input) INTEGER */ /* The leading dimension of the array AF. LDAF >= max(1,N). */ /* IPIV (input or output) INTEGER array, dimension (N) */ /* If FACT = 'F', then IPIV is an input argument and on entry */ /* contains details of the interchanges and the block structure */ /* of D, as determined by CSYTRF. */ /* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */ /* interchanged and D(k,k) is a 1-by-1 diagonal block. */ /* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */ /* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */ /* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */ /* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */ /* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */ /* If FACT = 'N', then IPIV is an output argument and on exit */ /* contains details of the interchanges and the block structure */ /* of D, as determined by CSYTRF. */ /* B (input) COMPLEX array, dimension (LDB,NRHS) */ /* The N-by-NRHS right hand side matrix B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (output) COMPLEX array, dimension (LDX,NRHS) */ /* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* RCOND (output) REAL */ /* The estimate of the reciprocal condition number of the matrix */ /* A. If RCOND is less than the machine precision (in */ /* particular, if RCOND = 0), the matrix is singular to working */ /* precision. This condition is indicated by a return code of */ /* INFO > 0. */ /* FERR (output) REAL array, dimension (NRHS) */ /* The estimated forward error bound for each solution vector */ /* X(j) (the j-th column of the solution matrix X). */ /* If XTRUE is the true solution corresponding to X(j), FERR(j) */ /* is an estimated upper bound for the magnitude of the largest */ /* element in (X(j) - XTRUE) divided by the magnitude of the */ /* largest element in X(j). The estimate is as reliable as */ /* the estimate for RCOND, and is almost always a slight */ /* overestimate of the true error. */ /* BERR (output) REAL array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector X(j) (i.e., the smallest relative change in */ /* any element of A or B that makes X(j) an exact solution). */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The length of WORK. LWORK >= max(1,2*N), and for best */ /* performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where */ /* NB is the optimal blocksize for CSYTRF. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* RWORK (workspace) REAL array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, and i is */ /* <= N: D(i,i) is exactly zero. The factorization */ /* has been completed but the factor D is exactly */ /* singular, so the solution and error bounds could */ /* not be computed. RCOND = 0 is returned. */ /* = N+1: D is nonsingular, but RCOND is less than machine */ /* precision, meaning that the matrix is singular */ /* to working precision. Nevertheless, the */ /* solution and error bounds are computed because */ /* there are a number of situations where the */ /* computed solution can be more accurate than the */ /* value of RCOND would suggest. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --rwork; /* Function Body */ *info = 0; nofact = lsame_(fact, "N"); lquery = *lwork == -1; if (! nofact && ! lsame_(fact, "F")) { *info = -1; } else if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*nrhs < 0) { *info = -4; } else if (*lda < max(1,*n)) { *info = -6; } else if (*ldaf < max(1,*n)) { *info = -8; } else if (*ldb < max(1,*n)) { *info = -11; } else if (*ldx < max(1,*n)) { *info = -13; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = *n << 1; if (*lwork < max(i__1,i__2) && ! lquery) { *info = -18; } } if (*info == 0) { /* Computing MAX */ i__1 = 1, i__2 = *n << 1; lwkopt = max(i__1,i__2); if (nofact) { nb = ilaenv_(&c__1, "CSYTRF", uplo, n, &c_n1, &c_n1, &c_n1); /* Computing MAX */ i__1 = lwkopt, i__2 = *n * nb; lwkopt = max(i__1,i__2); } work[1].r = (real) lwkopt, work[1].i = 0.f; } if (*info != 0) { i__1 = -(*info); xerbla_("CSYSVX", &i__1); return 0; } else if (lquery) { return 0; } if (nofact) { /* Compute the factorization A = U*D*U' or A = L*D*L'. */ clacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf); csytrf_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &work[1], lwork, info); /* Return if INFO is non-zero. */ if (*info > 0) { *rcond = 0.f; return 0; } } /* Compute the norm of the matrix A. */ anorm = clansy_("I", uplo, n, &a[a_offset], lda, &rwork[1]); /* Compute the reciprocal of the condition number of A. */ csycon_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &anorm, rcond, &work[1], info); /* Compute the solution vectors X. */ clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); csytrs_(uplo, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx, info); /* Use iterative refinement to improve the computed solutions and */ /* compute error bounds and backward error estimates for them. */ csyrfs_(uplo, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1] , &rwork[1], info); /* Set INFO = N+1 if the matrix is singular to working precision. */ if (*rcond < slamch_("Epsilon")) { *info = *n + 1; } work[1].r = (real) lwkopt, work[1].i = 0.f; return 0; /* End of CSYSVX */ } /* csysvx_ */
/* Subroutine */ int csysv_(char *uplo, integer *n, integer *nrhs, complex *a, integer *lda, integer *ipiv, complex *b, integer *ldb, complex *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1; /* Local variables */ extern logical lsame_(char *, char *); extern /* Subroutine */ int xerbla_(char *, integer *), csytrf_( char *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); integer lwkopt; logical lquery; extern /* Subroutine */ int csytrs_(char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *), csytrs2_(char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, complex *, integer *); /* -- LAPACK driver routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --work; /* Function Body */ *info = 0; lquery = *lwork == -1; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -8; } else if (*lwork < 1 && ! lquery) { *info = -10; } if (*info == 0) { if (*n == 0) { lwkopt = 1; } else { csytrf_(uplo, n, &a[a_offset], lda, &ipiv[1], &work[1], &c_n1, info); lwkopt = work[1].r; } work[1].r = (real) lwkopt; work[1].i = 0.f; // , expr subst } if (*info != 0) { i__1 = -(*info); xerbla_("CSYSV ", &i__1); return 0; } else if (lquery) { return 0; } /* Compute the factorization A = U*D*U**T or A = L*D*L**T. */ csytrf_(uplo, n, &a[a_offset], lda, &ipiv[1], &work[1], lwork, info); if (*info == 0) { /* Solve the system A*X = B, overwriting B with X. */ if (*lwork < *n) { /* Solve with TRS ( Use Level BLAS 2) */ csytrs_(uplo, n, nrhs, &a[a_offset], lda, &ipiv[1], &b[b_offset], ldb, info); } else { /* Solve with TRS2 ( Use Level BLAS 3) */ csytrs2_(uplo, n, nrhs, &a[a_offset], lda, &ipiv[1], &b[b_offset], ldb, &work[1], info); } } work[1].r = (real) lwkopt; work[1].i = 0.f; // , expr subst return 0; /* End of CSYSV */ }
/* ===================================================================== */ real cla_syrcond_c_(char *uplo, integer *n, complex *a, integer *lda, complex *af, integer *ldaf, integer *ipiv, real *c__, logical *capply, integer *info, complex *work, real *rwork) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2, i__3, i__4; real ret_val, r__1, r__2; complex q__1; /* Builtin functions */ double r_imag(complex *); /* Local variables */ integer i__, j; logical up; real tmp; integer kase; extern logical lsame_(char *, char *); integer isave[3]; real anorm; logical upper; extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real *, integer *, integer *), xerbla_(char *, integer *); real ainvnm; extern /* Subroutine */ int csytrs_(char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); /* -- LAPACK computational routine (version 3.4.2) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* September 2012 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function Definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; --c__; --work; --rwork; /* Function Body */ ret_val = 0.f; *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else if (*ldaf < max(1,*n)) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("CLA_SYRCOND_C", &i__1); return ret_val; } up = FALSE_; if (lsame_(uplo, "U")) { up = TRUE_; } /* Compute norm of op(A)*op2(C). */ anorm = 0.f; if (up) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tmp = 0.f; if (*capply) { i__2 = i__; for (j = 1; j <= i__2; ++j) { i__3 = j + i__ * a_dim1; tmp += ((r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&a[ j + i__ * a_dim1]), abs(r__2))) / c__[j]; } i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { i__3 = i__ + j * a_dim1; tmp += ((r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&a[ i__ + j * a_dim1]), abs(r__2))) / c__[j]; } } else { i__2 = i__; for (j = 1; j <= i__2; ++j) { i__3 = j + i__ * a_dim1; tmp += (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&a[ j + i__ * a_dim1]), abs(r__2)); } i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { i__3 = i__ + j * a_dim1; tmp += (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&a[ i__ + j * a_dim1]), abs(r__2)); } } rwork[i__] = tmp; anorm = max(anorm,tmp); } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tmp = 0.f; if (*capply) { i__2 = i__; for (j = 1; j <= i__2; ++j) { i__3 = i__ + j * a_dim1; tmp += ((r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&a[ i__ + j * a_dim1]), abs(r__2))) / c__[j]; } i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { i__3 = j + i__ * a_dim1; tmp += ((r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&a[ j + i__ * a_dim1]), abs(r__2))) / c__[j]; } } else { i__2 = i__; for (j = 1; j <= i__2; ++j) { i__3 = i__ + j * a_dim1; tmp += (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&a[ i__ + j * a_dim1]), abs(r__2)); } i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { i__3 = j + i__ * a_dim1; tmp += (r__1 = a[i__3].r, abs(r__1)) + (r__2 = r_imag(&a[ j + i__ * a_dim1]), abs(r__2)); } } rwork[i__] = tmp; anorm = max(anorm,tmp); } } /* Quick return if possible. */ if (*n == 0) { ret_val = 1.f; return ret_val; } else if (anorm == 0.f) { return ret_val; } /* Estimate the norm of inv(op(A)). */ ainvnm = 0.f; kase = 0; L10: clacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == 2) { /* Multiply by R. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__; i__4 = i__; q__1.r = rwork[i__4] * work[i__3].r; q__1.i = rwork[i__4] * work[i__3].i; // , expr subst work[i__2].r = q__1.r; work[i__2].i = q__1.i; // , expr subst } if (up) { csytrs_("U", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[ 1], n, info); } else { csytrs_("L", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[ 1], n, info); } /* Multiply by inv(C). */ if (*capply) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__; i__4 = i__; q__1.r = c__[i__4] * work[i__3].r; q__1.i = c__[i__4] * work[i__3].i; // , expr subst work[i__2].r = q__1.r; work[i__2].i = q__1.i; // , expr subst } } } else { /* Multiply by inv(C**T). */ if (*capply) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__; i__4 = i__; q__1.r = c__[i__4] * work[i__3].r; q__1.i = c__[i__4] * work[i__3].i; // , expr subst work[i__2].r = q__1.r; work[i__2].i = q__1.i; // , expr subst } } if (up) { csytrs_("U", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[ 1], n, info); } else { csytrs_("L", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[ 1], n, info); } /* Multiply by R. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__; i__4 = i__; q__1.r = rwork[i__4] * work[i__3].r; q__1.i = rwork[i__4] * work[i__3].i; // , expr subst work[i__2].r = q__1.r; work[i__2].i = q__1.i; // , expr subst } } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.f) { ret_val = 1.f / ainvnm; } return ret_val; }
/* Subroutine */ int csysvx_(char *fact, char *uplo, integer *n, integer * nrhs, complex *a, integer *lda, complex *af, integer *ldaf, integer * ipiv, complex *b, integer *ldb, complex *x, integer *ldx, real *rcond, real *ferr, real *berr, complex *work, integer *lwork, real *rwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2; /* Local variables */ integer nb; extern logical lsame_(char *, char *); real anorm; extern real slamch_(char *); logical nofact; extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern real clansy_(char *, char *, integer *, complex *, integer *, real *); extern /* Subroutine */ int csycon_(char *, integer *, complex *, integer *, integer *, real *, real *, complex *, integer *), csyrfs_(char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *, complex *, integer *, complex *, integer *, real *, real *, complex *, real *, integer *), csytrf_(char *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); integer lwkopt; logical lquery; extern /* Subroutine */ int csytrs_(char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); /* -- LAPACK driver routine (version 3.4.1) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* April 2012 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --rwork; /* Function Body */ *info = 0; nofact = lsame_(fact, "N"); lquery = *lwork == -1; if (! nofact && ! lsame_(fact, "F")) { *info = -1; } else if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*nrhs < 0) { *info = -4; } else if (*lda < max(1,*n)) { *info = -6; } else if (*ldaf < max(1,*n)) { *info = -8; } else if (*ldb < max(1,*n)) { *info = -11; } else if (*ldx < max(1,*n)) { *info = -13; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1; i__2 = *n << 1; // , expr subst if (*lwork < max(i__1,i__2) && ! lquery) { *info = -18; } } if (*info == 0) { /* Computing MAX */ i__1 = 1; i__2 = *n << 1; // , expr subst lwkopt = max(i__1,i__2); if (nofact) { nb = ilaenv_(&c__1, "CSYTRF", uplo, n, &c_n1, &c_n1, &c_n1); /* Computing MAX */ i__1 = lwkopt; i__2 = *n * nb; // , expr subst lwkopt = max(i__1,i__2); } work[1].r = (real) lwkopt; work[1].i = 0.f; // , expr subst } if (*info != 0) { i__1 = -(*info); xerbla_("CSYSVX", &i__1); return 0; } else if (lquery) { return 0; } if (nofact) { /* Compute the factorization A = U*D*U**T or A = L*D*L**T. */ clacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf); csytrf_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &work[1], lwork, info); /* Return if INFO is non-zero. */ if (*info > 0) { *rcond = 0.f; return 0; } } /* Compute the norm of the matrix A. */ anorm = clansy_("I", uplo, n, &a[a_offset], lda, &rwork[1]); /* Compute the reciprocal of the condition number of A. */ csycon_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &anorm, rcond, &work[1], info); /* Compute the solution vectors X. */ clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); csytrs_(uplo, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx, info); /* Use iterative refinement to improve the computed solutions and */ /* compute error bounds and backward error estimates for them. */ csyrfs_(uplo, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1] , &rwork[1], info); /* Set INFO = N+1 if the matrix is singular to working precision. */ if (*rcond < slamch_("Epsilon")) { *info = *n + 1; } work[1].r = (real) lwkopt; work[1].i = 0.f; // , expr subst return 0; /* End of CSYSVX */ }
int csycon_(char *uplo, int *n, complex *a, int *lda, int *ipiv, float *anorm, float *rcond, complex *work, int * info) { /* System generated locals */ int a_dim1, a_offset, i__1, i__2; /* Local variables */ int i__, kase; extern int lsame_(char *, char *); int isave[3]; int upper; extern int clacn2_(int *, complex *, complex *, float *, int *, int *), xerbla_(char *, int *); float ainvnm; extern int csytrs_(char *, int *, int *, complex *, int *, int *, complex *, int *, int *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CSYCON estimates the reciprocal of the condition number (in the */ /* 1-norm) of a complex symmetric matrix A using the factorization */ /* A = U*D*U**T or A = L*D*L**T computed by CSYTRF. */ /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ /* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the details of the factorization are stored */ /* as an upper or lower triangular matrix. */ /* = 'U': Upper triangular, form is A = U*D*U**T; */ /* = 'L': Lower triangular, form is A = L*D*L**T. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input) COMPLEX array, dimension (LDA,N) */ /* The block diagonal matrix D and the multipliers used to */ /* obtain the factor U or L as computed by CSYTRF. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= MAX(1,N). */ /* IPIV (input) INTEGER array, dimension (N) */ /* Details of the interchanges and the block structure of D */ /* as determined by CSYTRF. */ /* ANORM (input) REAL */ /* The 1-norm of the original matrix A. */ /* RCOND (output) REAL */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */ /* estimate of the 1-norm of inv(A) computed in this routine. */ /* WORK (workspace) COMPLEX array, dimension (2*N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; --work; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < MAX(1,*n)) { *info = -4; } else if (*anorm < 0.f) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("CSYCON", &i__1); return 0; } /* Quick return if possible */ *rcond = 0.f; if (*n == 0) { *rcond = 1.f; return 0; } else if (*anorm <= 0.f) { return 0; } /* Check that the diagonal matrix D is nonsingular. */ if (upper) { /* Upper triangular storage: examine D from bottom to top */ for (i__ = *n; i__ >= 1; --i__) { i__1 = i__ + i__ * a_dim1; if (ipiv[i__] > 0 && (a[i__1].r == 0.f && a[i__1].i == 0.f)) { return 0; } /* L10: */ } } else { /* Lower triangular storage: examine D from top to bottom. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + i__ * a_dim1; if (ipiv[i__] > 0 && (a[i__2].r == 0.f && a[i__2].i == 0.f)) { return 0; } /* L20: */ } } /* Estimate the 1-norm of the inverse. */ kase = 0; L30: clacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave); if (kase != 0) { /* Multiply by inv(L*D*L') or inv(U*D*U'). */ csytrs_(uplo, n, &c__1, &a[a_offset], lda, &ipiv[1], &work[1], n, info); goto L30; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.f) { *rcond = 1.f / ainvnm / *anorm; } return 0; /* End of CSYCON */ } /* csycon_ */
/* Subroutine */ int csycon_(char *uplo, integer *n, complex *a, integer *lda, integer *ipiv, real *anorm, real *rcond, complex *work, integer * info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 Purpose ======= CSYCON estimates the reciprocal of the condition number (in the 1-norm) of a complex symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by CSYTRF. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T. N (input) INTEGER The order of the matrix A. N >= 0. A (input) COMPLEX array, dimension (LDA,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CSYTRF. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV (input) INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CSYTRF. ANORM (input) REAL The 1-norm of the original matrix A. RCOND (output) REAL The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine. WORK (workspace) COMPLEX array, dimension (2*N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ static integer kase, i__; extern logical lsame_(char *, char *); static logical upper; extern /* Subroutine */ int clacon_(integer *, complex *, complex *, real *, integer *), xerbla_(char *, integer *); static real ainvnm; extern /* Subroutine */ int csytrs_(char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --ipiv; --work; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else if (*anorm < 0.f) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("CSYCON", &i__1); return 0; } /* Quick return if possible */ *rcond = 0.f; if (*n == 0) { *rcond = 1.f; return 0; } else if (*anorm <= 0.f) { return 0; } /* Check that the diagonal matrix D is nonsingular. */ if (upper) { /* Upper triangular storage: examine D from bottom to top */ for (i__ = *n; i__ >= 1; --i__) { i__1 = a_subscr(i__, i__); if (ipiv[i__] > 0 && (a[i__1].r == 0.f && a[i__1].i == 0.f)) { return 0; } /* L10: */ } } else { /* Lower triangular storage: examine D from top to bottom. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = a_subscr(i__, i__); if (ipiv[i__] > 0 && (a[i__2].r == 0.f && a[i__2].i == 0.f)) { return 0; } /* L20: */ } } /* Estimate the 1-norm of the inverse. */ kase = 0; L30: clacon_(n, &work[*n + 1], &work[1], &ainvnm, &kase); if (kase != 0) { /* Multiply by inv(L*D*L') or inv(U*D*U'). */ csytrs_(uplo, n, &c__1, &a[a_offset], lda, &ipiv[1], &work[1], n, info); goto L30; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.f) { *rcond = 1.f / ainvnm / *anorm; } return 0; /* End of CSYCON */ } /* csycon_ */
/* Subroutine */ int cla_syrfsx_extended__(integer *prec_type__, char *uplo, integer *n, integer *nrhs, complex *a, integer *lda, complex *af, integer *ldaf, integer *ipiv, logical *colequ, real *c__, complex *b, integer *ldb, complex *y, integer *ldy, real *berr_out__, integer * n_norms__, real *err_bnds_norm__, real *err_bnds_comp__, complex *res, real *ayb, complex *dy, complex *y_tail__, real *rcond, integer * ithresh, real *rthresh, real *dz_ub__, logical *ignore_cwise__, integer *info, ftnlen uplo_len) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, y_dim1, y_offset, err_bnds_norm_dim1, err_bnds_norm_offset, err_bnds_comp_dim1, err_bnds_comp_offset, i__1, i__2, i__3, i__4; real r__1, r__2; /* Builtin functions */ double r_imag(complex *); /* Local variables */ real dxratmax, dzratmax; integer i__, j; logical incr_prec__; extern /* Subroutine */ int cla_syamv__(integer *, integer *, real *, complex *, integer *, complex *, integer *, real *, real *, integer *); real prev_dz_z__, yk, final_dx_x__; extern /* Subroutine */ int cla_wwaddw__(integer *, complex *, complex *, complex *); real final_dz_z__, prevnormdx; integer cnt; real dyk, eps, incr_thresh__, dx_x__, dz_z__; extern /* Subroutine */ int cla_lin_berr__(integer *, integer *, integer * , complex *, real *, real *); real ymin; integer y_prec_state__; extern /* Subroutine */ int blas_csymv_x__(integer *, integer *, complex * , complex *, integer *, complex *, integer *, complex *, complex * , integer *, integer *); integer uplo2; extern logical lsame_(char *, char *); extern /* Subroutine */ int blas_csymv2_x__(integer *, integer *, complex *, complex *, integer *, complex *, complex *, integer *, complex *, complex *, integer *, integer *), ccopy_(integer *, complex *, integer *, complex *, integer *); real dxrat, dzrat; extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, integer *, complex *, integer *), csymv_(char *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); real normx, normy; extern doublereal slamch_(char *); real normdx; extern /* Subroutine */ int csytrs_(char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); real hugeval; extern integer ilauplo_(char *); integer x_state__, z_state__; /* -- LAPACK routine (version 3.2.1) -- */ /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ /* -- Jason Riedy of Univ. of California Berkeley. -- */ /* -- April 2009 -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley and NAG Ltd. -- */ /* .. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CLA_SYRFSX_EXTENDED improves the computed solution to a system of */ /* linear equations by performing extra-precise iterative refinement */ /* and provides error bounds and backward error estimates for the solution. */ /* This subroutine is called by CSYRFSX to perform iterative refinement. */ /* In addition to normwise error bound, the code provides maximum */ /* componentwise error bound if possible. See comments for ERR_BNDS_NORM */ /* and ERR_BNDS_COMP for details of the error bounds. Note that this */ /* subroutine is only resonsible for setting the second fields of */ /* ERR_BNDS_NORM and ERR_BNDS_COMP. */ /* Arguments */ /* ========= */ /* PREC_TYPE (input) INTEGER */ /* Specifies the intermediate precision to be used in refinement. */ /* The value is defined by ILAPREC(P) where P is a CHARACTER and */ /* P = 'S': Single */ /* = 'D': Double */ /* = 'I': Indigenous */ /* = 'X', 'E': Extra */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The number of linear equations, i.e., the order of the */ /* matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right-hand-sides, i.e., the number of columns of the */ /* matrix B. */ /* A (input) COMPLEX array, dimension (LDA,N) */ /* On entry, the N-by-N matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* AF (input) COMPLEX array, dimension (LDAF,N) */ /* The block diagonal matrix D and the multipliers used to */ /* obtain the factor U or L as computed by CSYTRF. */ /* LDAF (input) INTEGER */ /* The leading dimension of the array AF. LDAF >= max(1,N). */ /* IPIV (input) INTEGER array, dimension (N) */ /* Details of the interchanges and the block structure of D */ /* as determined by CSYTRF. */ /* COLEQU (input) LOGICAL */ /* If .TRUE. then column equilibration was done to A before calling */ /* this routine. This is needed to compute the solution and error */ /* bounds correctly. */ /* C (input) REAL array, dimension (N) */ /* The column scale factors for A. If COLEQU = .FALSE., C */ /* is not accessed. If C is input, each element of C should be a power */ /* of the radix to ensure a reliable solution and error estimates. */ /* Scaling by powers of the radix does not cause rounding errors unless */ /* the result underflows or overflows. Rounding errors during scaling */ /* lead to refining with a matrix that is not equivalent to the */ /* input matrix, producing error estimates that may not be */ /* reliable. */ /* B (input) COMPLEX array, dimension (LDB,NRHS) */ /* The right-hand-side matrix B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* Y (input/output) COMPLEX array, dimension */ /* (LDY,NRHS) */ /* On entry, the solution matrix X, as computed by CSYTRS. */ /* On exit, the improved solution matrix Y. */ /* LDY (input) INTEGER */ /* The leading dimension of the array Y. LDY >= max(1,N). */ /* BERR_OUT (output) REAL array, dimension (NRHS) */ /* On exit, BERR_OUT(j) contains the componentwise relative backward */ /* error for right-hand-side j from the formula */ /* max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */ /* where abs(Z) is the componentwise absolute value of the matrix */ /* or vector Z. This is computed by CLA_LIN_BERR. */ /* N_NORMS (input) INTEGER */ /* Determines which error bounds to return (see ERR_BNDS_NORM */ /* and ERR_BNDS_COMP). */ /* If N_NORMS >= 1 return normwise error bounds. */ /* If N_NORMS >= 2 return componentwise error bounds. */ /* ERR_BNDS_NORM (input/output) REAL array, dimension */ /* (NRHS, N_ERR_BNDS) */ /* For each right-hand side, this array contains information about */ /* various error bounds and condition numbers corresponding to the */ /* normwise relative error, which is defined as follows: */ /* Normwise relative error in the ith solution vector: */ /* max_j (abs(XTRUE(j,i) - X(j,i))) */ /* ------------------------------ */ /* max_j abs(X(j,i)) */ /* The array is indexed by the type of error information as described */ /* below. There currently are up to three pieces of information */ /* returned. */ /* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */ /* right-hand side. */ /* The second index in ERR_BNDS_NORM(:,err) contains the following */ /* three fields: */ /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ /* reciprocal condition number is less than the threshold */ /* sqrt(n) * slamch('Epsilon'). */ /* err = 2 "Guaranteed" error bound: The estimated forward error, */ /* almost certainly within a factor of 10 of the true error */ /* so long as the next entry is greater than the threshold */ /* sqrt(n) * slamch('Epsilon'). This error bound should only */ /* be trusted if the previous boolean is true. */ /* err = 3 Reciprocal condition number: Estimated normwise */ /* reciprocal condition number. Compared with the threshold */ /* sqrt(n) * slamch('Epsilon') to determine if the error */ /* estimate is "guaranteed". These reciprocal condition */ /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ /* appropriately scaled matrix Z. */ /* Let Z = S*A, where S scales each row by a power of the */ /* radix so all absolute row sums of Z are approximately 1. */ /* This subroutine is only responsible for setting the second field */ /* above. */ /* See Lapack Working Note 165 for further details and extra */ /* cautions. */ /* ERR_BNDS_COMP (input/output) REAL array, dimension */ /* (NRHS, N_ERR_BNDS) */ /* For each right-hand side, this array contains information about */ /* various error bounds and condition numbers corresponding to the */ /* componentwise relative error, which is defined as follows: */ /* Componentwise relative error in the ith solution vector: */ /* abs(XTRUE(j,i) - X(j,i)) */ /* max_j ---------------------- */ /* abs(X(j,i)) */ /* The array is indexed by the right-hand side i (on which the */ /* componentwise relative error depends), and the type of error */ /* information as described below. There currently are up to three */ /* pieces of information returned for each right-hand side. If */ /* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */ /* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */ /* the first (:,N_ERR_BNDS) entries are returned. */ /* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */ /* right-hand side. */ /* The second index in ERR_BNDS_COMP(:,err) contains the following */ /* three fields: */ /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ /* reciprocal condition number is less than the threshold */ /* sqrt(n) * slamch('Epsilon'). */ /* err = 2 "Guaranteed" error bound: The estimated forward error, */ /* almost certainly within a factor of 10 of the true error */ /* so long as the next entry is greater than the threshold */ /* sqrt(n) * slamch('Epsilon'). This error bound should only */ /* be trusted if the previous boolean is true. */ /* err = 3 Reciprocal condition number: Estimated componentwise */ /* reciprocal condition number. Compared with the threshold */ /* sqrt(n) * slamch('Epsilon') to determine if the error */ /* estimate is "guaranteed". These reciprocal condition */ /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ /* appropriately scaled matrix Z. */ /* Let Z = S*(A*diag(x)), where x is the solution for the */ /* current right-hand side and S scales each row of */ /* A*diag(x) by a power of the radix so all absolute row */ /* sums of Z are approximately 1. */ /* This subroutine is only responsible for setting the second field */ /* above. */ /* See Lapack Working Note 165 for further details and extra */ /* cautions. */ /* RES (input) COMPLEX array, dimension (N) */ /* Workspace to hold the intermediate residual. */ /* AYB (input) REAL array, dimension (N) */ /* Workspace. */ /* DY (input) COMPLEX array, dimension (N) */ /* Workspace to hold the intermediate solution. */ /* Y_TAIL (input) COMPLEX array, dimension (N) */ /* Workspace to hold the trailing bits of the intermediate solution. */ /* RCOND (input) REAL */ /* Reciprocal scaled condition number. This is an estimate of the */ /* reciprocal Skeel condition number of the matrix A after */ /* equilibration (if done). If this is less than the machine */ /* precision (in particular, if it is zero), the matrix is singular */ /* to working precision. Note that the error may still be small even */ /* if this number is very small and the matrix appears ill- */ /* conditioned. */ /* ITHRESH (input) INTEGER */ /* The maximum number of residual computations allowed for */ /* refinement. The default is 10. For 'aggressive' set to 100 to */ /* permit convergence using approximate factorizations or */ /* factorizations other than LU. If the factorization uses a */ /* technique other than Gaussian elimination, the guarantees in */ /* ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy. */ /* RTHRESH (input) REAL */ /* Determines when to stop refinement if the error estimate stops */ /* decreasing. Refinement will stop when the next solution no longer */ /* satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is */ /* the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The */ /* default value is 0.5. For 'aggressive' set to 0.9 to permit */ /* convergence on extremely ill-conditioned matrices. See LAWN 165 */ /* for more details. */ /* DZ_UB (input) REAL */ /* Determines when to start considering componentwise convergence. */ /* Componentwise convergence is only considered after each component */ /* of the solution Y is stable, which we definte as the relative */ /* change in each component being less than DZ_UB. The default value */ /* is 0.25, requiring the first bit to be stable. See LAWN 165 for */ /* more details. */ /* IGNORE_CWISE (input) LOGICAL */ /* If .TRUE. then ignore componentwise convergence. Default value */ /* is .FALSE.. */ /* INFO (output) INTEGER */ /* = 0: Successful exit. */ /* < 0: if INFO = -i, the ith argument to CSYTRS had an illegal */ /* value */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. Parameters .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function Definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ err_bnds_comp_dim1 = *nrhs; err_bnds_comp_offset = 1 + err_bnds_comp_dim1; err_bnds_comp__ -= err_bnds_comp_offset; err_bnds_norm_dim1 = *nrhs; err_bnds_norm_offset = 1 + err_bnds_norm_dim1; err_bnds_norm__ -= err_bnds_norm_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; --c__; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; y_dim1 = *ldy; y_offset = 1 + y_dim1; y -= y_offset; --berr_out__; --res; --ayb; --dy; --y_tail__; /* Function Body */ if (*info != 0) { return 0; } eps = slamch_("Epsilon"); hugeval = slamch_("Overflow"); /* Force HUGEVAL to Inf */ hugeval *= hugeval; /* Using HUGEVAL may lead to spurious underflows. */ incr_thresh__ = (real) (*n) * eps; if (lsame_(uplo, "L")) { uplo2 = ilauplo_("L"); } else { uplo2 = ilauplo_("U"); } i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { y_prec_state__ = 1; if (y_prec_state__ == 2) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__; y_tail__[i__3].r = 0.f, y_tail__[i__3].i = 0.f; } } dxrat = 0.f; dxratmax = 0.f; dzrat = 0.f; dzratmax = 0.f; final_dx_x__ = hugeval; final_dz_z__ = hugeval; prevnormdx = hugeval; prev_dz_z__ = hugeval; dz_z__ = hugeval; dx_x__ = hugeval; x_state__ = 1; z_state__ = 0; incr_prec__ = FALSE_; i__2 = *ithresh; for (cnt = 1; cnt <= i__2; ++cnt) { /* Compute residual RES = B_s - op(A_s) * Y, */ /* op(A) = A, A**T, or A**H depending on TRANS (and type). */ ccopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1); if (y_prec_state__ == 0) { csymv_(uplo, n, &c_b11, &a[a_offset], lda, &y[j * y_dim1 + 1], &c__1, &c_b12, &res[1], &c__1); } else if (y_prec_state__ == 1) { blas_csymv_x__(&uplo2, n, &c_b11, &a[a_offset], lda, &y[j * y_dim1 + 1], &c__1, &c_b12, &res[1], &c__1, prec_type__); } else { blas_csymv2_x__(&uplo2, n, &c_b11, &a[a_offset], lda, &y[j * y_dim1 + 1], &y_tail__[1], &c__1, &c_b12, &res[1], & c__1, prec_type__); } /* XXX: RES is no longer needed. */ ccopy_(n, &res[1], &c__1, &dy[1], &c__1); csytrs_(uplo, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &dy[1], n, info); /* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT. */ normx = 0.f; normy = 0.f; normdx = 0.f; dz_z__ = 0.f; ymin = hugeval; i__3 = *n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__ + j * y_dim1; yk = (r__1 = y[i__4].r, dabs(r__1)) + (r__2 = r_imag(&y[i__ + j * y_dim1]), dabs(r__2)); i__4 = i__; dyk = (r__1 = dy[i__4].r, dabs(r__1)) + (r__2 = r_imag(&dy[ i__]), dabs(r__2)); if (yk != 0.f) { /* Computing MAX */ r__1 = dz_z__, r__2 = dyk / yk; dz_z__ = dmax(r__1,r__2); } else if (dyk != 0.f) { dz_z__ = hugeval; } ymin = dmin(ymin,yk); normy = dmax(normy,yk); if (*colequ) { /* Computing MAX */ r__1 = normx, r__2 = yk * c__[i__]; normx = dmax(r__1,r__2); /* Computing MAX */ r__1 = normdx, r__2 = dyk * c__[i__]; normdx = dmax(r__1,r__2); } else { normx = normy; normdx = dmax(normdx,dyk); } } if (normx != 0.f) { dx_x__ = normdx / normx; } else if (normdx == 0.f) { dx_x__ = 0.f; } else { dx_x__ = hugeval; } dxrat = normdx / prevnormdx; dzrat = dz_z__ / prev_dz_z__; /* Check termination criteria. */ if (ymin * *rcond < incr_thresh__ * normy && y_prec_state__ < 2) { incr_prec__ = TRUE_; } if (x_state__ == 3 && dxrat <= *rthresh) { x_state__ = 1; } if (x_state__ == 1) { if (dx_x__ <= eps) { x_state__ = 2; } else if (dxrat > *rthresh) { if (y_prec_state__ != 2) { incr_prec__ = TRUE_; } else { x_state__ = 3; } } else { if (dxrat > dxratmax) { dxratmax = dxrat; } } if (x_state__ > 1) { final_dx_x__ = dx_x__; } } if (z_state__ == 0 && dz_z__ <= *dz_ub__) { z_state__ = 1; } if (z_state__ == 3 && dzrat <= *rthresh) { z_state__ = 1; } if (z_state__ == 1) { if (dz_z__ <= eps) { z_state__ = 2; } else if (dz_z__ > *dz_ub__) { z_state__ = 0; dzratmax = 0.f; final_dz_z__ = hugeval; } else if (dzrat > *rthresh) { if (y_prec_state__ != 2) { incr_prec__ = TRUE_; } else { z_state__ = 3; } } else { if (dzrat > dzratmax) { dzratmax = dzrat; } } if (z_state__ > 1) { final_dz_z__ = dz_z__; } } if (x_state__ != 1 && (*ignore_cwise__ || z_state__ != 1)) { goto L666; } if (incr_prec__) { incr_prec__ = FALSE_; ++y_prec_state__; i__3 = *n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__; y_tail__[i__4].r = 0.f, y_tail__[i__4].i = 0.f; } } prevnormdx = normdx; prev_dz_z__ = dz_z__; /* Update soluton. */ if (y_prec_state__ < 2) { caxpy_(n, &c_b12, &dy[1], &c__1, &y[j * y_dim1 + 1], &c__1); } else { cla_wwaddw__(n, &y[j * y_dim1 + 1], &y_tail__[1], &dy[1]); } } /* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT. */ L666: /* Set final_* when cnt hits ithresh. */ if (x_state__ == 1) { final_dx_x__ = dx_x__; } if (z_state__ == 1) { final_dz_z__ = dz_z__; } /* Compute error bounds. */ if (*n_norms__ >= 1) { err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = final_dx_x__ / ( 1 - dxratmax); } if (*n_norms__ >= 2) { err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = final_dz_z__ / ( 1 - dzratmax); } /* Compute componentwise relative backward error from formula */ /* max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */ /* where abs(Z) is the componentwise absolute value of the matrix */ /* or vector Z. */ /* Compute residual RES = B_s - op(A_s) * Y, */ /* op(A) = A, A**T, or A**H depending on TRANS (and type). */ ccopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1); csymv_(uplo, n, &c_b11, &a[a_offset], lda, &y[j * y_dim1 + 1], &c__1, &c_b12, &res[1], &c__1); i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; ayb[i__] = (r__1 = b[i__3].r, dabs(r__1)) + (r__2 = r_imag(&b[i__ + j * b_dim1]), dabs(r__2)); } /* Compute abs(op(A_s))*abs(Y) + abs(B_s). */ cla_syamv__(&uplo2, n, &c_b33, &a[a_offset], lda, &y[j * y_dim1 + 1], &c__1, &c_b33, &ayb[1], &c__1); cla_lin_berr__(n, n, &c__1, &res[1], &ayb[1], &berr_out__[j]); /* End of loop for each RHS. */ } return 0; } /* cla_syrfsx_extended__ */
/* Subroutine */ int cchksy_(logical *dotype, integer *nn, integer *nval, integer *nnb, integer *nbval, integer *nns, integer *nsval, real * thresh, logical *tsterr, integer *nmax, complex *a, complex *afac, complex *ainv, complex *b, complex *x, complex *xact, complex *work, real *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; /* Format strings */ static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, " "NB =\002,i4,\002, type \002,i2,\002, test \002,i2,\002, ratio " "=\002,g12.5)"; static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, " "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g" "12.5)"; static char fmt_9997[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002" ",\002,10x,\002 type \002,i2,\002, test(\002,i2,\002) =\002,g12.5)" ; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, j, k, n, i1, i2, nb, in, kl, ku, nt, lda, inb, ioff, mode, imat, info; char path[3], dist[1]; integer irhs, nrhs; char uplo[1], type__[1]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *), cget04_( integer *, integer *, complex *, integer *, complex *, integer *, real *, real *); integer nfail, iseed[4]; real rcond; integer nimat; extern doublereal sget06_(real *, real *); extern /* Subroutine */ int cpot05_(char *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *, real *); real anorm; extern /* Subroutine */ int csyt01_(char *, integer *, complex *, integer *, complex *, integer *, integer *, complex *, integer *, real *, real *), csyt02_(char *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *), csyt03_(char *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *, real * ); integer iuplo, izero, nerrs, lwork; logical zerot; char xtype[1]; extern /* Subroutine */ int clatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, real *, integer *, real *, char * ), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); real rcondc; extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), clarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *, integer *), alasum_(char *, integer *, integer *, integer *, integer *); real cndnum; extern /* Subroutine */ int clatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer * , char *, complex *, integer *, complex *, integer *); extern doublereal clansy_(char *, char *, integer *, complex *, integer *, real *); logical trfcon; extern /* Subroutine */ int csycon_(char *, integer *, complex *, integer *, integer *, real *, real *, complex *, integer *), clatsy_(char *, integer *, complex *, integer *, integer *), xlaenv_(integer *, integer *), cerrsy_(char *, integer *), csyrfs_(char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *, complex *, integer *, complex *, integer *, real *, real *, complex *, real *, integer * ), csytrf_(char *, integer *, complex *, integer *, integer *, complex *, integer *, integer *), csytri_(char *, integer *, complex *, integer *, integer *, complex *, integer *); real result[8]; extern /* Subroutine */ int csytrs_(char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___39 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___42 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9997, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CCHKSY tests CSYTRF, -TRI, -TRS, -RFS, and -CON. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NNB (input) INTEGER */ /* The number of values of NB contained in the vector NBVAL. */ /* NBVAL (input) INTEGER array, dimension (NBVAL) */ /* The values of the blocksize NB. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) REAL */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) COMPLEX array, dimension (NMAX*NMAX) */ /* AFAC (workspace) COMPLEX array, dimension (NMAX*NMAX) */ /* AINV (workspace) COMPLEX array, dimension (NMAX*NMAX) */ /* B (workspace) COMPLEX array, dimension (NMAX*NSMAX) */ /* where NSMAX is the largest entry in NSVAL. */ /* X (workspace) COMPLEX array, dimension (NMAX*NSMAX) */ /* XACT (workspace) COMPLEX array, dimension (NMAX*NSMAX) */ /* WORK (workspace) COMPLEX array, dimension */ /* (NMAX*max(2,NSMAX)) */ /* RWORK (workspace) REAL array, */ /* dimension (NMAX+2*NSMAX) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --ainv; --afac; --a; --nsval; --nbval; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "SY", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { cerrsy_(path, nout); } infoc_1.infot = 0; /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; nimat = 11; if (n <= 0) { nimat = 1; } izero = 0; i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L170; } /* Skip types 3, 4, 5, or 6 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 6; if (zerot && n < imat - 2) { goto L170; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; if (imat != 11) { /* Set up parameters with CLATB4 and generate a test */ /* matrix with CLATMS. */ clatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, & mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "CLATMS", (ftnlen)6, (ftnlen)6); clatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, "N", &a[1], &lda, &work[ 1], &info); /* Check error code from CLATMS. */ if (info != 0) { alaerh_(path, "CLATMS", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L160; } /* For types 3-6, zero one or more rows and columns of */ /* the matrix to test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } if (imat < 6) { /* Set row and column IZERO to zero. */ if (iuplo == 1) { ioff = (izero - 1) * lda; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0.f, a[i__4].i = 0.f; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0.f, a[i__4].i = 0.f; ioff += lda; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0.f, a[i__4].i = 0.f; ioff += lda; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0.f, a[i__4].i = 0.f; /* L50: */ } } } else { if (iuplo == 1) { /* Set the first IZERO rows to zero. */ ioff = 0; i__3 = n; for (j = 1; j <= i__3; ++j) { i2 = min(j,izero); i__4 = i2; for (i__ = 1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0.f, a[i__5].i = 0.f; /* L60: */ } ioff += lda; /* L70: */ } } else { /* Set the last IZERO rows to zero. */ ioff = 0; i__3 = n; for (j = 1; j <= i__3; ++j) { i1 = max(j,izero); i__4 = n; for (i__ = i1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0.f, a[i__5].i = 0.f; /* L80: */ } ioff += lda; /* L90: */ } } } } else { izero = 0; } } else { /* Use a special block diagonal matrix to test alternate */ /* code for the 2 x 2 blocks. */ clatsy_(uplo, &n, &a[1], &lda, iseed); } /* Do for each value of NB in NBVAL */ i__3 = *nnb; for (inb = 1; inb <= i__3; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); /* Compute the L*D*L' or U*D*U' factorization of the */ /* matrix. */ clacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda); lwork = max(2,nb) * lda; s_copy(srnamc_1.srnamt, "CSYTRF", (ftnlen)6, (ftnlen)6); csytrf_(uplo, &n, &afac[1], &lda, &iwork[1], &ainv[1], & lwork, &info); /* Adjust the expected value of INFO to account for */ /* pivoting. */ k = izero; if (k > 0) { L100: if (iwork[k] < 0) { if (iwork[k] != -k) { k = -iwork[k]; goto L100; } } else if (iwork[k] != k) { k = iwork[k]; goto L100; } } /* Check error code from CSYTRF. */ if (info != k) { alaerh_(path, "CSYTRF", &info, &k, uplo, &n, &n, & c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, nout); } if (info != 0) { trfcon = TRUE_; } else { trfcon = FALSE_; } /* + TEST 1 */ /* Reconstruct matrix from factors and compute residual. */ csyt01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &iwork[1], &ainv[1], &lda, &rwork[1], result); nt = 1; /* + TEST 2 */ /* Form the inverse and compute the residual. */ if (inb == 1 && ! trfcon) { clacpy_(uplo, &n, &n, &afac[1], &lda, &ainv[1], &lda); s_copy(srnamc_1.srnamt, "CSYTRI", (ftnlen)6, (ftnlen) 6); csytri_(uplo, &n, &ainv[1], &lda, &iwork[1], &work[1], &info); /* Check error code from CSYTRI. */ if (info != 0) { alaerh_(path, "CSYTRI", &info, &c__0, uplo, &n, & n, &c_n1, &c_n1, &c_n1, &imat, &nfail, & nerrs, nout); } csyt03_(uplo, &n, &a[1], &lda, &ainv[1], &lda, &work[ 1], &lda, &rwork[1], &rcondc, &result[1]); nt = 2; } /* Print information about the tests that did not pass */ /* the threshold. */ i__4 = nt; for (k = 1; k <= i__4; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___39.ciunit = *nout; s_wsfe(&io___39); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); ++nfail; } /* L110: */ } nrun += nt; /* Skip the other tests if this is not the first block */ /* size. */ if (inb > 1) { goto L150; } /* Do only the condition estimate if INFO is not 0. */ if (trfcon) { rcondc = 0.f; goto L140; } i__4 = *nns; for (irhs = 1; irhs <= i__4; ++irhs) { nrhs = nsval[irhs]; /* + TEST 3 */ /* Solve and compute residual for A * X = B. */ s_copy(srnamc_1.srnamt, "CLARHS", (ftnlen)6, (ftnlen) 6); clarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, & nrhs, &a[1], &lda, &xact[1], &lda, &b[1], & lda, iseed, &info); clacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "CSYTRS", (ftnlen)6, (ftnlen) 6); csytrs_(uplo, &n, &nrhs, &afac[1], &lda, &iwork[1], & x[1], &lda, &info); /* Check error code from CSYTRS. */ if (info != 0) { alaerh_(path, "CSYTRS", &info, &c__0, uplo, &n, & n, &c_n1, &c_n1, &nrhs, &imat, &nfail, & nerrs, nout); } clacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], & lda); csyt02_(uplo, &n, &nrhs, &a[1], &lda, &x[1], &lda, & work[1], &lda, &rwork[1], &result[2]); /* + TEST 4 */ /* Check solution from generated exact solution. */ cget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[3]); /* + TESTS 5, 6, and 7 */ /* Use iterative refinement to improve the solution. */ s_copy(srnamc_1.srnamt, "CSYRFS", (ftnlen)6, (ftnlen) 6); csyrfs_(uplo, &n, &nrhs, &a[1], &lda, &afac[1], &lda, &iwork[1], &b[1], &lda, &x[1], &lda, &rwork[1] , &rwork[nrhs + 1], &work[1], &rwork[(nrhs << 1) + 1], &info); /* Check error code from CSYRFS. */ if (info != 0) { alaerh_(path, "CSYRFS", &info, &c__0, uplo, &n, & n, &c_n1, &c_n1, &nrhs, &imat, &nfail, & nerrs, nout); } cget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[4]); cpot05_(uplo, &n, &nrhs, &a[1], &lda, &b[1], &lda, &x[ 1], &lda, &xact[1], &lda, &rwork[1], &rwork[ nrhs + 1], &result[5]); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = 3; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___42.ciunit = *nout; s_wsfe(&io___42); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); ++nfail; } /* L120: */ } nrun += 5; /* L130: */ } /* + TEST 8 */ /* Get an estimate of RCOND = 1/CNDNUM. */ L140: anorm = clansy_("1", uplo, &n, &a[1], &lda, &rwork[1]); s_copy(srnamc_1.srnamt, "CSYCON", (ftnlen)6, (ftnlen)6); csycon_(uplo, &n, &afac[1], &lda, &iwork[1], &anorm, & rcond, &work[1], &info); /* Check error code from CSYCON. */ if (info != 0) { alaerh_(path, "CSYCON", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } result[7] = sget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___44.ciunit = *nout; s_wsfe(&io___44); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(real) ); e_wsfe(); ++nfail; } ++nrun; L150: ; } L160: ; } L170: ; } /* L180: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of CCHKSY */ } /* cchksy_ */