/* Subroutine */ int cggglm_(integer *n, integer *m, integer *p, complex *a, integer *lda, complex *b, integer *ldb, complex *d__, complex *x, complex *y, complex *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4; complex q__1; /* Local variables */ integer i__, nb, np, nb1, nb2, nb3, nb4, lopt; extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex * , complex *, integer *, complex *, integer *, complex *, complex * , integer *), ccopy_(integer *, complex *, integer *, complex *, integer *), cggqrf_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, complex *, integer *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer lwkmin; extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), cunmrq_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); integer lwkopt; logical lquery; extern /* Subroutine */ int ctrtrs_(char *, char *, char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGGGLM solves a general Gauss-Markov linear model (GLM) problem: */ /* minimize || y ||_2 subject to d = A*x + B*y */ /* x */ /* where A is an N-by-M matrix, B is an N-by-P matrix, and d is a */ /* given N-vector. It is assumed that M <= N <= M+P, and */ /* rank(A) = M and rank( A B ) = N. */ /* Under these assumptions, the constrained equation is always */ /* consistent, and there is a unique solution x and a minimal 2-norm */ /* solution y, which is obtained using a generalized QR factorization */ /* of the matrices (A, B) given by */ /* A = Q*(R), B = Q*T*Z. */ /* (0) */ /* In particular, if matrix B is square nonsingular, then the problem */ /* GLM is equivalent to the following weighted linear least squares */ /* problem */ /* minimize || inv(B)*(d-A*x) ||_2 */ /* x */ /* where inv(B) denotes the inverse of B. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The number of rows of the matrices A and B. N >= 0. */ /* M (input) INTEGER */ /* The number of columns of the matrix A. 0 <= M <= N. */ /* P (input) INTEGER */ /* The number of columns of the matrix B. P >= N-M. */ /* A (input/output) COMPLEX array, dimension (LDA,M) */ /* On entry, the N-by-M matrix A. */ /* On exit, the upper triangular part of the array A contains */ /* the M-by-M upper triangular matrix R. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* B (input/output) COMPLEX array, dimension (LDB,P) */ /* On entry, the N-by-P matrix B. */ /* On exit, if N <= P, the upper triangle of the subarray */ /* B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; */ /* if N > P, the elements on and above the (N-P)th subdiagonal */ /* contain the N-by-P upper trapezoidal matrix T. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* D (input/output) COMPLEX array, dimension (N) */ /* On entry, D is the left hand side of the GLM equation. */ /* On exit, D is destroyed. */ /* X (output) COMPLEX array, dimension (M) */ /* Y (output) COMPLEX array, dimension (P) */ /* On exit, X and Y are the solutions of the GLM problem. */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,N+M+P). */ /* For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB, */ /* where NB is an upper bound for the optimal blocksizes for */ /* CGEQRF, CGERQF, CUNMQR and CUNMRQ. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* = 1: the upper triangular factor R associated with A in the */ /* generalized QR factorization of the pair (A, B) is */ /* singular, so that rank(A) < M; the least squares */ /* solution could not be computed. */ /* = 2: the bottom (N-M) by (N-M) part of the upper trapezoidal */ /* factor T associated with B in the generalized QR */ /* factorization of the pair (A, B) is singular, so that */ /* rank( A B ) < N; the least squares solution could not */ /* be computed. */ /* =================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --d__; --x; --y; --work; /* Function Body */ *info = 0; np = min(*n,*p); lquery = *lwork == -1; if (*n < 0) { *info = -1; } else if (*m < 0 || *m > *n) { *info = -2; } else if (*p < 0 || *p < *n - *m) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } /* Calculate workspace */ if (*info == 0) { if (*n == 0) { lwkmin = 1; lwkopt = 1; } else { nb1 = ilaenv_(&c__1, "CGEQRF", " ", n, m, &c_n1, &c_n1); nb2 = ilaenv_(&c__1, "CGERQF", " ", n, m, &c_n1, &c_n1); nb3 = ilaenv_(&c__1, "CUNMQR", " ", n, m, p, &c_n1); nb4 = ilaenv_(&c__1, "CUNMRQ", " ", n, m, p, &c_n1); /* Computing MAX */ i__1 = max(nb1,nb2), i__1 = max(i__1,nb3); nb = max(i__1,nb4); lwkmin = *m + *n + *p; lwkopt = *m + np + max(*n,*p) * nb; } work[1].r = (real) lwkopt, work[1].i = 0.f; if (*lwork < lwkmin && ! lquery) { *info = -12; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGGGLM", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Compute the GQR factorization of matrices A and B: */ /* Q'*A = ( R11 ) M, Q'*B*Z' = ( T11 T12 ) M */ /* ( 0 ) N-M ( 0 T22 ) N-M */ /* M M+P-N N-M */ /* where R11 and T22 are upper triangular, and Q and Z are */ /* unitary. */ i__1 = *lwork - *m - np; cggqrf_(n, m, p, &a[a_offset], lda, &work[1], &b[b_offset], ldb, &work[*m + 1], &work[*m + np + 1], &i__1, info); i__1 = *m + np + 1; lopt = work[i__1].r; /* Update left-hand-side vector d = Q'*d = ( d1 ) M */ /* ( d2 ) N-M */ i__1 = max(1,*n); i__2 = *lwork - *m - np; cunmqr_("Left", "Conjugate transpose", n, &c__1, m, &a[a_offset], lda, & work[1], &d__[1], &i__1, &work[*m + np + 1], &i__2, info); /* Computing MAX */ i__3 = *m + np + 1; i__1 = lopt, i__2 = (integer) work[i__3].r; lopt = max(i__1,i__2); /* Solve T22*y2 = d2 for y2 */ if (*n > *m) { i__1 = *n - *m; i__2 = *n - *m; ctrtrs_("Upper", "No transpose", "Non unit", &i__1, &c__1, &b[*m + 1 + (*m + *p - *n + 1) * b_dim1], ldb, &d__[*m + 1], &i__2, info); if (*info > 0) { *info = 1; return 0; } i__1 = *n - *m; ccopy_(&i__1, &d__[*m + 1], &c__1, &y[*m + *p - *n + 1], &c__1); } /* Set y1 = 0 */ i__1 = *m + *p - *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; y[i__2].r = 0.f, y[i__2].i = 0.f; /* L10: */ } /* Update d1 = d1 - T12*y2 */ i__1 = *n - *m; q__1.r = -1.f, q__1.i = -0.f; cgemv_("No transpose", m, &i__1, &q__1, &b[(*m + *p - *n + 1) * b_dim1 + 1], ldb, &y[*m + *p - *n + 1], &c__1, &c_b2, &d__[1], &c__1); /* Solve triangular system: R11*x = d1 */ if (*m > 0) { ctrtrs_("Upper", "No Transpose", "Non unit", m, &c__1, &a[a_offset], lda, &d__[1], m, info); if (*info > 0) { *info = 2; return 0; } /* Copy D to X */ ccopy_(m, &d__[1], &c__1, &x[1], &c__1); } /* Backward transformation y = Z'*y */ /* Computing MAX */ i__1 = 1, i__2 = *n - *p + 1; i__3 = max(1,*p); i__4 = *lwork - *m - np; cunmrq_("Left", "Conjugate transpose", p, &c__1, &np, &b[max(i__1, i__2)+ b_dim1], ldb, &work[*m + 1], &y[1], &i__3, &work[*m + np + 1], & i__4, info); /* Computing MAX */ i__4 = *m + np + 1; i__2 = lopt, i__3 = (integer) work[i__4].r; i__1 = *m + np + max(i__2,i__3); work[1].r = (real) i__1, work[1].i = 0.f; return 0; /* End of CGGGLM */ } /* cggglm_ */
/* Subroutine */ int cgels_(char *trans, integer *m, integer *n, integer * nrhs, complex *a, integer *lda, complex *b, integer *ldb, complex * work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; real r__1; /* Local variables */ integer i__, j, nb, mn; real anrm, bnrm; integer brow; logical tpsd; integer iascl, ibscl; extern logical lsame_(char *, char *); integer wsize; real rwork[1]; extern /* Subroutine */ int slabad_(real *, real *); extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), clascl_( char *, integer *, integer *, real *, real *, integer *, integer * , complex *, integer *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), claset_( char *, integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer scllen; real bignum; extern /* Subroutine */ int cunmlq_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); real smlnum; logical lquery; extern /* Subroutine */ int ctrtrs_(char *, char *, char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *); /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGELS solves overdetermined or underdetermined complex linear systems */ /* involving an M-by-N matrix A, or its conjugate-transpose, using a QR */ /* or LQ factorization of A. It is assumed that A has full rank. */ /* The following options are provided: */ /* 1. If TRANS = 'N' and m >= n: find the least squares solution of */ /* an overdetermined system, i.e., solve the least squares problem */ /* minimize || B - A*X ||. */ /* 2. If TRANS = 'N' and m < n: find the minimum norm solution of */ /* an underdetermined system A * X = B. */ /* 3. If TRANS = 'C' and m >= n: find the minimum norm solution of */ /* an undetermined system A**H * X = B. */ /* 4. If TRANS = 'C' and m < n: find the least squares solution of */ /* an overdetermined system, i.e., solve the least squares problem */ /* minimize || B - A**H * X ||. */ /* Several right hand side vectors b and solution vectors x can be */ /* handled in a single call; they are stored as the columns of the */ /* M-by-NRHS right hand side matrix B and the N-by-NRHS solution */ /* matrix X. */ /* Arguments */ /* ========= */ /* TRANS (input) CHARACTER*1 */ /* = 'N': the linear system involves A; */ /* = 'C': the linear system involves A**H. */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of */ /* columns of the matrices B and X. NRHS >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA,N) */ /* On entry, the M-by-N matrix A. */ /* if M >= N, A is overwritten by details of its QR */ /* factorization as returned by CGEQRF; */ /* if M < N, A is overwritten by details of its LQ */ /* factorization as returned by CGELQF. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* B (input/output) COMPLEX array, dimension (LDB,NRHS) */ /* On entry, the matrix B of right hand side vectors, stored */ /* columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS */ /* if TRANS = 'C'. */ /* On exit, if INFO = 0, B is overwritten by the solution */ /* vectors, stored columnwise: */ /* if TRANS = 'N' and m >= n, rows 1 to n of B contain the least */ /* squares solution vectors; the residual sum of squares for the */ /* solution in each column is given by the sum of squares of the */ /* modulus of elements N+1 to M in that column; */ /* if TRANS = 'N' and m < n, rows 1 to N of B contain the */ /* minimum norm solution vectors; */ /* if TRANS = 'C' and m >= n, rows 1 to M of B contain the */ /* minimum norm solution vectors; */ /* if TRANS = 'C' and m < n, rows 1 to M of B contain the */ /* least squares solution vectors; the residual sum of squares */ /* for the solution in each column is given by the sum of */ /* squares of the modulus of elements M+1 to N in that column. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= MAX(1,M,N). */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* LWORK >= max( 1, MN + max( MN, NRHS ) ). */ /* For optimal performance, */ /* LWORK >= max( 1, MN + max( MN, NRHS )*NB ). */ /* where MN = min(M,N) and NB is the optimum block size. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, the i-th diagonal element of the */ /* triangular factor of A is zero, so that A does not have */ /* full rank; the least squares solution could not be */ /* computed. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --work; /* Function Body */ *info = 0; mn = min(*m,*n); lquery = *lwork == -1; if (! (lsame_(trans, "N") || lsame_(trans, "C"))) { *info = -1; } else if (*m < 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*nrhs < 0) { *info = -4; } else if (*lda < max(1,*m)) { *info = -6; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = max(1,*m); if (*ldb < max(i__1,*n)) { *info = -8; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = mn + max(mn,*nrhs); if (*lwork < max(i__1,i__2) && ! lquery) { *info = -10; } } } /* Figure out optimal block size */ if (*info == 0 || *info == -10) { tpsd = TRUE_; if (lsame_(trans, "N")) { tpsd = FALSE_; } if (*m >= *n) { nb = ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1); if (tpsd) { /* Computing MAX */ i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMQR", "LN", m, nrhs, n, & c_n1); nb = max(i__1,i__2); } else { /* Computing MAX */ i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMQR", "LC", m, nrhs, n, & c_n1); nb = max(i__1,i__2); } } else { nb = ilaenv_(&c__1, "CGELQF", " ", m, n, &c_n1, &c_n1); if (tpsd) { /* Computing MAX */ i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMLQ", "LC", n, nrhs, m, & c_n1); nb = max(i__1,i__2); } else { /* Computing MAX */ i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMLQ", "LN", n, nrhs, m, & c_n1); nb = max(i__1,i__2); } } /* Computing MAX */ i__1 = 1, i__2 = mn + max(mn,*nrhs) * nb; wsize = max(i__1,i__2); r__1 = (real) wsize; work[1].r = r__1, work[1].i = 0.f; } if (*info != 0) { i__1 = -(*info); xerbla_("CGELS ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ /* Computing MIN */ i__1 = min(*m,*n); if (min(i__1,*nrhs) == 0) { i__1 = max(*m,*n); claset_("Full", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb); return 0; } /* Get machine parameters */ smlnum = slamch_("S") / slamch_("P"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); /* Scale A, B if max element outside range [SMLNUM,BIGNUM] */ anrm = clange_("M", m, n, &a[a_offset], lda, rwork); iascl = 0; if (anrm > 0.f && anrm < smlnum) { /* Scale matrix norm up to SMLNUM */ clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, info); iascl = 1; } else if (anrm > bignum) { /* Scale matrix norm down to BIGNUM */ clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, info); iascl = 2; } else if (anrm == 0.f) { /* Matrix all zero. Return zero solution. */ i__1 = max(*m,*n); claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb); goto L50; } brow = *m; if (tpsd) { brow = *n; } bnrm = clange_("M", &brow, nrhs, &b[b_offset], ldb, rwork); ibscl = 0; if (bnrm > 0.f && bnrm < smlnum) { /* Scale matrix norm up to SMLNUM */ clascl_("G", &c__0, &c__0, &bnrm, &smlnum, &brow, nrhs, &b[b_offset], ldb, info); ibscl = 1; } else if (bnrm > bignum) { /* Scale matrix norm down to BIGNUM */ clascl_("G", &c__0, &c__0, &bnrm, &bignum, &brow, nrhs, &b[b_offset], ldb, info); ibscl = 2; } if (*m >= *n) { /* compute QR factorization of A */ i__1 = *lwork - mn; cgeqrf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info) ; /* workspace at least N, optimally N*NB */ if (! tpsd) { /* Least-Squares Problem min || A * X - B || */ /* B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */ i__1 = *lwork - mn; cunmqr_("Left", "Conjugate transpose", m, nrhs, n, &a[a_offset], lda, &work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info); /* workspace at least NRHS, optimally NRHS*NB */ /* B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) */ ctrtrs_("Upper", "No transpose", "Non-unit", n, nrhs, &a[a_offset] , lda, &b[b_offset], ldb, info); if (*info > 0) { return 0; } scllen = *n; } else { /* Overdetermined system of equations A' * X = B */ /* B(1:N,1:NRHS) := inv(R') * B(1:N,1:NRHS) */ ctrtrs_("Upper", "Conjugate transpose", "Non-unit", n, nrhs, &a[ a_offset], lda, &b[b_offset], ldb, info); if (*info > 0) { return 0; } /* B(N+1:M,1:NRHS) = ZERO */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = *n + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; b[i__3].r = 0.f, b[i__3].i = 0.f; /* L10: */ } /* L20: */ } /* B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS) */ i__1 = *lwork - mn; cunmqr_("Left", "No transpose", m, nrhs, n, &a[a_offset], lda, & work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info); /* workspace at least NRHS, optimally NRHS*NB */ scllen = *m; } } else { /* Compute LQ factorization of A */ i__1 = *lwork - mn; cgelqf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info) ; /* workspace at least M, optimally M*NB. */ if (! tpsd) { /* underdetermined system of equations A * X = B */ /* B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) */ ctrtrs_("Lower", "No transpose", "Non-unit", m, nrhs, &a[a_offset] , lda, &b[b_offset], ldb, info); if (*info > 0) { return 0; } /* B(M+1:N,1:NRHS) = 0 */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = *m + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; b[i__3].r = 0.f, b[i__3].i = 0.f; /* L30: */ } /* L40: */ } /* B(1:N,1:NRHS) := Q(1:N,:)' * B(1:M,1:NRHS) */ i__1 = *lwork - mn; cunmlq_("Left", "Conjugate transpose", n, nrhs, m, &a[a_offset], lda, &work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info); /* workspace at least NRHS, optimally NRHS*NB */ scllen = *n; } else { /* overdetermined system min || A' * X - B || */ /* B(1:N,1:NRHS) := Q * B(1:N,1:NRHS) */ i__1 = *lwork - mn; cunmlq_("Left", "No transpose", n, nrhs, m, &a[a_offset], lda, & work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info); /* workspace at least NRHS, optimally NRHS*NB */ /* B(1:M,1:NRHS) := inv(L') * B(1:M,1:NRHS) */ ctrtrs_("Lower", "Conjugate transpose", "Non-unit", m, nrhs, &a[ a_offset], lda, &b[b_offset], ldb, info); if (*info > 0) { return 0; } scllen = *m; } } /* Undo scaling */ if (iascl == 1) { clascl_("G", &c__0, &c__0, &anrm, &smlnum, &scllen, nrhs, &b[b_offset] , ldb, info); } else if (iascl == 2) { clascl_("G", &c__0, &c__0, &anrm, &bignum, &scllen, nrhs, &b[b_offset] , ldb, info); } if (ibscl == 1) { clascl_("G", &c__0, &c__0, &smlnum, &bnrm, &scllen, nrhs, &b[b_offset] , ldb, info); } else if (ibscl == 2) { clascl_("G", &c__0, &c__0, &bignum, &bnrm, &scllen, nrhs, &b[b_offset] , ldb, info); } L50: r__1 = (real) wsize; work[1].r = r__1, work[1].i = 0.f; return 0; /* End of CGELS */ } /* cgels_ */
/* Subroutine */ int cchktr_(logical *dotype, integer *nn, integer *nval, integer *nnb, integer *nbval, integer *nns, integer *nsval, real * thresh, logical *tsterr, integer *nmax, complex *a, complex *ainv, complex *b, complex *x, complex *xact, complex *work, real *rwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(\002 UPLO='\002,a1,\002', DIAG='\002,a1,\002'" ", N=\002,i5,\002, NB=\002,i4,\002, type \002,i2,\002, test(\002," "i2,\002)= \002,g12.5)"; static char fmt_9998[] = "(\002 UPLO='\002,a1,\002', TRANS='\002,a1,\002" "', DIAG='\002,a1,\002', N=\002,i5,\002, NB=\002,i4,\002, type" " \002,i2,\002, test(\002,i2,\002)= \002,g12" ".5)"; static char fmt_9997[] = "(\002 NORM='\002,a1,\002', UPLO ='\002,a1,\002" "', N=\002,i5,\002,\002,11x,\002 type \002,i2,\002, test(\002,i2" ",\002)=\002,g12.5)"; static char fmt_9996[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002', " "'\002,a1,\002', '\002,a1,\002',\002,i5,\002, ... ), type \002,i2," "\002, test(\002,i2,\002)=\002,g12.5)"; /* System generated locals */ address a__1[2], a__2[3], a__3[4]; integer i__1, i__2, i__3[2], i__4, i__5[3], i__6[4]; char ch__1[2], ch__2[3], ch__3[4]; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen), s_cat(char *, char **, integer *, integer *, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, k, n, nb, in, lda, inb; char diag[1]; integer imat, info; char path[3]; integer irhs, nrhs; char norm[1], uplo[1]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *); integer idiag; extern /* Subroutine */ int cget04_(integer *, integer *, complex *, integer *, complex *, integer *, real *, real *); real scale; integer nfail, iseed[4]; extern logical lsame_(char *, char *); real rcond, anorm; integer itran; extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *), ctrt01_(char *, char *, integer *, complex *, integer *, complex *, integer *, real *, real *, real *), ctrt02_(char *, char *, char *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, real *, real *), ctrt03_(char *, char *, char *, integer *, integer *, complex *, integer *, real *, real *, real *, complex *, integer *, complex * , integer *, complex *, real *), ctrt05_( char *, char *, char *, integer *, integer *, complex *, integer * , complex *, integer *, complex *, integer *, complex *, integer * , real *, real *, real *), ctrt06_(real *, real *, char *, char *, integer *, complex *, integer *, real *, real *); char trans[1]; integer iuplo, nerrs; real dummy; char xtype[1]; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); real rcondc; extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), clarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *, integer *); real rcondi; extern doublereal clantr_(char *, char *, char *, integer *, integer *, complex *, integer *, real *); real rcondo; extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *); real ainvnm; extern /* Subroutine */ int clatrs_(char *, char *, char *, char *, integer *, complex *, integer *, complex *, real *, real *, integer *), clattr_(integer *, char *, char *, char *, integer *, integer *, complex *, integer * , complex *, complex *, real *, integer *) , ctrcon_(char *, char *, char *, integer *, complex *, integer *, real *, complex *, real *, integer *), xlaenv_(integer *, integer *), cerrtr_(char *, integer *), ctrrfs_(char *, char *, char *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *, complex *, real *, integer *), ctrtri_(char *, char *, integer *, complex *, integer *, integer * ); real result[9]; extern /* Subroutine */ int ctrtrs_(char *, char *, char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___27 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___36 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___38 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___40 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___41 = { 0, 0, 0, fmt_9996, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CCHKTR tests CTRTRI, -TRS, -RFS, and -CON, and CLATRS */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* NNB (input) INTEGER */ /* The number of values of NB contained in the vector NBVAL. */ /* NBVAL (input) INTEGER array, dimension (NNB) */ /* The values of the blocksize NB. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) REAL */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The leading dimension of the work arrays. */ /* NMAX >= the maximum value of N in NVAL. */ /* A (workspace) COMPLEX array, dimension (NMAX*NMAX) */ /* AINV (workspace) COMPLEX array, dimension (NMAX*NMAX) */ /* B (workspace) COMPLEX array, dimension (NMAX*NSMAX) */ /* where NSMAX is the largest entry in NSVAL. */ /* X (workspace) COMPLEX array, dimension (NMAX*NSMAX) */ /* XACT (workspace) COMPLEX array, dimension (NMAX*NSMAX) */ /* WORK (workspace) COMPLEX array, dimension */ /* (NMAX*max(3,NSMAX)) */ /* RWORK (workspace) REAL array, dimension */ /* (max(NMAX,2*NSMAX)) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --rwork; --work; --xact; --x; --b; --ainv; --a; --nsval; --nbval; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "TR", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { cerrtr_(path, nout); } infoc_1.infot = 0; i__1 = *nn; for (in = 1; in <= i__1; ++in) { /* Do for each value of N in NVAL */ n = nval[in]; lda = max(1,n); *(unsigned char *)xtype = 'N'; for (imat = 1; imat <= 10; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L80; } for (iuplo = 1; iuplo <= 2; ++iuplo) { /* Do first for UPLO = 'U', then for UPLO = 'L' */ *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; /* Call CLATTR to generate a triangular test matrix. */ s_copy(srnamc_1.srnamt, "CLATTR", (ftnlen)32, (ftnlen)6); clattr_(&imat, uplo, "No transpose", diag, iseed, &n, &a[1], & lda, &x[1], &work[1], &rwork[1], &info); /* Set IDIAG = 1 for non-unit matrices, 2 for unit. */ if (lsame_(diag, "N")) { idiag = 1; } else { idiag = 2; } i__2 = *nnb; for (inb = 1; inb <= i__2; ++inb) { /* Do for each blocksize in NBVAL */ nb = nbval[inb]; xlaenv_(&c__1, &nb); /* + TEST 1 */ /* Form the inverse of A. */ clacpy_(uplo, &n, &n, &a[1], &lda, &ainv[1], &lda); s_copy(srnamc_1.srnamt, "CTRTRI", (ftnlen)32, (ftnlen)6); ctrtri_(uplo, diag, &n, &ainv[1], &lda, &info); /* Check error code from CTRTRI. */ if (info != 0) { /* Writing concatenation */ i__3[0] = 1, a__1[0] = uplo; i__3[1] = 1, a__1[1] = diag; s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); alaerh_(path, "CTRTRI", &info, &c__0, ch__1, &n, &n, & c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, nout); } /* Compute the infinity-norm condition number of A. */ anorm = clantr_("I", uplo, diag, &n, &n, &a[1], &lda, & rwork[1]); ainvnm = clantr_("I", uplo, diag, &n, &n, &ainv[1], &lda, &rwork[1]); if (anorm <= 0.f || ainvnm <= 0.f) { rcondi = 1.f; } else { rcondi = 1.f / anorm / ainvnm; } /* Compute the residual for the triangular matrix times */ /* its inverse. Also compute the 1-norm condition number */ /* of A. */ ctrt01_(uplo, diag, &n, &a[1], &lda, &ainv[1], &lda, & rcondo, &rwork[1], result); /* Print the test ratio if it is .GE. THRESH. */ if (result[0] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___27.ciunit = *nout; s_wsfe(&io___27); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(real) ); e_wsfe(); ++nfail; } ++nrun; /* Skip remaining tests if not the first block size. */ if (inb != 1) { goto L60; } i__4 = *nns; for (irhs = 1; irhs <= i__4; ++irhs) { nrhs = nsval[irhs]; *(unsigned char *)xtype = 'N'; for (itran = 1; itran <= 3; ++itran) { /* Do for op(A) = A, A**T, or A**H. */ *(unsigned char *)trans = *(unsigned char *)& transs[itran - 1]; if (itran == 1) { *(unsigned char *)norm = 'O'; rcondc = rcondo; } else { *(unsigned char *)norm = 'I'; rcondc = rcondi; } /* + TEST 2 */ /* Solve and compute residual for op(A)*x = b. */ s_copy(srnamc_1.srnamt, "CLARHS", (ftnlen)32, ( ftnlen)6); clarhs_(path, xtype, uplo, trans, &n, &n, &c__0, & idiag, &nrhs, &a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &info); *(unsigned char *)xtype = 'C'; clacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], & lda); s_copy(srnamc_1.srnamt, "CTRTRS", (ftnlen)32, ( ftnlen)6); ctrtrs_(uplo, trans, diag, &n, &nrhs, &a[1], &lda, &x[1], &lda, &info); /* Check error code from CTRTRS. */ if (info != 0) { /* Writing concatenation */ i__5[0] = 1, a__2[0] = uplo; i__5[1] = 1, a__2[1] = trans; i__5[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__5, &c__3, (ftnlen)3); alaerh_(path, "CTRTRS", &info, &c__0, ch__2, & n, &n, &c_n1, &c_n1, &nrhs, &imat, & nfail, &nerrs, nout); } /* This line is needed on a Sun SPARCstation. */ if (n > 0) { dummy = a[1].r; } ctrt02_(uplo, trans, diag, &n, &nrhs, &a[1], &lda, &x[1], &lda, &b[1], &lda, &work[1], & rwork[1], &result[1]); /* + TEST 3 */ /* Check solution from generated exact solution. */ cget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); /* + TESTS 4, 5, and 6 */ /* Use iterative refinement to improve the solution */ /* and compute error bounds. */ s_copy(srnamc_1.srnamt, "CTRRFS", (ftnlen)32, ( ftnlen)6); ctrrfs_(uplo, trans, diag, &n, &nrhs, &a[1], &lda, &b[1], &lda, &x[1], &lda, &rwork[1], & rwork[nrhs + 1], &work[1], &rwork[(nrhs << 1) + 1], &info); /* Check error code from CTRRFS. */ if (info != 0) { /* Writing concatenation */ i__5[0] = 1, a__2[0] = uplo; i__5[1] = 1, a__2[1] = trans; i__5[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__5, &c__3, (ftnlen)3); alaerh_(path, "CTRRFS", &info, &c__0, ch__2, & n, &n, &c_n1, &c_n1, &nrhs, &imat, & nfail, &nerrs, nout); } cget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[3]); ctrt05_(uplo, trans, diag, &n, &nrhs, &a[1], &lda, &b[1], &lda, &x[1], &lda, &xact[1], &lda, &rwork[1], &rwork[nrhs + 1], &result[4]); /* Print information about the tests that did not */ /* pass the threshold. */ for (k = 2; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___36.ciunit = *nout; s_wsfe(&io___36); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(real)); e_wsfe(); ++nfail; } /* L20: */ } nrun += 5; /* L30: */ } /* L40: */ } /* + TEST 7 */ /* Get an estimate of RCOND = 1/CNDNUM. */ for (itran = 1; itran <= 2; ++itran) { if (itran == 1) { *(unsigned char *)norm = 'O'; rcondc = rcondo; } else { *(unsigned char *)norm = 'I'; rcondc = rcondi; } s_copy(srnamc_1.srnamt, "CTRCON", (ftnlen)32, (ftnlen) 6); ctrcon_(norm, uplo, diag, &n, &a[1], &lda, &rcond, & work[1], &rwork[1], &info); /* Check error code from CTRCON. */ if (info != 0) { /* Writing concatenation */ i__5[0] = 1, a__2[0] = norm; i__5[1] = 1, a__2[1] = uplo; i__5[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__5, &c__3, (ftnlen)3); alaerh_(path, "CTRCON", &info, &c__0, ch__2, &n, & n, &c_n1, &c_n1, &c_n1, &imat, &nfail, & nerrs, nout); } ctrt06_(&rcond, &rcondc, uplo, diag, &n, &a[1], &lda, &rwork[1], &result[6]); /* Print the test ratio if it is .GE. THRESH. */ if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___38.ciunit = *nout; s_wsfe(&io___38); do_fio(&c__1, norm, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof( real)); e_wsfe(); ++nfail; } ++nrun; /* L50: */ } L60: ; } /* L70: */ } L80: ; } /* Use pathological test matrices to test CLATRS. */ for (imat = 11; imat <= 18; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L110; } for (iuplo = 1; iuplo <= 2; ++iuplo) { /* Do first for UPLO = 'U', then for UPLO = 'L' */ *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; for (itran = 1; itran <= 3; ++itran) { /* Do for op(A) = A, A**T, and A**H. */ *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; /* Call CLATTR to generate a triangular test matrix. */ s_copy(srnamc_1.srnamt, "CLATTR", (ftnlen)32, (ftnlen)6); clattr_(&imat, uplo, trans, diag, iseed, &n, &a[1], &lda, &x[1], &work[1], &rwork[1], &info); /* + TEST 8 */ /* Solve the system op(A)*x = b. */ s_copy(srnamc_1.srnamt, "CLATRS", (ftnlen)32, (ftnlen)6); ccopy_(&n, &x[1], &c__1, &b[1], &c__1); clatrs_(uplo, trans, diag, "N", &n, &a[1], &lda, &b[1], & scale, &rwork[1], &info); /* Check error code from CLATRS. */ if (info != 0) { /* Writing concatenation */ i__6[0] = 1, a__3[0] = uplo; i__6[1] = 1, a__3[1] = trans; i__6[2] = 1, a__3[2] = diag; i__6[3] = 1, a__3[3] = "N"; s_cat(ch__3, a__3, i__6, &c__4, (ftnlen)4); alaerh_(path, "CLATRS", &info, &c__0, ch__3, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } ctrt03_(uplo, trans, diag, &n, &c__1, &a[1], &lda, &scale, &rwork[1], &c_b99, &b[1], &lda, &x[1], &lda, & work[1], &result[7]); /* + TEST 9 */ /* Solve op(A)*X = b again with NORMIN = 'Y'. */ ccopy_(&n, &x[1], &c__1, &b[n + 1], &c__1); clatrs_(uplo, trans, diag, "Y", &n, &a[1], &lda, &b[n + 1] , &scale, &rwork[1], &info); /* Check error code from CLATRS. */ if (info != 0) { /* Writing concatenation */ i__6[0] = 1, a__3[0] = uplo; i__6[1] = 1, a__3[1] = trans; i__6[2] = 1, a__3[2] = diag; i__6[3] = 1, a__3[3] = "Y"; s_cat(ch__3, a__3, i__6, &c__4, (ftnlen)4); alaerh_(path, "CLATRS", &info, &c__0, ch__3, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } ctrt03_(uplo, trans, diag, &n, &c__1, &a[1], &lda, &scale, &rwork[1], &c_b99, &b[n + 1], &lda, &x[1], &lda, &work[1], &result[8]); /* Print information about the tests that did not pass */ /* the threshold. */ if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___40.ciunit = *nout; s_wsfe(&io___40); do_fio(&c__1, "CLATRS", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, "N", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(real) ); e_wsfe(); ++nfail; } if (result[8] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___41.ciunit = *nout; s_wsfe(&io___41); do_fio(&c__1, "CLATRS", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, "Y", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__9, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[8], (ftnlen)sizeof(real) ); e_wsfe(); ++nfail; } nrun += 2; /* L90: */ } /* L100: */ } L110: ; } /* L120: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of CCHKTR */ } /* cchktr_ */
/* Subroutine */ int cerrtr_(char *path, integer *nunit) { /* Local variables */ complex a[4] /* was [2][2] */, b[2], w[2], x[2]; char c2[2]; real r1[2], r2[2], rw[2]; integer info; real scale, rcond; /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CERRTR tests the error exits for the COMPLEX triangular routines. */ /* Arguments */ /* ========= */ /* PATH (input) CHARACTER*3 */ /* The LAPACK path name for the routines to be tested. */ /* NUNIT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Executable Statements .. */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2); a[0].r = 1.f, a[0].i = 0.f; a[2].r = 2.f, a[2].i = 0.f; a[3].r = 3.f, a[3].i = 0.f; a[1].r = 4.f, a[1].i = 0.f; infoc_1.ok = TRUE_; /* Test error exits for the general triangular routines. */ if (lsamen_(&c__2, c2, "TR")) { /* CTRTRI */ s_copy(srnamc_1.srnamt, "CTRTRI", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; ctrtri_("/", "N", &c__0, a, &c__1, &info); chkxer_("CTRTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; ctrtri_("U", "/", &c__0, a, &c__1, &info); chkxer_("CTRTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; ctrtri_("U", "N", &c_n1, a, &c__1, &info); chkxer_("CTRTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; ctrtri_("U", "N", &c__2, a, &c__1, &info); chkxer_("CTRTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CTRTI2 */ s_copy(srnamc_1.srnamt, "CTRTI2", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; ctrti2_("/", "N", &c__0, a, &c__1, &info); chkxer_("CTRTI2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; ctrti2_("U", "/", &c__0, a, &c__1, &info); chkxer_("CTRTI2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; ctrti2_("U", "N", &c_n1, a, &c__1, &info); chkxer_("CTRTI2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; ctrti2_("U", "N", &c__2, a, &c__1, &info); chkxer_("CTRTI2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CTRTRS */ s_copy(srnamc_1.srnamt, "CTRTRS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; ctrtrs_("/", "N", "N", &c__0, &c__0, a, &c__1, x, &c__1, &info); chkxer_("CTRTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; ctrtrs_("U", "/", "N", &c__0, &c__0, a, &c__1, x, &c__1, &info); chkxer_("CTRTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; ctrtrs_("U", "N", "/", &c__0, &c__0, a, &c__1, x, &c__1, &info); chkxer_("CTRTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; ctrtrs_("U", "N", "N", &c_n1, &c__0, a, &c__1, x, &c__1, &info); chkxer_("CTRTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; ctrtrs_("U", "N", "N", &c__0, &c_n1, a, &c__1, x, &c__1, &info); chkxer_("CTRTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; /* CTRRFS */ s_copy(srnamc_1.srnamt, "CTRRFS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; ctrrfs_("/", "N", "N", &c__0, &c__0, a, &c__1, b, &c__1, x, &c__1, r1, r2, w, rw, &info); chkxer_("CTRRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; ctrrfs_("U", "/", "N", &c__0, &c__0, a, &c__1, b, &c__1, x, &c__1, r1, r2, w, rw, &info); chkxer_("CTRRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; ctrrfs_("U", "N", "/", &c__0, &c__0, a, &c__1, b, &c__1, x, &c__1, r1, r2, w, rw, &info); chkxer_("CTRRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; ctrrfs_("U", "N", "N", &c_n1, &c__0, a, &c__1, b, &c__1, x, &c__1, r1, r2, w, rw, &info); chkxer_("CTRRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; ctrrfs_("U", "N", "N", &c__0, &c_n1, a, &c__1, b, &c__1, x, &c__1, r1, r2, w, rw, &info); chkxer_("CTRRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; ctrrfs_("U", "N", "N", &c__2, &c__1, a, &c__1, b, &c__2, x, &c__2, r1, r2, w, rw, &info); chkxer_("CTRRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 9; ctrrfs_("U", "N", "N", &c__2, &c__1, a, &c__2, b, &c__1, x, &c__2, r1, r2, w, rw, &info); chkxer_("CTRRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 11; ctrrfs_("U", "N", "N", &c__2, &c__1, a, &c__2, b, &c__2, x, &c__1, r1, r2, w, rw, &info); chkxer_("CTRRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CTRCON */ s_copy(srnamc_1.srnamt, "CTRCON", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; ctrcon_("/", "U", "N", &c__0, a, &c__1, &rcond, w, rw, &info); chkxer_("CTRCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; ctrcon_("1", "/", "N", &c__0, a, &c__1, &rcond, w, rw, &info); chkxer_("CTRCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; ctrcon_("1", "U", "/", &c__0, a, &c__1, &rcond, w, rw, &info); chkxer_("CTRCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; ctrcon_("1", "U", "N", &c_n1, a, &c__1, &rcond, w, rw, &info); chkxer_("CTRCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; ctrcon_("1", "U", "N", &c__2, a, &c__1, &rcond, w, rw, &info); chkxer_("CTRCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CLATRS */ s_copy(srnamc_1.srnamt, "CLATRS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; clatrs_("/", "N", "N", "N", &c__0, a, &c__1, x, &scale, rw, &info); chkxer_("CLATRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; clatrs_("U", "/", "N", "N", &c__0, a, &c__1, x, &scale, rw, &info); chkxer_("CLATRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; clatrs_("U", "N", "/", "N", &c__0, a, &c__1, x, &scale, rw, &info); chkxer_("CLATRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; clatrs_("U", "N", "N", "/", &c__0, a, &c__1, x, &scale, rw, &info); chkxer_("CLATRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; clatrs_("U", "N", "N", "N", &c_n1, a, &c__1, x, &scale, rw, &info); chkxer_("CLATRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; clatrs_("U", "N", "N", "N", &c__2, a, &c__1, x, &scale, rw, &info); chkxer_("CLATRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Test error exits for the packed triangular routines. */ } else if (lsamen_(&c__2, c2, "TP")) { /* CTPTRI */ s_copy(srnamc_1.srnamt, "CTPTRI", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; ctptri_("/", "N", &c__0, a, &info); chkxer_("CTPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; ctptri_("U", "/", &c__0, a, &info); chkxer_("CTPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; ctptri_("U", "N", &c_n1, a, &info); chkxer_("CTPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CTPTRS */ s_copy(srnamc_1.srnamt, "CTPTRS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; ctptrs_("/", "N", "N", &c__0, &c__0, a, x, &c__1, &info); chkxer_("CTPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; ctptrs_("U", "/", "N", &c__0, &c__0, a, x, &c__1, &info); chkxer_("CTPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; ctptrs_("U", "N", "/", &c__0, &c__0, a, x, &c__1, &info); chkxer_("CTPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; ctptrs_("U", "N", "N", &c_n1, &c__0, a, x, &c__1, &info); chkxer_("CTPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; ctptrs_("U", "N", "N", &c__0, &c_n1, a, x, &c__1, &info); chkxer_("CTPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; ctptrs_("U", "N", "N", &c__2, &c__1, a, x, &c__1, &info); chkxer_("CTPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CTPRFS */ s_copy(srnamc_1.srnamt, "CTPRFS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; ctprfs_("/", "N", "N", &c__0, &c__0, a, b, &c__1, x, &c__1, r1, r2, w, rw, &info); chkxer_("CTPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; ctprfs_("U", "/", "N", &c__0, &c__0, a, b, &c__1, x, &c__1, r1, r2, w, rw, &info); chkxer_("CTPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; ctprfs_("U", "N", "/", &c__0, &c__0, a, b, &c__1, x, &c__1, r1, r2, w, rw, &info); chkxer_("CTPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; ctprfs_("U", "N", "N", &c_n1, &c__0, a, b, &c__1, x, &c__1, r1, r2, w, rw, &info); chkxer_("CTPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; ctprfs_("U", "N", "N", &c__0, &c_n1, a, b, &c__1, x, &c__1, r1, r2, w, rw, &info); chkxer_("CTPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; ctprfs_("U", "N", "N", &c__2, &c__1, a, b, &c__1, x, &c__2, r1, r2, w, rw, &info); chkxer_("CTPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; ctprfs_("U", "N", "N", &c__2, &c__1, a, b, &c__2, x, &c__1, r1, r2, w, rw, &info); chkxer_("CTPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CTPCON */ s_copy(srnamc_1.srnamt, "CTPCON", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; ctpcon_("/", "U", "N", &c__0, a, &rcond, w, rw, &info); chkxer_("CTPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; ctpcon_("1", "/", "N", &c__0, a, &rcond, w, rw, &info); chkxer_("CTPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; ctpcon_("1", "U", "/", &c__0, a, &rcond, w, rw, &info); chkxer_("CTPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; ctpcon_("1", "U", "N", &c_n1, a, &rcond, w, rw, &info); chkxer_("CTPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CLATPS */ s_copy(srnamc_1.srnamt, "CLATPS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; clatps_("/", "N", "N", "N", &c__0, a, x, &scale, rw, &info); chkxer_("CLATPS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; clatps_("U", "/", "N", "N", &c__0, a, x, &scale, rw, &info); chkxer_("CLATPS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; clatps_("U", "N", "/", "N", &c__0, a, x, &scale, rw, &info); chkxer_("CLATPS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; clatps_("U", "N", "N", "/", &c__0, a, x, &scale, rw, &info); chkxer_("CLATPS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; clatps_("U", "N", "N", "N", &c_n1, a, x, &scale, rw, &info); chkxer_("CLATPS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Test error exits for the banded triangular routines. */ } else if (lsamen_(&c__2, c2, "TB")) { /* CTBTRS */ s_copy(srnamc_1.srnamt, "CTBTRS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; ctbtrs_("/", "N", "N", &c__0, &c__0, &c__0, a, &c__1, x, &c__1, &info); chkxer_("CTBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; ctbtrs_("U", "/", "N", &c__0, &c__0, &c__0, a, &c__1, x, &c__1, &info); chkxer_("CTBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; ctbtrs_("U", "N", "/", &c__0, &c__0, &c__0, a, &c__1, x, &c__1, &info); chkxer_("CTBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; ctbtrs_("U", "N", "N", &c_n1, &c__0, &c__0, a, &c__1, x, &c__1, &info); chkxer_("CTBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; ctbtrs_("U", "N", "N", &c__0, &c_n1, &c__0, a, &c__1, x, &c__1, &info); chkxer_("CTBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; ctbtrs_("U", "N", "N", &c__0, &c__0, &c_n1, a, &c__1, x, &c__1, &info); chkxer_("CTBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; ctbtrs_("U", "N", "N", &c__2, &c__1, &c__1, a, &c__1, x, &c__2, &info); chkxer_("CTBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; ctbtrs_("U", "N", "N", &c__2, &c__0, &c__1, a, &c__1, x, &c__1, &info); chkxer_("CTBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CTBRFS */ s_copy(srnamc_1.srnamt, "CTBRFS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; ctbrfs_("/", "N", "N", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, x, & c__1, r1, r2, w, rw, &info); chkxer_("CTBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; ctbrfs_("U", "/", "N", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, x, & c__1, r1, r2, w, rw, &info); chkxer_("CTBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; ctbrfs_("U", "N", "/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, x, & c__1, r1, r2, w, rw, &info); chkxer_("CTBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; ctbrfs_("U", "N", "N", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, x, & c__1, r1, r2, w, rw, &info); chkxer_("CTBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; ctbrfs_("U", "N", "N", &c__0, &c_n1, &c__0, a, &c__1, b, &c__1, x, & c__1, r1, r2, w, rw, &info); chkxer_("CTBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; ctbrfs_("U", "N", "N", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, x, & c__1, r1, r2, w, rw, &info); chkxer_("CTBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; ctbrfs_("U", "N", "N", &c__2, &c__1, &c__1, a, &c__1, b, &c__2, x, & c__2, r1, r2, w, rw, &info); chkxer_("CTBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; ctbrfs_("U", "N", "N", &c__2, &c__1, &c__1, a, &c__2, b, &c__1, x, & c__2, r1, r2, w, rw, &info); chkxer_("CTBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; ctbrfs_("U", "N", "N", &c__2, &c__1, &c__1, a, &c__2, b, &c__2, x, & c__1, r1, r2, w, rw, &info); chkxer_("CTBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CTBCON */ s_copy(srnamc_1.srnamt, "CTBCON", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; ctbcon_("/", "U", "N", &c__0, &c__0, a, &c__1, &rcond, w, rw, &info); chkxer_("CTBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; ctbcon_("1", "/", "N", &c__0, &c__0, a, &c__1, &rcond, w, rw, &info); chkxer_("CTBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; ctbcon_("1", "U", "/", &c__0, &c__0, a, &c__1, &rcond, w, rw, &info); chkxer_("CTBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; ctbcon_("1", "U", "N", &c_n1, &c__0, a, &c__1, &rcond, w, rw, &info); chkxer_("CTBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; ctbcon_("1", "U", "N", &c__0, &c_n1, a, &c__1, &rcond, w, rw, &info); chkxer_("CTBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; ctbcon_("1", "U", "N", &c__2, &c__1, a, &c__1, &rcond, w, rw, &info); chkxer_("CTBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CLATBS */ s_copy(srnamc_1.srnamt, "CLATBS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; clatbs_("/", "N", "N", "N", &c__0, &c__0, a, &c__1, x, &scale, rw, & info); chkxer_("CLATBS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; clatbs_("U", "/", "N", "N", &c__0, &c__0, a, &c__1, x, &scale, rw, & info); chkxer_("CLATBS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; clatbs_("U", "N", "/", "N", &c__0, &c__0, a, &c__1, x, &scale, rw, & info); chkxer_("CLATBS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; clatbs_("U", "N", "N", "/", &c__0, &c__0, a, &c__1, x, &scale, rw, & info); chkxer_("CLATBS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; clatbs_("U", "N", "N", "N", &c_n1, &c__0, a, &c__1, x, &scale, rw, & info); chkxer_("CLATBS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; clatbs_("U", "N", "N", "N", &c__1, &c_n1, a, &c__1, x, &scale, rw, & info); chkxer_("CLATBS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; clatbs_("U", "N", "N", "N", &c__2, &c__1, a, &c__1, x, &scale, rw, & info); chkxer_("CLATBS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); } /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of CERRTR */ } /* cerrtr_ */
/* Subroutine */ int ctimtr_(char *line, integer *nn, integer *nval, integer * nns, integer *nsval, integer *nnb, integer *nbval, integer *nlda, integer *ldaval, real *timmin, complex *a, complex *b, real *reslts, integer *ldr1, integer *ldr2, integer *ldr3, integer *nout, ftnlen line_len) { /* Initialized data */ static char subnam[6*2] = "CTRTRI" "CTRTRS"; static char uplos[1*2] = "U" "L"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)"; static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops " "***\002)"; static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)"; static char fmt_9996[] = "(5x,a6,\002 with UPLO = '\002,a1,\002'\002,/)"; /* System generated locals */ integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, i__3; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void), s_wsle(cilist *), e_wsle(void); /* Local variables */ static integer ilda, info; static char path[3]; static real time; static integer isub, nrhs; static char uplo[1]; static integer i__, n; static char cname[6]; extern logical lsame_(char *, char *); extern doublereal sopla_(char *, integer *, integer *, integer *, integer *, integer *); static integer iuplo, i3; static real s1, s2; static integer ic, nb, in; extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, ftnlen); extern doublereal second_(void); extern /* Subroutine */ int ctimmg_(integer *, integer *, integer *, complex *, integer *, integer *, integer *), atimin_(char *, char *, integer *, char *, logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), xlaenv_(integer *, integer *); extern doublereal smflop_(real *, real *, integer *); static real untime; static logical timsub[2]; extern /* Subroutine */ int sprtbl_(char *, char *, integer *, integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *, ftnlen, ftnlen), ctrtri_(char *, char *, integer *, complex *, integer *, integer *), ctrtrs_(char *, char *, char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *); static integer lda, ldb, icl, inb, mat; static real ops; /* Fortran I/O blocks */ static cilist io___7 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___29 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___30 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___31 = { 0, 0, 0, 0, 0 }; static cilist io___32 = { 0, 0, 0, fmt_9996, 0 }; #define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6] #define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\ reslts_dim2 + (a_2))*reslts_dim1 + a_1] /* -- LAPACK timing routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 Purpose ======= CTIMTR times CTRTRI and -TRS. Arguments ========= LINE (input) CHARACTER*80 The input line that requested this routine. The first six characters contain either the name of a subroutine or a generic path name. The remaining characters may be used to specify the individual routines to be timed. See ATIMIN for a full description of the format of the input line. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix size N. NNS (input) INTEGER The number of values of NRHS contained in the vector NSVAL. NSVAL (input) INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. NNB (input) INTEGER The number of values of NB contained in the vector NBVAL. NBVAL (input) INTEGER array, dimension (NNB) The values of the blocksize NB. NLDA (input) INTEGER The number of values of LDA contained in the vector LDAVAL. LDAVAL (input) INTEGER array, dimension (NLDA) The values of the leading dimension of the array A. TIMMIN (input) REAL The minimum time a subroutine will be timed. A (workspace) COMPLEX array, dimension (LDAMAX*NMAX) where LDAMAX and NMAX are the maximum values permitted for LDA and N. B (workspace) COMPLEX array, dimension (LDAMAX*NMAX) RESLTS (output) REAL array, dimension (LDR1,LDR2,LDR3,NSUBS) The timing results for each subroutine over the relevant values of N, NB, and LDA. LDR1 (input) INTEGER The first dimension of RESLTS. LDR1 >= max(1,NNB). LDR2 (input) INTEGER The second dimension of RESLTS. LDR2 >= max(1,NN). LDR3 (input) INTEGER The third dimension of RESLTS. LDR3 >= max(1,2*NLDA). NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --nval; --nsval; --nbval; --ldaval; --a; --b; reslts_dim1 = *ldr1; reslts_dim2 = *ldr2; reslts_dim3 = *ldr3; reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1) ); reslts -= reslts_offset; /* Function Body Extract the timing request from the input line. */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "TR", (ftnlen)2, (ftnlen)2); atimin_(path, line, &c__2, subnam, timsub, nout, &info, (ftnlen)3, ( ftnlen)80, (ftnlen)6); if (info != 0) { goto L130; } /* Check that N <= LDA for the input values. */ s_copy(cname, line, (ftnlen)6, (ftnlen)6); atimck_(&c__2, cname, nn, &nval[1], nlda, &ldaval[1], nout, &info, ( ftnlen)6); if (info > 0) { io___7.ciunit = *nout; s_wsfe(&io___7); do_fio(&c__1, cname, (ftnlen)6); e_wsfe(); goto L130; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; if (lsame_(uplo, "U")) { mat = 11; } else { mat = -11; } /* Do for each value of N: */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; /* Do for each value of LDA: */ i__2 = *nlda; for (ilda = 1; ilda <= i__2; ++ilda) { lda = ldaval[ilda]; i3 = (iuplo - 1) * *nlda + ilda; /* Do for each value of NB in NBVAL. Only the blocked routines are timed in this loop since the other routines are independent of NB. */ if (timsub[0]) { i__3 = *nnb; for (inb = 1; inb <= i__3; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); /* Time CTRTRI */ ctimmg_(&mat, &n, &n, &a[1], &lda, &c__0, &c__0); ic = 0; s1 = second_(); L10: ctrtri_(uplo, "Non-unit", &n, &a[1], &lda, &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { ctimmg_(&mat, &n, &n, &a[1], &lda, &c__0, &c__0); goto L10; } /* Subtract the time used in CTIMMG. */ icl = 1; s1 = second_(); L20: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { ctimmg_(&mat, &n, &n, &a[1], &lda, &c__0, &c__0); goto L20; } time = (time - untime) / (real) ic; ops = sopla_("CTRTRI", &n, &n, &c__0, &c__0, &nb); reslts_ref(inb, in, i3, 1) = smflop_(&ops, &time, & info); /* L30: */ } } else { /* Generate a triangular matrix A. */ ctimmg_(&mat, &n, &n, &a[1], &lda, &c__0, &c__0); } /* Time CTRTRS */ if (timsub[1]) { i__3 = *nns; for (i__ = 1; i__ <= i__3; ++i__) { nrhs = nsval[i__]; ldb = lda; ctimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, &c__0); ic = 0; s1 = second_(); L40: ctrtrs_(uplo, "No transpose", "Non-unit", &n, &nrhs, & a[1], &lda, &b[1], &ldb, &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { ctimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, & c__0); goto L40; } /* Subtract the time used in CTIMMG. */ icl = 1; s1 = second_(); L50: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { ctimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, & c__0); goto L50; } time = (time - untime) / (real) ic; ops = sopla_("CTRTRS", &n, &nrhs, &c__0, &c__0, &c__0); reslts_ref(i__, in, i3, 2) = smflop_(&ops, &time, & info); /* L60: */ } } /* L70: */ } /* L80: */ } /* L90: */ } /* Print a table of results. */ for (isub = 1; isub <= 2; ++isub) { if (! timsub[isub - 1]) { goto L120; } io___29.ciunit = *nout; s_wsfe(&io___29); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); if (*nlda > 1) { i__1 = *nlda; for (i__ = 1; i__ <= i__1; ++i__) { io___30.ciunit = *nout; s_wsfe(&io___30); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer)); e_wsfe(); /* L100: */ } } io___31.ciunit = *nout; s_wsle(&io___31); e_wsle(); for (iuplo = 1; iuplo <= 2; ++iuplo) { io___32.ciunit = *nout; s_wsfe(&io___32); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); do_fio(&c__1, uplos + (iuplo - 1), (ftnlen)1); e_wsfe(); i3 = (iuplo - 1) * *nlda + 1; if (isub == 1) { sprtbl_("NB", "N", nnb, &nbval[1], nn, &nval[1], nlda, & reslts_ref(1, 1, i3, 1), ldr1, ldr2, nout, (ftnlen)2, (ftnlen)1); } else if (isub == 2) { sprtbl_("NRHS", "N", nns, &nsval[1], nn, &nval[1], nlda, & reslts_ref(1, 1, i3, 2), ldr1, ldr2, nout, (ftnlen)4, (ftnlen)1); } /* L110: */ } L120: ; } L130: return 0; /* End of CTIMTR */ } /* ctimtr_ */
/* Subroutine */ int cgglse_(integer *m, integer *n, integer *p, complex *a, integer *lda, complex *b, integer *ldb, complex *c__, complex *d__, complex *x, complex *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4; complex q__1; /* Local variables */ integer nb, mn, nr, nb1, nb2, nb3, nb4, lopt; extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex * , complex *, integer *, complex *, integer *, complex *, complex * , integer *), ccopy_(integer *, complex *, integer *, complex *, integer *), caxpy_(integer *, complex *, complex *, integer *, complex *, integer *), ctrmv_(char *, char *, char *, integer *, complex *, integer *, complex *, integer *), cggrqf_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, complex *, integer *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer lwkmin; extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), cunmrq_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); integer lwkopt; logical lquery; extern /* Subroutine */ int ctrtrs_(char *, char *, char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *); /* -- LAPACK driver routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --c__; --d__; --x; --work; /* Function Body */ *info = 0; mn = min(*m,*n); lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*p < 0 || *p > *n || *p < *n - *m) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } else if (*ldb < max(1,*p)) { *info = -7; } /* Calculate workspace */ if (*info == 0) { if (*n == 0) { lwkmin = 1; lwkopt = 1; } else { nb1 = ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1); nb2 = ilaenv_(&c__1, "CGERQF", " ", m, n, &c_n1, &c_n1); nb3 = ilaenv_(&c__1, "CUNMQR", " ", m, n, p, &c_n1); nb4 = ilaenv_(&c__1, "CUNMRQ", " ", m, n, p, &c_n1); /* Computing MAX */ i__1 = max(nb1,nb2); i__1 = max(i__1,nb3); // , expr subst nb = max(i__1,nb4); lwkmin = *m + *n + *p; lwkopt = *p + mn + max(*m,*n) * nb; } work[1].r = (real) lwkopt; work[1].i = 0.f; // , expr subst if (*lwork < lwkmin && ! lquery) { *info = -12; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGGLSE", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Compute the GRQ factorization of matrices B and A: */ /* B*Q**H = ( 0 T12 ) P Z**H*A*Q**H = ( R11 R12 ) N-P */ /* N-P P ( 0 R22 ) M+P-N */ /* N-P P */ /* where T12 and R11 are upper triangular, and Q and Z are */ /* unitary. */ i__1 = *lwork - *p - mn; cggrqf_(p, m, n, &b[b_offset], ldb, &work[1], &a[a_offset], lda, &work[*p + 1], &work[*p + mn + 1], &i__1, info); i__1 = *p + mn + 1; lopt = work[i__1].r; /* Update c = Z**H *c = ( c1 ) N-P */ /* ( c2 ) M+P-N */ i__1 = max(1,*m); i__2 = *lwork - *p - mn; cunmqr_("Left", "Conjugate Transpose", m, &c__1, &mn, &a[a_offset], lda, & work[*p + 1], &c__[1], &i__1, &work[*p + mn + 1], &i__2, info); /* Computing MAX */ i__3 = *p + mn + 1; i__1 = lopt; i__2 = (integer) work[i__3].r; // , expr subst lopt = max(i__1,i__2); /* Solve T12*x2 = d for x2 */ if (*p > 0) { ctrtrs_("Upper", "No transpose", "Non-unit", p, &c__1, &b[(*n - *p + 1) * b_dim1 + 1], ldb, &d__[1], p, info); if (*info > 0) { *info = 1; return 0; } /* Put the solution in X */ ccopy_(p, &d__[1], &c__1, &x[*n - *p + 1], &c__1); /* Update c1 */ i__1 = *n - *p; q__1.r = -1.f; q__1.i = -0.f; // , expr subst cgemv_("No transpose", &i__1, p, &q__1, &a[(*n - *p + 1) * a_dim1 + 1] , lda, &d__[1], &c__1, &c_b1, &c__[1], &c__1); } /* Solve R11*x1 = c1 for x1 */ if (*n > *p) { i__1 = *n - *p; i__2 = *n - *p; ctrtrs_("Upper", "No transpose", "Non-unit", &i__1, &c__1, &a[ a_offset], lda, &c__[1], &i__2, info); if (*info > 0) { *info = 2; return 0; } /* Put the solutions in X */ i__1 = *n - *p; ccopy_(&i__1, &c__[1], &c__1, &x[1], &c__1); } /* Compute the residual vector: */ if (*m < *n) { nr = *m + *p - *n; if (nr > 0) { i__1 = *n - *m; q__1.r = -1.f; q__1.i = -0.f; // , expr subst cgemv_("No transpose", &nr, &i__1, &q__1, &a[*n - *p + 1 + (*m + 1) * a_dim1], lda, &d__[nr + 1], &c__1, &c_b1, &c__[*n - * p + 1], &c__1); } } else { nr = *p; } if (nr > 0) { ctrmv_("Upper", "No transpose", "Non unit", &nr, &a[*n - *p + 1 + (*n - *p + 1) * a_dim1], lda, &d__[1], &c__1); q__1.r = -1.f; q__1.i = -0.f; // , expr subst caxpy_(&nr, &q__1, &d__[1], &c__1, &c__[*n - *p + 1], &c__1); } /* Backward transformation x = Q**H*x */ i__1 = *lwork - *p - mn; cunmrq_("Left", "Conjugate Transpose", n, &c__1, p, &b[b_offset], ldb, & work[1], &x[1], n, &work[*p + mn + 1], &i__1, info); /* Computing MAX */ i__4 = *p + mn + 1; i__2 = lopt; i__3 = (integer) work[i__4].r; // , expr subst i__1 = *p + mn + max(i__2,i__3); work[1].r = (real) i__1; work[1].i = 0.f; // , expr subst return 0; /* End of CGGLSE */ }