void fully_connected_layer_updater_cuda::enqueue_backward_weights_propagation( cudaStream_t stream_id, const std::vector<cuda_linear_buffer_device::const_ptr>& schema_data, const std::vector<cuda_linear_buffer_device::ptr>& gradient, const std::vector<cuda_linear_buffer_device::const_ptr>& data_custom, const std::vector<cuda_linear_buffer_device::const_ptr>& input_neurons_buffers, cuda_linear_buffer_device::const_ptr output_errors_buffer, const std::vector<cuda_linear_buffer_device::const_ptr>& persistent_working_data, cuda_linear_buffer_device::ptr temporary_working_fixed_buffer, cuda_linear_buffer_device::ptr temporary_working_per_entry_buffer, cuda_linear_buffer_device::const_ptr temporary_fixed_buffer, cuda_linear_buffer_device::const_ptr temporary_per_entry_buffer, unsigned int entry_count) { // Update weights { cublas_safe_call(cublasSetStream(cuda_config->get_cublas_handle(), stream_id)); float alpha = 1.0F; float beta = 1.0F; cublas_safe_call(cublasSgemm( cuda_config->get_cublas_handle(), CUBLAS_OP_N, CUBLAS_OP_T, input_elem_count_per_entry_list[0], output_elem_count_per_entry, entry_count, &alpha, *input_neurons_buffers[0], input_elem_count_per_entry_list[0], *output_errors_buffer, output_elem_count_per_entry, &beta, *gradient[0], input_elem_count_per_entry_list[0])); } // Update biases if (bias) { cudnn_safe_call(cudnnSetStream(cuda_config->get_cudnn_handle(), stream_id)); cudnn_util::set_tensor_descriptor( output_data_desc, output_configuration_specific, entry_count); float alpha = 1.0F; float beta = 1.0F; cudnn_safe_call(cudnnConvolutionBackwardBias( cuda_config->get_cudnn_handle(), &alpha, output_data_desc, *output_errors_buffer, &beta, bias_desc, *gradient[1])); } }
void fully_connected_layer_updater_cuda::enqueue_forward_propagation( cudaStream_t stream_id, cuda_linear_buffer_device::ptr output_buffer, const std::vector<cuda_linear_buffer_device::const_ptr>& schema_data, const std::vector<cuda_linear_buffer_device::const_ptr>& data, const std::vector<cuda_linear_buffer_device::const_ptr>& data_custom, const std::vector<cuda_linear_buffer_device::const_ptr>& input_buffers, const std::vector<cuda_linear_buffer_device::const_ptr>& persistent_working_data, cuda_linear_buffer_device::ptr temporary_working_fixed_buffer, cuda_linear_buffer_device::ptr temporary_working_per_entry_buffer, cuda_linear_buffer_device::ptr temporary_fixed_buffer, cuda_linear_buffer_device::ptr temporary_per_entry_buffer, unsigned int entry_count) { { cublas_safe_call(cublasSetStream(cuda_config->get_cublas_handle(), stream_id)); float alpha = 1.0F; float beta = 0.0F; cublas_safe_call(cublasSgemm( cuda_config->get_cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N, output_elem_count_per_entry, entry_count, input_elem_count_per_entry_list[0], &alpha, *data[0], input_elem_count_per_entry_list[0], *input_buffers[0], input_elem_count_per_entry_list[0], &beta, *output_buffer, output_elem_count_per_entry)); } if (bias) { cudnn_safe_call(cudnnSetStream(cuda_config->get_cudnn_handle(), stream_id)); cudnn_util::set_tensor_descriptor( output_data_desc, output_configuration_specific, entry_count); float alpha = 1.0F; float beta = 1.0F; cudnn_safe_call(cudnnAddTensor( cuda_config->get_cudnn_handle(), &alpha, bias_desc, *data[1], &beta, output_data_desc, *output_buffer)); } }
void reshape_layer_updater_cuda::enqueue_backward_data_propagation( cudaStream_t stream_id, unsigned int input_index, cuda_linear_buffer_device::ptr input_errors_buffer, cuda_linear_buffer_device::const_ptr output_errors_buffer, const std::vector<cuda_linear_buffer_device::const_ptr>& schema_data, const std::vector<cuda_linear_buffer_device::const_ptr>& data, const std::vector<cuda_linear_buffer_device::const_ptr>& data_custom, const std::vector<cuda_linear_buffer_device::const_ptr>& input_neurons_buffers, cuda_linear_buffer_device::const_ptr output_neurons_buffer, const std::vector<cuda_linear_buffer_device::const_ptr>& persistent_working_data, cuda_linear_buffer_device::ptr temporary_working_fixed_buffer, cuda_linear_buffer_device::ptr temporary_working_per_entry_buffer, cuda_linear_buffer_device::const_ptr temporary_fixed_buffer, cuda_linear_buffer_device::const_ptr temporary_per_entry_buffer, bool add_update_to_destination, unsigned int entry_count) { unsigned int elem_count = entry_count * output_elem_count_per_entry; if (add_update_to_destination) { cublas_safe_call(cublasSetStream(cuda_config->get_cublas_handle(), stream_id)); float alpha = 1.0F; cublas_safe_call(cublasSaxpy( cuda_config->get_cublas_handle(), elem_count, &alpha, *output_errors_buffer, 1, *input_errors_buffer, 1)); } else { if ((const float *)(*input_errors_buffer) != (const float *)(*output_errors_buffer)) { cuda_util::copy_buffer( *cuda_config, *output_errors_buffer, *input_errors_buffer, output_elem_count_per_entry * entry_count, stream_id); } } }
void fully_connected_layer_updater_cuda::enqueue_backward_data_propagation( cudaStream_t stream_id, unsigned int input_index, cuda_linear_buffer_device::ptr input_errors_buffer, cuda_linear_buffer_device::const_ptr output_errors_buffer, const std::vector<cuda_linear_buffer_device::const_ptr>& schema_data, const std::vector<cuda_linear_buffer_device::const_ptr>& data, const std::vector<cuda_linear_buffer_device::const_ptr>& data_custom, const std::vector<cuda_linear_buffer_device::const_ptr>& input_neurons_buffers, cuda_linear_buffer_device::const_ptr output_neurons_buffer, const std::vector<cuda_linear_buffer_device::const_ptr>& persistent_working_data, cuda_linear_buffer_device::ptr temporary_working_fixed_buffer, cuda_linear_buffer_device::ptr temporary_working_per_entry_buffer, cuda_linear_buffer_device::const_ptr temporary_fixed_buffer, cuda_linear_buffer_device::const_ptr temporary_per_entry_buffer, bool add_update_to_destination, unsigned int entry_count) { cublas_safe_call(cublasSetStream(cuda_config->get_cublas_handle(), stream_id)); float alpha = 1.0F; float beta = (add_update_to_destination ? 1.0F : 0.0F); cublas_safe_call(cublasSgemm( cuda_config->get_cublas_handle(), CUBLAS_OP_N, CUBLAS_OP_N, input_elem_count_per_entry_list[0], entry_count, output_elem_count_per_entry, &alpha, *data[0], input_elem_count_per_entry_list[0], *output_errors_buffer, output_elem_count_per_entry, &beta, *input_errors_buffer, input_elem_count_per_entry_list[0])); }
void cuda_running_configuration::update_parameters() { cuda_safe_call(cudaDriverGetVersion(&driver_version)); cuda_safe_call(cudaRuntimeGetVersion(&runtime_version)); int device_count; cuda_safe_call(cudaGetDeviceCount(&device_count)); if (device_count <= 0) throw neural_network_exception("No CUDA capable devices are found"); if (device_id >= device_count) throw neural_network_exception((boost::format("Device ID %1% specified while %2% devices are available") % device_id % device_count).str()); cudaDeviceProp device_prop; cuda_safe_call(cudaGetDeviceProperties(&device_prop, device_id)); device_name = device_prop.name; compute_capability_major = device_prop.major; compute_capability_minor = device_prop.minor; clock_rate = device_prop.clockRate; memory_clock_rate = device_prop.memoryClockRate; memory_bus_width = device_prop.memoryBusWidth; global_memory_size = device_prop.totalGlobalMem; ecc_enabled = (device_prop.ECCEnabled != 0); l2_cache_size = device_prop.l2CacheSize; multiprocessor_count = device_prop.multiProcessorCount; smem_per_block = device_prop.sharedMemPerBlock; max_threads_per_multiprocessor = device_prop.maxThreadsPerMultiProcessor; max_threads_per_block = device_prop.maxThreadsPerBlock; for(int i = 0; i < sizeof(max_threads_dim) / sizeof(max_threads_dim[0]); ++i) max_threads_dim[i] = device_prop.maxThreadsDim[i]; for(int i = 0; i < sizeof(max_grid_size) / sizeof(max_grid_size[0]); ++i) max_grid_size[i] = device_prop.maxGridSize[i]; max_texture_1d_linear = device_prop.maxTexture1DLinear; texture_alignment = device_prop.textureAlignment; pci_bus_id = device_prop.pciBusID; pci_device_id = device_prop.pciDeviceID; #ifdef _WIN32 tcc_mode = (device_prop.tccDriver != 0); #endif cuda_safe_call(cudaSetDevice(device_id)); cublas_safe_call(cublasCreate(&cublas_handle)); cusparse_safe_call(cusparseCreate(&cusparse_handle)); }
void convolution_1x1_layer_tester_cuda::enqueue_test( cudaStream_t stream_id, const std::vector<const_cuda_linear_buffer_device_smart_ptr>& schema_data, const std::vector<const_cuda_linear_buffer_device_smart_ptr>& data, const std::vector<const_cuda_linear_buffer_device_smart_ptr>& data_custom, cuda_linear_buffer_device_smart_ptr input_buffer, const std::vector<cuda_linear_buffer_device_smart_ptr>& additional_buffers, unsigned int entry_count) { { cuda_util::transpose( *cuda_config, *input_buffer, *additional_buffers[1], input_elem_count_per_feature_map, input_configuration_specific.feature_map_count, entry_count, stream_id); cublas_safe_call(cublasSetStream(cuda_config->get_cublas_handle(), stream_id)); float alpha = 1.0F; float beta = 0.0F; cublas_safe_call(cublasSgemm( cuda_config->get_cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N, output_configuration_specific.feature_map_count, entry_count * input_elem_count_per_feature_map, input_configuration_specific.feature_map_count, &alpha, *data[0], input_configuration_specific.feature_map_count, *additional_buffers[1], input_configuration_specific.feature_map_count, &beta, *additional_buffers[2], output_configuration_specific.feature_map_count)); cuda_util::transpose( *cuda_config, *additional_buffers[2], *additional_buffers[0], output_configuration_specific.feature_map_count, output_elem_count_per_feature_map, entry_count, stream_id); } // Add bias { cudnn_safe_call(cudnnSetStream(cuda_config->get_cudnn_handle(), stream_id)); cudnn_safe_call(cudnnSetTensor4dDescriptor( output_data_desc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, entry_count, output_configuration_specific.feature_map_count, 1, output_elem_count_per_feature_map)); float alpha = 1.0F; float beta = 1.0F; cudnn_safe_call(cudnnAddTensor( cuda_config->get_cudnn_handle(), CUDNN_ADD_SAME_C, &alpha, bias_desc, *data[1], &beta, output_data_desc, *additional_buffers[0])); } }