Пример #1
0
ConvBC01CuDNN<T>::ConvBC01CuDNN(int pad_y, int pad_x, int stride_y,
    int stride_x) : pad_y(pad_y), pad_x(pad_x), stride_y(stride_y),
    stride_x(stride_x), n_imgs(0), n_channels(0), n_filters(0), img_h(0),
    img_w(0), filter_h(0), filter_w(0), workspace_size(0) {
  CUDNN_CHECK(cudnnCreateTensorDescriptor(&imgs_desc));
  CUDNN_CHECK(cudnnCreateTensorDescriptor(&convout_desc));
  CUDNN_CHECK(cudnnCreateFilterDescriptor(&filters_desc));
  CUDNN_CHECK(cudnnCreateConvolutionDescriptor(&conv_desc));
}
		convolution_layer_updater_cuda::convolution_layer_updater_cuda()
			: input_data_desc(0)
			, output_data_desc(0)
			, weights_desc(0)
			, convolution_desc(0)
			, bias_desc(0)
		{
			cudnn_safe_call(cudnnCreateTensorDescriptor(&input_data_desc));
			cudnn_safe_call(cudnnCreateTensorDescriptor(&output_data_desc));
			cudnn_safe_call(cudnnCreateFilterDescriptor(&weights_desc));
			cudnn_safe_call(cudnnCreateConvolutionDescriptor(&convolution_desc));
			cudnn_safe_call(cudnnCreateTensorDescriptor(&bias_desc));
		}
Пример #3
0
int APPLY_SPECIFIC(conv_desc)(PyArrayObject *filt_shp,
                              cudnnConvolutionDescriptor_t *desc) {
  cudnnStatus_t err;
  int pad[3] = {PAD_0, PAD_1, PAD_2};
  int strides[3] = {SUB_0, SUB_1, SUB_2};
  int upscale[3] = {1, 1, 1};

#if BORDER_MODE == 0
  pad[0] = *(npy_int64 *)PyArray_GETPTR1(filt_shp, 2) - 1;
  pad[1] = *(npy_int64 *)PyArray_GETPTR1(filt_shp, 3) - 1;
#if NB_DIMS > 2
  pad[2] = *(npy_int64 *)PyArray_GETPTR1(filt_shp, 4) - 1;
#endif
#elif BORDER_MODE == 2
  pad[0] = *(npy_int64 *)PyArray_GETPTR1(filt_shp, 2) / 2;
  pad[1] = *(npy_int64 *)PyArray_GETPTR1(filt_shp, 3) / 2;
#if NB_DIMS > 2
  pad[2] = *(npy_int64 *)PyArray_GETPTR1(filt_shp, 4) / 2;
#endif
#endif

  if (PyArray_DIM(filt_shp, 0) - 2 != NB_DIMS) {
    PyErr_Format(PyExc_ValueError, "Filter shape has too many dimensions: "
                 "expected %d, got %lld.", NB_DIMS,
                 (long long)PyArray_DIM(filt_shp, 0));
    return -1;
  }

  err = cudnnCreateConvolutionDescriptor(desc);
  if (err != CUDNN_STATUS_SUCCESS) {
    PyErr_Format(PyExc_MemoryError, "could not allocate convolution "
                 "descriptor: %s", cudnnGetErrorString(err));
    return -1;
  }

  err = cudnnSetConvolutionNdDescriptor(*desc, NB_DIMS, pad, strides,
                                        upscale, CONV_MODE, PRECISION);
  return 0;
}
Пример #4
0
inline void createConvolutionDesc(cudnnConvolutionDescriptor_t* conv,
    int pad_h, int pad_w, int stride_h, int stride_w) {
  CUDNN_CHECK(cudnnCreateConvolutionDescriptor(conv));
  CUDNN_CHECK(cudnnSetConvolution2dDescriptor(*conv, pad_h, pad_w, stride_h,
          stride_w, 1, 1, CUDNN_CROSS_CORRELATION));
}
Пример #5
0
inline void createConvolutionDesc(cudnnConvolutionDescriptor_t* conv) {
  CUDNN_CHECK(cudnnCreateConvolutionDescriptor(conv));
}
Пример #6
0
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary, int xnor)
{
    int i;
    convolutional_layer l = {0};
    l.type = CONVOLUTIONAL;

    l.h = h;
    l.w = w;
    l.c = c;
    l.n = n;
    l.binary = binary;
    l.xnor = xnor;
    l.batch = batch;
    l.stride = stride;
    l.size = size;
    l.pad = pad;
    l.batch_normalize = batch_normalize;

    l.filters = calloc(c*n*size*size, sizeof(float));
    l.filter_updates = calloc(c*n*size*size, sizeof(float));

    l.biases = calloc(n, sizeof(float));
    l.bias_updates = calloc(n, sizeof(float));

    // float scale = 1./sqrt(size*size*c);
    float scale = sqrt(2./(size*size*c));
    for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_uniform(-1, 1);
    int out_h = convolutional_out_height(l);
    int out_w = convolutional_out_width(l);
    l.out_h = out_h;
    l.out_w = out_w;
    l.out_c = n;
    l.outputs = l.out_h * l.out_w * l.out_c;
    l.inputs = l.w * l.h * l.c;

    l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
    l.delta  = calloc(l.batch*out_h * out_w * n, sizeof(float));

    if(binary){
        l.binary_filters = calloc(c*n*size*size, sizeof(float));
        l.cfilters = calloc(c*n*size*size, sizeof(char));
        l.scales = calloc(n, sizeof(float));
    }
    if(xnor){
        l.binary_filters = calloc(c*n*size*size, sizeof(float));
        l.binary_input = calloc(l.inputs*l.batch, sizeof(float));
    }

    if(batch_normalize){
        l.scales = calloc(n, sizeof(float));
        l.scale_updates = calloc(n, sizeof(float));
        for(i = 0; i < n; ++i){
            l.scales[i] = 1;
        }

        l.mean = calloc(n, sizeof(float));
        l.variance = calloc(n, sizeof(float));

        l.rolling_mean = calloc(n, sizeof(float));
        l.rolling_variance = calloc(n, sizeof(float));
    }

#ifdef GPU
    l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
    l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);

    l.biases_gpu = cuda_make_array(l.biases, n);
    l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);

    l.scales_gpu = cuda_make_array(l.scales, n);
    l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);

    l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
    l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);

    if(binary){
        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
    }
    if(xnor){
        l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
        l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
    }

    if(batch_normalize){
        l.mean_gpu = cuda_make_array(l.mean, n);
        l.variance_gpu = cuda_make_array(l.variance, n);

        l.rolling_mean_gpu = cuda_make_array(l.mean, n);
        l.rolling_variance_gpu = cuda_make_array(l.variance, n);

        l.mean_delta_gpu = cuda_make_array(l.mean, n);
        l.variance_delta_gpu = cuda_make_array(l.variance, n);

        l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
        l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
    }
#ifdef CUDNN
    cudnnCreateTensorDescriptor(&l.srcTensorDesc);
    cudnnCreateTensorDescriptor(&l.dstTensorDesc);
    cudnnCreateFilterDescriptor(&l.filterDesc);
    cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
    cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
    cudnnCreateFilterDescriptor(&l.dfilterDesc);
    cudnnCreateConvolutionDescriptor(&l.convDesc);
    cudnnSetTensor4dDescriptor(l.dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.c, l.h, l.w); 
    cudnnSetTensor4dDescriptor(l.ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w); 
    cudnnSetFilter4dDescriptor(l.dfilterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l.n, l.c, l.size, l.size); 

    cudnnSetTensor4dDescriptor(l.srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.c, l.h, l.w); 
    cudnnSetTensor4dDescriptor(l.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w); 
    cudnnSetFilter4dDescriptor(l.filterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l.n, l.c, l.size, l.size); 
    int padding = l.pad ? l.size/2 : 0;
    cudnnSetConvolution2dDescriptor(l.convDesc, padding, padding, l.stride, l.stride, 1, 1, CUDNN_CROSS_CORRELATION);
    cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
            l.srcTensorDesc,
            l.filterDesc,
            l.convDesc,
            l.dstTensorDesc,
            CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
            0,
            &l.fw_algo);
    cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
            l.filterDesc,
            l.ddstTensorDesc,
            l.convDesc,
            l.dsrcTensorDesc,
            CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST,
            0,
            &l.bd_algo);
    cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
            l.srcTensorDesc,
            l.ddstTensorDesc,
            l.convDesc,
            l.dfilterDesc,
            CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
            0,
            &l.bf_algo);
#endif
#endif
    l.workspace_size = get_workspace_size(l);
    l.activation = activation;

    fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);

    return l;
}
Пример #7
0
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int groups, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam)
{
    int i;
    convolutional_layer l = {0};
    l.type = CONVOLUTIONAL;

    l.groups = groups;
    l.h = h;
    l.w = w;
    l.c = c;
    l.n = n;
    l.binary = binary;
    l.xnor = xnor;
    l.batch = batch;
    l.stride = stride;
    l.size = size;
    l.pad = padding;
    l.batch_normalize = batch_normalize;

    l.weights = calloc(c/groups*n*size*size, sizeof(float));
    l.weight_updates = calloc(c/groups*n*size*size, sizeof(float));

    l.biases = calloc(n, sizeof(float));
    l.bias_updates = calloc(n, sizeof(float));

    l.nweights = c/groups*n*size*size;
    l.nbiases = n;

    // float scale = 1./sqrt(size*size*c);
    float scale = sqrt(2./(size*size*c/l.groups));
    //scale = .02;
    //for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1, 1);
    for(i = 0; i < l.nweights; ++i) l.weights[i] = scale*rand_normal();
    int out_w = convolutional_out_width(l);
    int out_h = convolutional_out_height(l);
    l.out_h = out_h;
    l.out_w = out_w;
    l.out_c = n;
    l.outputs = l.out_h * l.out_w * l.out_c;
    l.inputs = l.w * l.h * l.c;

    l.output = calloc(l.batch*l.outputs, sizeof(float));
    l.delta  = calloc(l.batch*l.outputs, sizeof(float));

    l.forward = forward_convolutional_layer;
    l.backward = backward_convolutional_layer;
    l.update = update_convolutional_layer;
    if(binary){
        l.binary_weights = calloc(l.nweights, sizeof(float));
        l.cweights = calloc(l.nweights, sizeof(char));
        l.scales = calloc(n, sizeof(float));
    }
    if(xnor){
        l.binary_weights = calloc(l.nweights, sizeof(float));
        l.binary_input = calloc(l.inputs*l.batch, sizeof(float));
    }

    if(batch_normalize){
        l.scales = calloc(n, sizeof(float));
        l.scale_updates = calloc(n, sizeof(float));
        for(i = 0; i < n; ++i){
            l.scales[i] = 1;
        }

        l.mean = calloc(n, sizeof(float));
        l.variance = calloc(n, sizeof(float));

        l.mean_delta = calloc(n, sizeof(float));
        l.variance_delta = calloc(n, sizeof(float));

        l.rolling_mean = calloc(n, sizeof(float));
        l.rolling_variance = calloc(n, sizeof(float));
        l.x = calloc(l.batch*l.outputs, sizeof(float));
        l.x_norm = calloc(l.batch*l.outputs, sizeof(float));
    }
    if(adam){
        l.m = calloc(l.nweights, sizeof(float));
        l.v = calloc(l.nweights, sizeof(float));
        l.bias_m = calloc(n, sizeof(float));
        l.scale_m = calloc(n, sizeof(float));
        l.bias_v = calloc(n, sizeof(float));
        l.scale_v = calloc(n, sizeof(float));
    }

#ifdef GPU
    l.forward_gpu = forward_convolutional_layer_gpu;
    l.backward_gpu = backward_convolutional_layer_gpu;
    l.update_gpu = update_convolutional_layer_gpu;

    if(gpu_index >= 0){
        if (adam) {
            l.m_gpu = cuda_make_array(l.m, l.nweights);
            l.v_gpu = cuda_make_array(l.v, l.nweights);
            l.bias_m_gpu = cuda_make_array(l.bias_m, n);
            l.bias_v_gpu = cuda_make_array(l.bias_v, n);
            l.scale_m_gpu = cuda_make_array(l.scale_m, n);
            l.scale_v_gpu = cuda_make_array(l.scale_v, n);
        }

        l.weights_gpu = cuda_make_array(l.weights, l.nweights);
        l.weight_updates_gpu = cuda_make_array(l.weight_updates, l.nweights);

        l.biases_gpu = cuda_make_array(l.biases, n);
        l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);

        l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
        l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);

        if(binary){
            l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights);
        }
        if(xnor){
            l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights);
            l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
        }

        if(batch_normalize){
            l.mean_gpu = cuda_make_array(l.mean, n);
            l.variance_gpu = cuda_make_array(l.variance, n);

            l.rolling_mean_gpu = cuda_make_array(l.mean, n);
            l.rolling_variance_gpu = cuda_make_array(l.variance, n);

            l.mean_delta_gpu = cuda_make_array(l.mean, n);
            l.variance_delta_gpu = cuda_make_array(l.variance, n);

            l.scales_gpu = cuda_make_array(l.scales, n);
            l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);

            l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
            l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
        }
#ifdef CUDNN
        cudnnCreateTensorDescriptor(&l.normTensorDesc);
        cudnnCreateTensorDescriptor(&l.srcTensorDesc);
        cudnnCreateTensorDescriptor(&l.dstTensorDesc);
        cudnnCreateFilterDescriptor(&l.weightDesc);
        cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
        cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
        cudnnCreateFilterDescriptor(&l.dweightDesc);
        cudnnCreateConvolutionDescriptor(&l.convDesc);
        cudnn_convolutional_setup(&l);
#endif
    }
#endif
    l.workspace_size = get_workspace_size(l);
    l.activation = activation;

    //fprintf(stderr, "conv  %5d %2d x%2d /%2d  %4d x%4d x%4d   ->  %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);

    return l;
}
Пример #8
0
THFloatTensor *cudnn_SpatialConvolution_updateOutput(struct module *module, THFloatTensor *input)
{
	int kW = module->SpatialConvolution.kW;
	int kH = module->SpatialConvolution.kH;
	int dW = module->SpatialConvolution.dW;
	int dH = module->SpatialConvolution.dH;
	int padW = module->SpatialConvolution.padW;
	int padH = module->SpatialConvolution.padH;
	int nInputPlane  = module->SpatialConvolution.nInputPlane;
	int nOutputPlane = module->SpatialConvolution.nOutputPlane;

	THFloatTensor *weight = module->SpatialConvolution.weight;
	THFloatTensor *bias = module->SpatialConvolution.bias;
	THFloatTensor *output = module->output;

	int sizes[4];
	int pad[2], filterStride[2], upscale[2];
	cudnnTensorDescriptor_t dinput, dbias, doutput;
	cudnnConvolutionDescriptor_t dconv;
	cudnnFilterDescriptor_t dweight;
	float one = 1, zero = 0;
	size_t reqwssize;
	static void *ws;
	static size_t wssize;
	static const int alg = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;

	pad[0] = padH;
	pad[1] = padW;
	filterStride[0] = dH;
	filterStride[1] = dW;
	upscale[0] = 1;
	upscale[1] = 1;

	if(input->nDimension <= 2)
	{
		// Here we use the SpatialConvolution module to perform a linear transformation
		errcheck(cudnnCreateTensorDescriptor(&dinput));
		if(input->nDimension == 1)
			errcheck(cudnnSetTensor4dDescriptor(dinput, CUDNN_TENSOR_NCHW, floattype, 1, input->size[0], 1, 1));
		else errcheck(cudnnSetTensor4dDescriptor(dinput, CUDNN_TENSOR_NCHW, floattype, input->size[0], input->size[1], 1, 1));
	} else errcheck(THcudnn_TensorDescriptor(&dinput, input));
	errcheck(cudnnCreateFilterDescriptor(&dweight));
	errcheck(cudnnSetFilter4dDescriptor(dweight, floattype, nOutputPlane, nInputPlane, kH, kW));
	errcheck(cudnnCreateTensorDescriptor(&dbias));
	errcheck(cudnnSetTensor4dDescriptor(dbias, CUDNN_TENSOR_NCHW, floattype, 1, bias->size[0], 1, 1));
	errcheck(cudnnCreateConvolutionDescriptor(&dconv));
	errcheck(cudnnSetConvolutionNdDescriptor(dconv, 2, pad, filterStride, upscale, CUDNN_CROSS_CORRELATION, floattype));
	errcheck(cudnnGetConvolutionNdForwardOutputDim(dconv, dinput, dweight, 4, sizes));
	THCudaTensor_resize4d(output, sizes[0], sizes[1], sizes[2], sizes[3]);
	errcheck(THcudnn_TensorDescriptor(&doutput, output));
	if(alg == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM || alg == CUDNN_CONVOLUTION_FWD_ALGO_GEMM ||
		alg == CUDNN_CONVOLUTION_FWD_ALGO_FFT || alg == CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING)
	{
		errcheck(cudnnGetConvolutionForwardWorkspaceSize(THcudnn_getHandle(), dinput, dweight, dconv, doutput, alg, &reqwssize));
		if(reqwssize > wssize)
		{
			wssize = reqwssize;
			errcheck(cudaMalloc(&ws, reqwssize));
		}			
	}
	errcheck(cudnnConvolutionForward(THcudnn_getHandle(), &one, dinput, THFloatTensor_data(input),
		dweight, THFloatTensor_data(weight), dconv, alg, ws, wssize, &zero,
		doutput, THFloatTensor_data(output)));
	errcheck(cudnnAddTensor_v3(THcudnn_getHandle(), &one, dbias, THFloatTensor_data(bias),
		&one, doutput, THFloatTensor_data(output)));
	cudnnDestroyTensorDescriptor(dinput);
	cudnnDestroyFilterDescriptor(dweight);
	cudnnDestroyTensorDescriptor(dbias);
	cudnnDestroyTensorDescriptor(doutput);
	cudnnDestroyConvolutionDescriptor(dconv);
	return output;
}