void runCifar10() { cuMatrixVector<float> trainSetX; cuMatrixVector<float> testSetX; cuMatrix<int> *trainSetY, *testSetY; int batchSize; /*read the layers config*/ config::instanceObjtce()->initConfig("profile/Cifar10Config.txt"); batchSize = config::instanceObjtce()->get_batchSize(); /*read the cifar10 data*/ read_Cifar10_Data(trainSetX, testSetX, trainSetY, testSetY); cout<<"*******************************************************"<<endl; cout<<" Train_set : "<< trainSetX[0]->rows * trainSetX[0]->cols * trainSetX[0]->channels <<" features and "<< trainSetX.size() <<" samples"<<endl; cout<<" Train_label : "<< trainSetY->cols <<" features and "<< trainSetY->rows <<" samples"<<endl; cout<<" Test_set : "<< testSetX[0]->rows * testSetX[0]->cols * testSetX[0]->channels <<" features and "<< testSetX.size() <<" samples"<<endl; cout<<" Test_label : "<< testSetY->cols <<" features and "<< testSetY->rows <<" samples"<<endl; cout<<"*******************************************************"<<endl; VoteLayer::instance()->init( testSetY->rows, 10, testSetY ); int version = cudnnGetVersion(); cout<<"cudnnGetVersion(): "<<version<<" CUDNN VERSION from cudnn.h: "<<CUDNN_VERSION<<endl; /*show the device information*/ showDevices(); cout<<endl<<endl<<"Select the way to initial Parameter: "<<endl<<"1.random 2.read from file"<<endl; int cmd; cin>> cmd; if(cmd == 1 || cmd == 2) creatColumnNet(cmd); else { cout<<"Init way input Error"<<endl; exit(0); } /*training Network*/ cuTrainNetWork(trainSetX, trainSetY, testSetX, testSetY, batchSize); }
int APPLY_SPECIFIC(conv_fwd)(PyGpuArrayObject *input, PyGpuArrayObject *kerns, PyGpuArrayObject *om, cudnnConvolutionDescriptor_t desc, double alpha, double beta, PyGpuArrayObject **output, PARAMS_TYPE* params) { PyGpuContextObject *c = input->context; void *alpha_p; void *beta_p; float af = alpha, bf = beta; cudnnStatus_t err = CUDNN_STATUS_SUCCESS; if (PyGpuArray_DIMS(input)[1] != PyGpuArray_DIMS(kerns)[1] * params->num_groups) { PyErr_SetString(PyExc_ValueError, "images and kernel must have the same stack size"); return 1; } if ((PyGpuArray_DIMS(kerns)[0] % params->num_groups) != 0) { PyErr_SetString(PyExc_ValueError, "Number of filters must be divisible by number of groups"); return 1; } switch (input->ga.typecode) { case GA_DOUBLE: alpha_p = (void *)α beta_p = (void *)β break; case GA_FLOAT: case GA_HALF: alpha_p = (void *)⁡ beta_p = (void *)&bf; break; default: PyErr_SetString(PyExc_TypeError, "Unsupported type in convolution"); return 1; } if (params->inplace) { Py_XDECREF(*output); *output = om; Py_INCREF(*output); } else { if (theano_prep_output(output, PyGpuArray_NDIM(om), PyGpuArray_DIMS(om), om->ga.typecode, GA_C_ORDER, c) != 0) return 1; if (beta != 0.0 && pygpu_move(*output, om)) return 1; } if (PyGpuArray_DIMS(input)[0] == 0 || PyGpuArray_DIMS(kerns)[0] == 0 || PyGpuArray_DIMS(kerns)[1] == 0) { int err2 = GpuArray_memset(&(*output)->ga, 0); if (err2 != GA_NO_ERROR) { PyErr_Format(PyExc_RuntimeError, "GpuDnnConv could not fill the output with zeros: %d", err2); return 1; } return 0; } if (c_set_tensor_for_conv(input, APPLY_SPECIFIC(input), params->num_groups) == -1) return 1; if (c_set_filter(kerns, APPLY_SPECIFIC(kerns), params->num_groups) == -1) return 1; if (c_set_tensor_for_conv(*output, APPLY_SPECIFIC(output), params->num_groups) == -1) return 1; size_t input_offset = PyGpuArray_STRIDE(input, 0) / params->num_groups; size_t kern_offset = PyGpuArray_STRIDE(kerns, 0) * PyGpuArray_DIM(kerns, 0) / params->num_groups; size_t output_offset = PyGpuArray_STRIDE(*output, 0) / params->num_groups; cudnnConvolutionFwdAlgo_t algo = params->conv_algo; #ifdef DEBUG char algorithm_name[128]; #endif cuda_enter(c->ctx); if (params->choose_algo) { if (!params->choose_once) { reuse_algo = 1; for (unsigned int i = 0; i < PyGpuArray_NDIM(input); i++) { reuse_algo = (reuse_algo && PyGpuArray_DIM(input, i) == prev_img_dims[i]); reuse_algo = (reuse_algo && PyGpuArray_DIM(kerns, i) == prev_kern_dims[i]); } } if (!reuse_algo) { size_t free; int err2 = gpucontext_property(c->ctx, GA_CTX_PROP_LARGEST_MEMBLOCK, &free); if (err2 != GA_NO_ERROR) { PyErr_Format(PyExc_RuntimeError, "Error when trying to find the " "memory information on the GPU"); cuda_exit(c->ctx); return 1; } // Guess 4Mb if the info is not available if (free == 0) free = 4 * 1024 * 1024; if (params->choose_time) { int count; cudnnConvolutionFwdAlgoPerf_t choice; gpudata *tmpmem; tmpmem = gpudata_alloc(c->ctx, free, NULL, 0, NULL); if (tmpmem == NULL) { PyErr_SetString(PyExc_MemoryError, "Could not allocate working GPU memory"); return -1; } // We don't sync the buffer as we don't care about the values. err = cudnnFindConvolutionForwardAlgorithmEx( params->handle, APPLY_SPECIFIC(input), PyGpuArray_DEV_DATA(input), APPLY_SPECIFIC(kerns), PyGpuArray_DEV_DATA(kerns), desc, APPLY_SPECIFIC(output), PyGpuArray_DEV_DATA(*output), 1, &count, &choice, *(void **)tmpmem, free); gpudata_release(tmpmem); if (err != CUDNN_STATUS_SUCCESS) { PyErr_Format(PyExc_RuntimeError, "error selecting convolution algo: %s", cudnnGetErrorString(err)); cuda_exit(c->ctx); return 1; } algo = choice.algo; #ifdef DEBUG if (count == 0) { PyErr_SetString(PyExc_RuntimeError, "No best-timed conv fwd algorithm found"); return 1; } else if (choice.status != CUDNN_STATUS_SUCCESS) { PyErr_Format(PyExc_RuntimeError, "error getting best-timed FWD algo: %s", cudnnGetErrorString(choice.status)); return 1; } // Else, count is necessarly 1 for current implementation. #endif } else { err = cudnnGetConvolutionForwardAlgorithm( params->handle, APPLY_SPECIFIC(input), APPLY_SPECIFIC(kerns), desc, APPLY_SPECIFIC(output), CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, free, &algo); if (err != CUDNN_STATUS_SUCCESS) { PyErr_Format(PyExc_RuntimeError, "error selecting convolution algo: %s", cudnnGetErrorString(err)); cuda_exit(c->ctx); return 1; } } prev_algo = algo; } else { algo = prev_algo; } #ifdef DEBUG if (0 != theano_enum_to_string_cudnnConvolutionFwdAlgo_t(algo, algorithm_name)) return 1; // NB: This is printed only when algorithm is chosen at runtime. if (reuse_algo) fprintf(stderr, "(reused %s)\n", algorithm_name); else fprintf(stderr, "(using %s)\n", algorithm_name); #endif if (params->choose_once) { reuse_algo = 1; } else { for (unsigned int i = 0; i < PyGpuArray_NDIM(input); i++) { prev_img_dims[i] = PyGpuArray_DIM(input, i); prev_kern_dims[i] = PyGpuArray_DIM(kerns, i); } } } /* Only these algos are supported for 3d conv with cuDNN >= V5.1. */ if (PyGpuArray_NDIM(input) == 5 && !(algo == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM || algo == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM || algo == CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING)) { #ifdef DEBUG if (0 != theano_enum_to_string_cudnnConvolutionFwdAlgo_t(algo, algorithm_name)) return 1; fprintf(stderr, "(%s unsupported for 3D: fallback to CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM)\n", algorithm_name); #endif algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM; } // Algo `small` does not work for a batch size > 2^16, with cuDNN >= V5.1. // Issue should be resolved for cuDNN > V6.0. if (cudnnGetVersion() < 6100 && algo == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM && PyGpuArray_DIM(input, 0) > 65536) { #ifdef DEBUG fprintf(stderr, "(CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM " "will fail with batch size > 2^16, fallback to CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM)\n"); #endif algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM; } // The FFT implementation does not support strides, 1x1 filters or inputs // with a spatial dimension larger than 1024. The tiled-FFT implementation // does not support strides. // If the chosen implementation is FFT or tiled-FFT, validate that it can // be used on the current data and default to a safe implementation if it // can't. // The following code is 2d-specific but it is fine as FFT and tiled-FFT are // defined only for 2d filters /* NB: TODO: These checkings seems outdated for FFT algorithms with cuDNN >= 5.1. New conditions apply and may depend on number of dimensions (2D or 3D) e.g. for FFT_TILING. TODO: More globally, how to handle CUDNN_STATUS_NOT_SUPPORTED with unsupported algorithms? */ if ((algo == CUDNN_CONVOLUTION_FWD_ALGO_FFT || algo == CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING) && PyGpuArray_NDIM(input) == 4) { // Extract the properties of the convolution descriptor int nd; int pad[2]; int stride[2]; int dilation[2]; cudnnConvolutionMode_t mode; cudnnDataType_t data_type; err = cudnnGetConvolutionNdDescriptor(desc, 2, &nd, pad, stride, dilation, &mode, &data_type); if (err != CUDNN_STATUS_SUCCESS) { PyErr_Format(PyExc_RuntimeError, "error getting convolution properties: %s", cudnnGetErrorString(err)); cuda_exit(c->ctx); return 1; } if (algo == CUDNN_CONVOLUTION_FWD_ALGO_FFT) { if (stride[0] != 1 || stride[1] != 1 || PyGpuArray_DIM(input, 2) > 1024 || PyGpuArray_DIM(input, 3) > 1024 || (PyGpuArray_DIM(kerns, 2) == 1 && PyGpuArray_DIM(kerns, 3) == 1)) { algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM; } } else { // algo == CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING if (stride[0] != 1 || stride[1] != 1) { algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM; } } } { size_t worksize; gpudata *workspace; err = cudnnGetConvolutionForwardWorkspaceSize(params->handle, APPLY_SPECIFIC(input), APPLY_SPECIFIC(kerns), desc, APPLY_SPECIFIC(output), algo, &worksize); if (err == CUDNN_STATUS_NOT_SUPPORTED) { // Fallback to none algo if not supported #ifdef DEBUG if (0 != theano_enum_to_string_cudnnConvolutionFwdAlgo_t(algo, algorithm_name)) return 1; fprintf(stderr, "(%s error getting worksize: " "fallback to CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM)\n", algorithm_name); #endif algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM; err = cudnnGetConvolutionForwardWorkspaceSize(params->handle, APPLY_SPECIFIC(input), APPLY_SPECIFIC(kerns), desc, APPLY_SPECIFIC(output), algo, &worksize); } if (err != CUDNN_STATUS_SUCCESS) { PyErr_Format(PyExc_RuntimeError, "error getting worksize: %s", cudnnGetErrorString(err)); cuda_exit(c->ctx); return 1; } /* * This is less than ideal since we need to free it after (which * introduces a synchronization point. But we don't have a module * to place a nice get_work_mem() function in. */ if (worksize != 0) { workspace = gpudata_alloc(c->ctx, worksize, NULL, 0, NULL); if (workspace == NULL) { PyErr_SetString(PyExc_RuntimeError, "Could not allocate working memory"); cuda_exit(c->ctx); return 1; } } cuda_wait(input->ga.data, GPUARRAY_CUDA_WAIT_READ); cuda_wait(kerns->ga.data, GPUARRAY_CUDA_WAIT_READ); cuda_wait((*output)->ga.data, GPUARRAY_CUDA_WAIT_WRITE); for ( int g = 0; g < params->num_groups; g++) { err = cudnnConvolutionForward( params->handle, alpha_p, APPLY_SPECIFIC(input), ((char *)PyGpuArray_DEV_DATA(input)) + input_offset * g, APPLY_SPECIFIC(kerns), ((char *)PyGpuArray_DEV_DATA(kerns)) + kern_offset * g, desc, algo, worksize == 0 ? NULL : *(void **)workspace, worksize, beta_p, APPLY_SPECIFIC(output), ((char *)PyGpuArray_DEV_DATA(*output)) + output_offset * g); } if (worksize != 0) gpudata_release(workspace); cuda_record(input->ga.data, GPUARRAY_CUDA_WAIT_READ); cuda_record(kerns->ga.data, GPUARRAY_CUDA_WAIT_READ); cuda_record((*output)->ga.data, GPUARRAY_CUDA_WAIT_WRITE); } cuda_exit(c->ctx); if (err != CUDNN_STATUS_SUCCESS) { PyErr_Format(PyExc_RuntimeError, "error doing operation: %s", cudnnGetErrorString(err)); return 1; } return 0; }