Пример #1
0
	/*
	 Function getLargestConnectedComps
	 Finds the largest connected component in image 

	 Input:
	 im (IplImage *): image input 

	 Output: the largest connected component (CvConnectedComp *)
	 */
	CvConnectedComp* LocalisationPupil::getLargestConnectedComps(IplImage *image)
	{
		CvScalar pixval;
		IplImage* im2 = cvCloneImage(image);
		CvConnectedComp *retComps,*comps;
		comps = new CvConnectedComp; 
		retComps = new CvConnectedComp; 
		
		retComps->area = 0;
		
		for (int j = 0; j < ((im2)->width)*((im2)->height); j++)
		{
			pixval = cvGet2D(im2,j/(im2)->width,j%(im2)->width);
			// if this pixel has the value of 255, this component has not yet been recorded
			if (pixval.val[0] > 0)
			{
				cvFloodFill(im2,cvPoint(j%(im2)->width,j/(im2)->width)
								,cvScalar(0),cvScalar(0),cvScalar(0),comps,4);
				//if this component is lager
				if(comps->area > retComps->area){
					retComps->area = comps->area;				
					retComps->rect = comps->rect;				
				}			
			}
		}		
		DELETE(comps);
		cvReleaseImage(&im2);
		return retComps;
	}
Пример #2
0
void flood(IplImage *img)
{
CvPoint seed=cvPoint(g,h);
CvScalar color=CV_RGB(250,0,0);
cvFloodFill(img,seed,color,cvScalarAll(200.0),cvScalarAll(200.0),NULL,CV_FLOODFILL_FIXED_RANGE,NULL);
printf("ab %d  %d\n",g,h);

}
Пример #3
0
bool CAutoDetect4Pts::ConnectdCorner(IplImage *edge, CvPoint2D32f *pCorner, int &n)
{
	CvPoint2D32f *tmpcorner = new CvPoint2D32f[n];
	int *pflag = new int[n];
	memset(pflag, 0, sizeof(int)*n);
	int m = 0;
	for (int i  = 0; i < n; i ++)//挨个判断
	{
		if (pflag[i] != 0)//之前判断过,换下一个
			continue;

		m = 0;
		pflag [i] = 1;
		tmpcorner[m] = pCorner[i];
		cvFloodFill(m_Edge, cvPoint(pCorner[i].x, pCorner[i].y), cvScalar(100,100,100));
		for (int j  = i+1; j < n; j ++)
		{
			if (edge->imageData[int(pCorner[j].y)* m_Edge->widthStep + int(pCorner[j]. x)] == 100)
			{
				m ++;
				pflag[j] = 1;
				tmpcorner[m] = pCorner[j];
			}
		}
		if (m == 3)
			break;
		cvFloodFill(m_Edge, cvPoint(pCorner[i].x, pCorner[i].y), cvScalar(255,255,255));

	}
	if (m == 3)
	{
		for (int i  = 0; i < 4; i ++)
		{
			pCorner[i] = tmpcorner[i];
		}
		delete []tmpcorner;
		n = 4;
		return true;
	}
	else
	{
		delete []tmpcorner;
		return false;
	}
}
Пример #4
0
void on_mouse( int event, int x, int y, int flags, void* param )
{
    if( !color_img )
        return;

    switch( event )
    {
    case CV_EVENT_LBUTTONDOWN:
        {
            CvPoint seed = cvPoint(x,y);
            int lo = ffill_case == 0 ? 0 : lo_diff;
            int up = ffill_case == 0 ? 0 : up_diff;
            int flags = connectivity + (new_mask_val << 8) +
                        (ffill_case == 1 ? CV_FLOODFILL_FIXED_RANGE : 0);
            int b = rand() & 255, g = rand() & 255, r = rand() & 255;
            CvConnectedComp comp;

            if( is_mask )
                cvThreshold( mask, mask, 1, 128, CV_THRESH_BINARY );

            if( is_color )
            {
                CvScalar color = CV_RGB( r, g, b );
                cvFloodFill( color_img, seed, color, CV_RGB( lo, lo, lo ),
                             CV_RGB( up, up, up ), &comp, flags, is_mask ? mask : NULL );
                cvShowImage( "image", color_img );
            }
            else
            {
                CvScalar brightness = cvRealScalar((r*2 + g*7 + b + 5)/10);
                cvFloodFill( gray_img, seed, brightness, cvRealScalar(lo),
                             cvRealScalar(up), &comp, flags, is_mask ? mask : NULL );
                cvShowImage( "image", gray_img );
            }

            printf("%g pixels were repainted\n", comp.area );

            if( is_mask )
                cvShowImage( "mask", mask );
        }
        break;
    }
}
Пример #5
0
int cv::floodFill( InputOutputArray _image, InputOutputArray _mask,
                   Point seedPoint, Scalar newVal, Rect* rect,
                   Scalar loDiff, Scalar upDiff, int flags )
{
    CvConnectedComp ccomp;
    CvMat c_image = _image.getMat(), c_mask = _mask.getMat();
    cvFloodFill(&c_image, seedPoint, newVal, loDiff, upDiff, &ccomp, flags, c_mask.data.ptr ? &c_mask : 0);
    if( rect )
        *rect = ccomp.rect;
    return cvRound(ccomp.area);
}
Пример #6
0
int main(int argc,char** argv)
{
int f;
IplImage *img,*src;
CvCapture* capture=cvCaptureFromCAM(0);
cvNamedWindow("floodfill",CV_WINDOW_AUTOSIZE);
//img=cvLoadImage("img.jpg");
//cvCvtColor(src,img,CV_RGB2GRAY);
//CvMouseCallback(7,x,y,16,NULL);

cvSetMouseCallback("floodfill",my_mouse_callback,(void*)img);
while(1)
{
img=cvQueryFrame(capture);

if(l==7   )
{
flag=1;
seed=cvPoint(g,h);
cvFloodFill(img,seed,color,cvScalarAll(50.0),cvScalarAll(10.0),&comp,CV_FLOODFILL_FIXED_RANGE,NULL);
printf("ab %d  %d\n",g,h);
}
if(flag==1)
{
cvFloodFill(img,seed,color,cvScalarAll(50.0),cvScalarAll(10.0),&comp, CV_FLOODFILL_FIXED_RANGE,NULL);
printf("countour total %f %f \n",comp.area,comp.value.val[1]);
//contour=comp->contour;
//cvDrawContours(img,comp.contour,cvScalarAll(255),cvScalarAll(0),-1,1,8,cvPoint(0,0));

}
cvShowImage("floodfill",img);
cvWaitKey(33);
if(cvWaitKey(33)==27)
break;

}
cvWaitKey();

cvReleaseImage(&img);

}
Пример #7
0
void SetImageFloodFill(IplImage *img)
{
	CvPoint *imgPoint = new CvPoint;
	imgPoint->x = img->width / 2;
	imgPoint->y = img->height / 2;

	CvScalar *imgScalar = new CvScalar;
	imgScalar->val[0] = 215; 
	imgScalar->val[1] = 59;
	imgScalar->val[2] = 62;

	cvFloodFill(img, *imgPoint, *imgScalar, cvScalarAll(7.0), cvScalarAll(7.0), NULL, 4, NULL);
}
Пример #8
0
static void findCComp( IplImage* img )
{
    int x, y, cidx = 1;
    IplImage* mask = cvCreateImage( cvSize(img->width+2, img->height+2), 8, 1 );
    cvZero(mask);
    cvRectangle( mask, cvPoint(0, 0), cvPoint(mask->width-1, mask->height-1),
                 cvScalarAll(1), 1, 8, 0 );

    for( y = 0; y < img->height; y++ )
        for( x = 0; x < img->width; x++ )
        {
            if( CV_IMAGE_ELEM(mask, uchar, y+1, x+1) != 0 )
                continue;
            cvFloodFill(img, cvPoint(x,y), cvScalarAll(cidx),
                        cvScalarAll(0), cvScalarAll(0), 0, 4, mask);
            cidx++;
        }
}
Пример #9
0
void CV_FloodFillTest::run_func()
{
    int flags = connectivity + (mask_only ? CV_FLOODFILL_MASK_ONLY : 0) +
        (range_type == 1 ? CV_FLOODFILL_FIXED_RANGE : 0) + (new_mask_val << 8);
    double* odata = test_mat[OUTPUT][0].ptr<double>();

    if(!test_cpp)
    {
        CvConnectedComp comp;
        cvFloodFill( test_array[INPUT_OUTPUT][0], seed_pt, new_val, l_diff, u_diff, &comp,
                     flags, test_array[INPUT_OUTPUT][1] );
        odata[0] = comp.area;
        odata[1] = comp.rect.x;
        odata[2] = comp.rect.y;
        odata[3] = comp.rect.width;
        odata[4] = comp.rect.height;
        odata[5] = comp.value.val[0];
        odata[6] = comp.value.val[1];
        odata[7] = comp.value.val[2];
        odata[8] = comp.value.val[3];
    }
    else
    {
        cv::Mat img = cv::cvarrToMat(test_array[INPUT_OUTPUT][0]),
            mask = test_array[INPUT_OUTPUT][1] ? cv::cvarrToMat(test_array[INPUT_OUTPUT][1]) : cv::Mat();
        cv::Rect rect;
        int area;
        if( mask.empty() )
            area = cv::floodFill( img, seed_pt, new_val, &rect, l_diff, u_diff, flags );
        else
            area = cv::floodFill( img, mask, seed_pt, new_val, &rect, l_diff, u_diff, flags );
        odata[0] = area;
        odata[1] = rect.x;
        odata[2] = rect.y;
        odata[3] = rect.width;
        odata[4] = rect.height;
        odata[5] = odata[6] = odata[7] = odata[8] = 0;
    }
}
Пример #10
0
int colorize_map()
{
    int i;
    char str[4];
    IplImage *img=cvLoadImage("chinamap.jpg",CV_LOAD_IMAGE_COLOR);
    CvPoint pt;
    CvFont font;
    cvInitFont(&font, CV_FONT_HERSHEY_PLAIN, .8, .8, 0, 1, 8);
    CvScalar color[5]=
    {
        CV_RGB(255,0,0),CV_RGB(0,255,0),
        CV_RGB(0,0,255),CV_RGB(0,0,0),CV_RGB(99,76,23)
    };
    if(!img)
    {
        printf("open file chinamap.jpg failed");
    }
    //cvNamedWindow("map of china",CV_WINDOW_AUTOSIZE);
    for(i=0;i<V;i++)
    {
        memcpy(&pt,&vertex[i].capcity,sizeof(CvPoint));
        cvFloodFill(img,pt,color[vertex[i].color-1],
                CV_RGB(25,25,25),CV_RGB(25,25,25),NULL,4,NULL);
        sprintf(str,"%d",vertex[i].color);
        //cvPutText(img,vertex[i].proname,pt,&font,CV_RGB(25,55,255));
        //cvPutText(img,vertex[i].proname,pt,&font,CV_RGB(25,55,255));
        //cvShowImage("map of china",img);
        //cvWaitKey(0);
    }
    //cvShowImage("map of china",img);
    //cvSaveImage("colorized_map.jpg",img,0);
    cvSaveImage("colorized_map.jpg",img);
    //cvWaitKey(0);
    cvReleaseImage(&img);
    //cvDestroyWindow("chinamap.jpg");
    return 1;
}
//추후 수정
void FkPaperKeyboard_TypeA::cornerVerification(IplImage* srcImage){
	CvSize size = cvGetSize(srcImage);
	IplImage* eigImage = cvCreateImage(size, IPL_DEPTH_8U,1);
	IplImage* tempImage = cvCreateImage(size, IPL_DEPTH_8U, 1);
	IplImage* grayImage = cvCreateImage(size, IPL_DEPTH_8U, 1);
	IplImage* veriImage = cvCreateImage(size, IPL_DEPTH_8U, 1);
	IplImage* dstImage = cvCreateImage(size, IPL_DEPTH_8U, 1);
	IplImage* mask = cvCreateImage(size, IPL_DEPTH_8U, 1);
	IplImage* mask2 = cvCreateImage(size, IPL_DEPTH_8U, 1);
	CvRect rect = cvRect(10, 10, 640 - 20, 480 - 20);

	CvPoint2D32f srcQuad[4], dstQuad[4];
	CvMat* warp_matrix = cvCreateMat(3,3, CV_32FC1);
	CvMat* warp_matrix_invert = cvCreateMat(3,3, CV_32FC1);
	CvMat* result = cvCreateMat(3, 1, CV_32FC1);
	CvMat* dst = cvCreateMat(3, 1,CV_32FC1);

	int keyButtonCornerCount = 316;
	
	cvCvtColor(srcImage, grayImage, CV_BGR2GRAY);
	cvSetImageROI(grayImage, rect);
	cvSetImageROI(mask, rect);
	cvSetImageROI(dstImage, rect);
	cvSetImageROI(mask2, rect);

	// 150~255사이의 값만 추출해서 마스크에 저장
	cvInRangeS(grayImage, cvScalar(100, 100, 100), cvScalar(255, 255, 255), mask);
	cvCopy(mask, mask2);

	//cvShowImage("mask", mask);
	//cvShowImage("mask2", mask2);

	// 20,20? 150 미만의 값을 제외하기 위해 0인 값(mask)과 추출한 값(mask2)을 XOR 연산 한다.
	cvFloodFill(mask, cvPoint(10, 10), cvScalar(0, 0, 0));
	cvXor(mask2, mask, dstImage);
	
	//cvShowImage("mask3", mask);
	//cvShowImage("mask4", mask2);
	//cvShowImage("dstImage", dstImage);

	// 최종 연산된 이미지에서 코너 추출(각 키패드의 코너)
	cvGoodFeaturesToTrack(dstImage, eigImage, tempImage, keyButtonCorner, &keyButtonCornerCount, 0.01, 7, NULL, 7, 0);
	cvFindCornerSubPix (dstImage, keyButtonCorner, keyButtonCornerCount,cvSize (3, 3), cvSize (-1, -1), cvTermCriteria (CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.03));
	
	cvResetImageROI(dstImage);
	for(int i =0 ; i < 316 ; i++){
		keyButtonCorner[i].x += rect.x;
		keyButtonCorner[i].y += rect.y;
	}
	
	initKeyButtonCorner();
	
	srcQuad[CLOCKWISE_1].x = keyButtonCorner[315].x+10;
	srcQuad[CLOCKWISE_1].y = keyButtonCorner[315].y-10;
	srcQuad[CLOCKWISE_5].x = keyButtonCorner[31].x + 10;
	srcQuad[CLOCKWISE_5].y = keyButtonCorner[31].y + 10;
	srcQuad[CLOCKWISE_7].x = keyButtonCorner[0].x - 10;
	srcQuad[CLOCKWISE_7].y = keyButtonCorner[0].y + 10;
	srcQuad[CLOCKWISE_11].x = keyButtonCorner[290].x - 10;
	srcQuad[CLOCKWISE_11].y = keyButtonCorner[290].y - 10;
	dstQuad[CLOCKWISE_1].x = 640;
	dstQuad[CLOCKWISE_1].y = 0;
	dstQuad[CLOCKWISE_5].x = 640;
	dstQuad[CLOCKWISE_5].y = 480;
	dstQuad[CLOCKWISE_7].x = 0;
	dstQuad[CLOCKWISE_7].y = 480;
	dstQuad[CLOCKWISE_11].x = 0;
	dstQuad[CLOCKWISE_11].y = 0;
	cvGetPerspectiveTransform(srcQuad, dstQuad, warp_matrix);
	
	cvWarpPerspective(dstImage, veriImage, warp_matrix);
	detectKeyButtonCorner(veriImage);
	cvInvert(warp_matrix, warp_matrix_invert);
	for(int i = 0 ; i < 316 ; i++){	
		cvmSet(dst, 0, 0, keyButtonCorner[i].x);  
		cvmSet(dst, 1, 0, keyButtonCorner[i].y);
		cvmSet(dst, 2, 0, 1);

		cvMatMul(warp_matrix_invert, dst, result);
		float t = cvmGet(result, 2,0);
		keyButtonCorner[i].x = cvmGet(result, 0,0)/t ;
		keyButtonCorner[i].y = cvmGet(result, 1,0)/t ;
	}
	cvResetImageROI(srcImage);
	cvResetImageROI(mask);
	cvReleaseImage(&eigImage);
	cvReleaseImage(&tempImage);
	cvReleaseImage(&grayImage);
	cvReleaseImage(&veriImage);
	cvReleaseImage(&dstImage);
	cvReleaseImage(&mask);
	cvReleaseImage(&mask2);
	cvReleaseMat(&warp_matrix);
	cvReleaseMat(&warp_matrix_invert);
	cvReleaseMat(&result);
	cvReleaseMat(&dst);	
}
Пример #12
0
FConnectedDomains* FConnectedDomains::FromImage(IplImage* image)
{
	IplImage* image1 = cvCreateImage(cvGetSize(image), image->depth, image->nChannels);
	cvCopy(image, image1);
	FConnectedDomains* ret = new FConnectedDomains();

	if(image1->nChannels == 1) 
	{
		for(int i = 0; i < image1->height; i++)
		{
			for(int j = 0; j < image1->width; j++)
			{
				int index = i * image1->widthStep + j;
				if(((unsigned char)(image1->imageData[index]) == 255) || (image1->imageData[index] == 100) || (image1->imageData[index] == 101)) 
					continue;

				CvConnectedComp ccc;
				cvFloodFill(image1, cvPoint(j, i), cvScalarAll(100), cvScalarAll(0), cvScalarAll(0), &ccc, 8);

				FConnectedDomain* fcd = new FConnectedDomain();
				fcd->rect = ccc.rect;

			/*	for(int k = ccc.rect.y; k < ccc.rect.y + ccc.rect.height; k++)
				{
					for(int l = ccc.rect.x; l < ccc.rect.x + ccc.rect.width; l++)
					{
						index = k * image1->widthStep + l;
						if(image1->imageData[index] == 100)
						{
							CvPoint* cp = new CvPoint();
							cp->x = l;
							cp->y = k;
							fcd->points.push_back(cp);
							image1->imageData[index] = 101;
						}
					}
				}*/
				for(int l = ccc.rect.x; l < ccc.rect.x + ccc.rect.width; l++)
				{	
					for(int k = ccc.rect.y; k < ccc.rect.y + ccc.rect.height; k++)
					{
						index = k * image1->widthStep + l;
						if(image1->imageData[index] == 100)
						{
							CvPoint* cp = new CvPoint();
							cp->x = l;
							cp->y = k;
							fcd->Xpoints.push_back(cp);
							image1->imageData[index] = 101;
						}
					}
				}
				ret->ConnectedDomains.push_back(fcd);
			}
		}
	}

	cvReleaseImage(&image1);

	return ret;
}
Пример #13
0
void imageCallback(const sensor_msgs::ImageConstPtr& msg)
{
	//bridge that will transform the message (image) from ROS code back to "image" code
  sensor_msgs::CvBridge bridge;
  fprintf(stderr, "\n call Back funtion \n");
  //publish data (obstacle waypoints) back to the boat
  //ros::NodeHandle n;
  //std_msgs::Float32 xWaypoint_msg;         // X coordinate obstacle message
  //std_msgs::Float32 yWaypoint_msg;         // Y coordinate obstacle message
  //publish the waypoint data             
  //ros::Publisher waypoint_info_pub = n.advertise<std_msgs::Float32>("waypoint_info", 1000);
  //ros::Publisher Ywaypoint_info_pub = n.advertise<std_msgs::Float32>("waypoint_info", 1000);
  //std::stringstream ss;
  
  /***********************************************************************/
    //live image coming streamed straight from the boat's camera
    IplImage* boatFront = bridge.imgMsgToCv(msg, "bgr8");
    //The boat takes flipped images, so you need to flip them back to normal
    cvFlip(boatFront, boatFront, 0);
    IplImage* backUpImage = cvCloneImage(boatFront);
    boatFront->origin = IPL_ORIGIN_TL;   //sets image origin to top left corner
    int X = boatFront->height;
    int Y = boatFront->width;
    //cout << "height " << X << endl;
    //cout << "width " << Y << endl;    
    
    /*********************Image Filtering variables****************************/
    //these images are used for segmenting objects from the overall background 
    //create a one channel image to convert from RGB to GRAY
    IplImage* grayImage = cvCreateImage(cvGetSize(boatFront),IPL_DEPTH_8U,1);
    //convert grayImage to binary (final step after converting from GRAY)
    IplImage* bwImage = cvCreateImage(cvGetSize(grayImage),IPL_DEPTH_8U,1);
    //variables used for the flood fill segmentation
    CvPoint seed_point = cvPoint(boatFront->height/1.45,0);       //not sure how this variable works
    CvScalar color = CV_RGB(250,0,0);
    CvMemStorage* grayStorage = NULL;     //memory storage for contour sequence
    CvSeq* contours = 0;
    // get blobs and filter them using their area
    //IplConvKernel* morphKernel = cvCreateStructuringElementEx(5, 5, 1, 1, CV_SHAPE_RECT, NULL);
    //IplImage* original, *originalThr;
    //IplImage* segmentated = cvCreateImage(cvGetSize(boatFront), 8, 1);
    //unsigned int blobNumber = 0;
    //IplImage* labelImg = cvCreateImage(cvGetSize(boatFront), IPL_DEPTH_LABEL, 1);
    CvMoments moment;
    
    /***********************************************************************/
    //boat's edge distance from the camera. This is used for visual calibration
    //to know the distance from the boat to the nearest obstacles.
    //With respect to the mounted camera, distance is 21 inches (0.5334 m) side to side
    //and 15 inches (0.381 m).
    //float boatFrontDistance = 0.381;    //distance in meters
    //float boatSideDistance = 0.5334;    //distance in meters
    // These variables tell the distance from the center bottom of the image
    // (the camera) to the square surrounding a the obstacle
    float xObstacleDistance = 0.0;
    float yObstacleDistance = 0.0;
    float obstacleDistance = 0.0;
    float obstacleHeading = 0.0;
    
    int pixelsNumber = 50;  //number of pixels for an n x n matrix and # of neighbors
    const int arraySize = pixelsNumber;
    const int threeArraySize = pixelsNumber;
    //if n gets changed, then the algorithm might have to be
    //recalibrated. Try to keep it constant
    //these variables are used for the k nearest neighbors
    //int accuracy;
    //reponses for each of the classifications
    float responseWaterH, responseWaterS, responseWaterV; 
    float responseGroundH, responseGroundS, responseGroundV;
    float responseSkyH, responseSkyS, responseSkyV;
    float averageHue = 0.0;
    float averageSat = 0.0;
    float averageVal = 0.0;
    CvMat* trainClasses = cvCreateMat( pixelsNumber, 1, CV_32FC1 );
    CvMat* trainClasses2 = cvCreateMat( pixelsNumber, 1, CV_32FC1 );
    //CvMat sample = cvMat( 1, 2, CV_32FC1, _sample );
    //used with the classifier 
    CvMat* trainClassesH = cvCreateMat( pixelsNumber, 1, CV_32FC1 );
    CvMat* trainClassesS = cvCreateMat( pixelsNumber, 1, CV_32FC1 );
    CvMat* trainClassesV = cvCreateMat( pixelsNumber, 1, CV_32FC1 );
    //CvMat* trainClasses2 = cvCreateMat( pixelsNumber, 1, CV_32FC1 );
    //CvMat sample = cvMat( 1, 2, CV_32FC1, _sample );
    //used with the classifier 
    /*CvMat* nearestWaterH = cvCreateMat(1, pixelsNumber, CV_32FC1);
    CvMat* nearestWaterS = cvCreateMat(1, pixelsNumber, CV_32FC1);
    CvMat* nearestWaterV = cvCreateMat(1, pixelsNumber, CV_32FC1);
    CvMat* nearestGroundH = cvCreateMat(1, pixelsNumber, CV_32FC1);
    CvMat* nearestGroundS = cvCreateMat(1, pixelsNumber, CV_32FC1);
    CvMat* nearestGroundV = cvCreateMat(1, pixelsNumber, CV_32FC1);
    CvMat* nearestSkyH = cvCreateMat(1, pixelsNumber, CV_32FC1);
    CvMat* nearestSkyS = cvCreateMat(1, pixelsNumber, CV_32FC1);
    CvMat* nearestSkyV = cvCreateMat(1, pixelsNumber, CV_32FC1);
    //Distance
    CvMat* distanceWaterH = cvCreateMat(1, pixelsNumber, CV_32FC1);
    CvMat* distanceWaterS = cvCreateMat(1, pixelsNumber, CV_32FC1);
    CvMat* distanceWaterV = cvCreateMat(1, pixelsNumber, CV_32FC1);
    CvMat* distanceGroundH = cvCreateMat(1, pixelsNumber, CV_32FC1);
    CvMat* distanceGroundS = cvCreateMat(1, pixelsNumber, CV_32FC1);
    CvMat* distanceGroundV = cvCreateMat(1, pixelsNumber, CV_32FC1);
    CvMat* distanceSkyH = cvCreateMat(1, pixelsNumber, CV_32FC1);
    CvMat* distanceSkyS = cvCreateMat(1, pixelsNumber, CV_32FC1);
    CvMat* distanceSkyV = cvCreateMat(1, pixelsNumber, CV_32FC1); */
    //these variables are use to traverse the picture by blocks of n x n pixels at
    //a time. 
    //Index(0,0) does not exist, so make sure kj and ki start from 1 (in the
    //right way, of course)
    //x and y are the dimensions of the local patch of pixels
    int x = (boatFront->height)/1.45;//(boatFront->height)/2.5 + 105; 
    int y = 0;  
    int skyX = 0; 
    int skyY = 0;
    int row1 = 0;
    int column1 = 0;
    //these two variables are used in order to divide the grid in the
    //resample segmentation part
    int xDivisor = 200;
    int yDivisor = 200;
    //ground sample
    //CvMat* groundTrainingHue = cvCreateMat(threeArraySize,arraySize,CV_32FC1);
    //CvMat* groundTrainingSat = cvCreateMat(threeArraySize,arraySize,CV_32FC1);
    //CvMat* groundTrainingVal = cvCreateMat(threeArraySize,arraySize,CV_32FC1);
    //water sample
    CvMat* waterTrainingHue = cvCreateMat(threeArraySize,arraySize,CV_32FC1);
    CvMat* waterTrainingSat = cvCreateMat(threeArraySize,arraySize,CV_32FC1);
    CvMat* waterTrainingVal = cvCreateMat(threeArraySize,arraySize,CV_32FC1);
    //n x n sample patch taken from the picture
    CvMat* sampleHue = cvCreateMat(1,arraySize,CV_32FC1);
    CvMat* sampleSat = cvCreateMat(1,arraySize,CV_32FC1);
    CvMat* sampleVal = cvCreateMat(1,arraySize,CV_32FC1);
    CvMat* resampleHue = cvCreateMat(boatFront->height/xDivisor,boatFront->width/yDivisor,CV_32FC1);
    CvMat* resampleSat = cvCreateMat(boatFront->height/xDivisor,boatFront->width/yDivisor,CV_32FC1);
    CvMat* resampleVal = cvCreateMat(boatFront->height/xDivisor,boatFront->width/yDivisor,CV_32FC1);
    int xDiv = 20;
    int yDiv = 20;
    CvMat* resampleHue2 = cvCreateMat(boatFront->height/xDiv,boatFront->width/yDiv,CV_32FC1);
    CvMat* resampleSat2 = cvCreateMat(boatFront->height/xDiv,boatFront->width/yDiv,CV_32FC1);
    CvMat* resampleVal2 = cvCreateMat(boatFront->height/xDiv,boatFront->width/yDiv,CV_32FC1);
    //sky training sample
    CvMat* skyTrainingHue = cvCreateMat(arraySize,arraySize,CV_32FC1);
    CvMat* skyTrainingSat = cvCreateMat(arraySize,arraySize,CV_32FC1);
    CvMat* skyTrainingVal = cvCreateMat(arraySize,arraySize,CV_32FC1);
    //initialize each matrix element to zero for ease of use
    //cvZero(groundTrainingHue);
    //cvZero(groundTrainingSat);
    //cvZero(groundTrainingVal);
    cvZero(waterTrainingHue);
    cvZero(waterTrainingSat);
    cvZero(waterTrainingVal);
    cvZero(sampleHue);
    cvZero(sampleSat);
    cvZero(sampleVal);
    cvZero(resampleHue);
    cvZero(resampleSat);
    cvZero(resampleVal);
    cvZero(skyTrainingHue);
    cvZero(skyTrainingSat);
    cvZero(skyTrainingVal);    
    //Stores the votes for each channel (whether it belongs to water or not
    //1 is part of water, 0 not part of water
    //if sum of votes is bigger than 1/2 the number of elements, then it belongs to water
    int votesSum = 0;
    int comparator[3];        //used when only three votes are needed
    //int comparatorTwo [3][3];    //used when six votes are needed
    //initial sum of votes is zero
    //Error if initialize both matrices inside a single for loop. Dont know why
    for(int i = 0; i < 3; i++)
    {   
        comparator[i] = 0;
    }
 
    /***********************************************************************/
    //Convert from RGB to HSV to control the brightness of the objects.
    //work with reflexion
    /*Sky recognition. Might be useful for detecting reflexion on the water. If
      the sky is detected, and the reflection has the same characteristics of
      something below the horizon, that "something" might be water. Assume sky
      wont go below the horizon
    */
    //convert from RGB to HSV
    cvCvtColor(boatFront, boatFront, CV_BGR2HSV);
    cvCvtColor(backUpImage, backUpImage, CV_BGR2HSV);
    HsvImage I(boatFront);
    HsvImage IBackUp(backUpImage);
    //Sky detection
    /*
    for (int i=0; i<boatFront->height;i++)
    {
        for (int j=0; j<boatFront->width;j++)
        {
        //if something is bright enough, consider it sky and store the
        //value. HSV values go from 0 to 180 ... RGB goes from 0 to 255
            if (((I[i][j].v >= 180) && (I[i][j].s <= 16)))
                // && ((I[i][j].h >=10)))) //&& (I[i][j].h <= 144))))
            {
                //The HSV values vary between 0 and 1
                cvmSet(skyTrainingHue,skyX,skyY,I[i][j].h);
                cvmSet(skyTrainingSat,skyX,skyY,I[i][j].s);
                cvmSet(skyTrainingVal,skyX,skyY,I[i][j].v);
                //I[i][j].h = 0.3*180;       //H (color)
                //I[i][j].s = 0.3*180;          //S (color intensity)
                //I[i][j].v = 0.6*180;          //V (brightness)
                if (skyY == pixelsNumber-1)
                {
                   if (skyX == pixelsNumber-1)
                     skyX = 1;
                   else
                     skyX = skyX + 1;
                   skyY = 1;
                }
                else
                  skyY = skyY + 1;
           }   
        }
    }
    
    /***********************************************************************/
    //offline input pictures. Samples of water properties are taken from these 
    //pictures to get a range of values for H, S, V that will be stored into a 
    //pre-defined classifier
    IplImage* imageSample1 = cvLoadImage("20110805_032255.jpg");
    cvSetImageROI(imageSample1, cvRect(0,0,imageSample1->height/0.5,imageSample1->width/1.83));
    cvCvtColor(imageSample1, imageSample1, CV_BGR2HSV);
    HsvImage I1(imageSample1);
    IplImage* imageSample2 = cvLoadImage("20110805_032257.jpg");
    cvCvtColor(imageSample2, imageSample2, CV_BGR2HSV);
    HsvImage I2(imageSample2);
    IplImage* imageSample3 = cvLoadImage("20110805_032259.jpg");
    cvCvtColor(imageSample3, imageSample3, CV_BGR2HSV);
    HsvImage I3(imageSample3);
    IplImage* imageSample4 = cvLoadImage("20110805_032301.jpg");
    cvCvtColor(imageSample4, imageSample4, CV_BGR2HSV);
    HsvImage I4(imageSample4);
    IplImage* imageSample5 = cvLoadImage("20110805_032303.jpg");
    cvCvtColor(imageSample5, imageSample5, CV_BGR2HSV);
    HsvImage I5(imageSample5);
    IplImage* imageSample6 = cvLoadImage("20110805_032953.jpg");
    cvCvtColor(imageSample6, imageSample6, CV_BGR2HSV);
    HsvImage I6(imageSample6);
    IplImage* imageSample7 = cvLoadImage("20110805_032955.jpg");
    cvCvtColor(imageSample7, imageSample7, CV_BGR2HSV);
    HsvImage I7(imageSample7);
    IplImage* imageSample8 = cvLoadImage("20110805_032957.jpg");
    cvCvtColor(imageSample8, imageSample8, CV_BGR2HSV);
    HsvImage I8(imageSample8);
    IplImage* imageSample9 = cvLoadImage("20110805_032959.jpg");
    cvCvtColor(imageSample9, imageSample9, CV_BGR2HSV);
    HsvImage I9(imageSample9);
    IplImage* imageSample10 = cvLoadImage("20110805_033001.jpg");
    cvCvtColor(imageSample10, imageSample10, CV_BGR2HSV);
    HsvImage I10(imageSample10);
    IplImage* imageSample11 = cvLoadImage("20110805_033009.jpg");
    cvCvtColor(imageSample11, imageSample11, CV_BGR2HSV);
    HsvImage I11(imageSample11);
    IplImage* imageSample12 = cvLoadImage("20110805_033011.jpg");
    cvCvtColor(imageSample12, imageSample12, CV_BGR2HSV);
    HsvImage I12(imageSample12);
    
    for (int i=0; i < threeArraySize; i++)
    {
        for (int j=0; j < arraySize; j++)
        {
            row1 = ceil(X/1.2866)+ceil(X/5.237)+i+ceil(-X/3.534545455) + ceil(X/4.8);
            column1 = ceil(Y/7.0755)+ceil(Y/21.01622)+j+ceil(X/1.495384615);
            averageHue = (I1[row1][column1].h + I2[row1][column1].h + I3[row1][column1].h + I4[row1][column1].h + I5[row1][column1].h + 	
            I6[row1][column1].h + I7[row1][column1].h + I8[row1][column1].h + I9[row1][column1].h + I10[row1][column1].h + I11[row1][column1].h + I12[row1][column1].h) / 12;
            averageSat = (I1[row1][column1].s + I2[row1][column1].s + I3[row1][column1].s + I4[row1][column1].s + I5[row1][column1].s + 
            I6[row1][column1].s + I7[row1][column1].s + I8[row1][column1].s + I9[row1][column1].s + I10[row1][column1].s + I11[row1][column1].s + I12[row1][column1].s) / 12;
            averageVal = (I1[row1][column1].v + I2[row1][column1].v + I3[row1][column1].v + I4[row1][column1].v + I5[row1][column1].v + 
            I6[row1][column1].v + I7[row1][column1].v + I8[row1][column1].v + I9[row1][column1].v + I10[row1][column1].v + I11[row1][column1].v + I12[row1][column1].v) / 12;
            //water patch sample (n X n matrix)
            cvmSet(waterTrainingHue,i,j,averageHue);
            cvmSet(waterTrainingSat,i,j,averageSat);
            cvmSet(waterTrainingVal,i,j,averageVal);  
             //patch is red (this is for me to know where the ground patch sample is)
            //I[row1][column1].h = 0;
            //I[row1][column1].s = 255;
            //I[row1][column1].v = 255;
        }
    }
    //creating a training sample from the an image taken on the fly
    row1 = 0;
    column1 = 0;
    for (int i=0; i<pixelsNumber; i++)
    {
        for (int j=0; j<pixelsNumber; j++)
        {
           row1 = ceil(X/1.2866)+ceil(X/5.237)+i+ceil(-X/3.534545455) + ceil(X/4.8);
           column1 = ceil(Y/7.0755)+ceil(Y/21.01622)+j+ceil(X/1.495384615);
           cvmSet(trainClassesH,i,0,I[row1][column1].h);
           cvmSet(trainClassesS,i,0,I[row1][column1].s);
           cvmSet(trainClassesV,i,0,I[row1][column1].v);
           
        }
    }
    //order the water samples in ascending order on order to know a range
    cvSort(waterTrainingHue, waterTrainingHue, CV_SORT_ASCENDING);
    cvSort(waterTrainingSat, waterTrainingSat, CV_SORT_ASCENDING);
    cvSort(waterTrainingVal, waterTrainingVal, CV_SORT_ASCENDING);
    // find the maximum and minimum values in the array to create a range
    int maxH = cvmGet(waterTrainingHue,0,0);
    int maxS = cvmGet(waterTrainingSat,0,0);
    int maxV = cvmGet(waterTrainingVal,0,0);
    int minH = cvmGet(waterTrainingHue,0,0);
    int minS = cvmGet(waterTrainingSat,0,0);
    int minV = cvmGet(waterTrainingVal,0,0);
    for (int i=0; i < threeArraySize; i++)
    {
        for (int j=0; j < arraySize; j++)
        {
            if (cvmGet(waterTrainingHue,i,j) > maxH)
                maxH = cvmGet(waterTrainingHue,i,j);
            if (cvmGet(waterTrainingSat,i,j) > maxS)
                maxS = cvmGet(waterTrainingHue,i,j);
            if (cvmGet(waterTrainingVal,i,j) > maxV)
                maxV = cvmGet(waterTrainingVal,i,j);
            if (cvmGet(waterTrainingHue,i,j) < minH)
                minH = cvmGet(waterTrainingHue,i,j);
            if (cvmGet(waterTrainingSat,i,j) < minS)
                minS = cvmGet(waterTrainingSat,i,j);
            if (cvmGet(waterTrainingVal,i,j) < minV)
                minV = cvmGet(waterTrainingVal,i,j);
        }
    }
    //cout << "Min Value in the range: " << endl;
    //cout << minH << endl;
    //cout << minS << endl;
    //cout << minV << endl;
    //cout << "Max Value in the range: " << endl;
    //cout << maxH << endl;
    //cout << maxS << endl;
    //cout << maxV << endl << endl;
    /*********** Main loop. It traverses through the picture**********/
    
    /**********************************************************************/
    //Ignore unused parts of the image and convert them to black
   // for (int i=0; i<boatFront->height/1.45 - 1;i++)
    //{
     //   for (int j=0; j<Y-1;j++)
      //  {
       //     I[i][j].h = 0;
       //     I[i][j].s = 0;
       //     I[i][j].v = 0;
       // }
   // }
    
    /*********************************************************************
    // Use nearest neighbors to increase accuracy
    skyX = 0; 
    skyY = 0;
    while (x < X-1)
    {
        //get a random sample taken from the picture. Must be determined whether
        //it is water or ground
        for (int i = 0; i<6;i++)
        {
            column1 = y+i;
            if (column1 > Y-1)
                column1 = Y-1;
            cvmSet(sampleHue,0,i,I[x][column1].h);
            cvmSet(sampleSat,0,i,I[x][column1].s);
            cvmSet(sampleVal,0,i,I[x][column1].v);
        }
        //Find the shortest distance between a pixel and the neighbors from each of
        //the training samples (sort of inefficient, but might do the job...sometimes)
        //HSV for water sample
        // learn classifier
        //CvKNearest knn(trainData, trainClasses, 0, false, itemsNumber);
        CvKNearest knnWaterHue(waterTrainingHue, trainClassesH, 0, false, pixelsNumber);
        CvKNearest knnWaterSat(waterTrainingSat, trainClassesS, 0, false, pixelsNumber);
        CvKNearest knnWaterVal(waterTrainingVal, trainClassesV, 0, false, pixelsNumber);
        //HSV for ground sample
        //CvKNearest knnGroundHue(groundTrainingHue, trainClasses2, 0, false, pixelsNumber);
        //CvKNearest knnGroundSat(groundTrainingSat, trainClasses2, 0, false, pixelsNumber);
        //CvKNearest knnGroundVal(groundTrainingVal, trainClasses2, 0, false, pixelsNumber);
        //HSV for sky sample
        //if (cvmGet(skyTrainingHue,0,0)!=0.0 && cvmGet(skyTrainingSat,0,0)!=0.0 && cvmGet(skyTrainingVal,0,0)!=0.0)
        //{
        //    CvKNearest knnSkyHue(skyTrainingHue, trainClasses, 0, false, pixelsNumber);
        //    CvKNearest knnSkySat(skyTrainingSat, trainClasses, 0, false, pixelsNumber);
        //    CvKNearest knnSkyVal(skyTrainingVal, trainClasses, 0, false, pixelsNumber);
        //}

        //scan nearest neighbors to each pixel
        responseWaterH = knnWaterHue.find_nearest(sampleHue,pixelsNumber,0,0,nearestWaterH,0);
        responseWaterS = knnWaterSat.find_nearest(sampleSat,pixelsNumber,0,0,nearestWaterS,0);
        responseWaterV = knnWaterVal.find_nearest(sampleVal,pixelsNumber,0,0,nearestWaterV,0);
        //responseGroundH = knnGroundHue.find_nearest(sampleHue,pixelsNumber,0,0,nearestGroundH,0);
        //responseGroundS = knnGroundSat.find_nearest(sampleSat,pixelsNumber,0,0,nearestGroundS,0);
        //responseGroundV = knnGroundVal.find_nearest(sampleVal,pixelsNumber,0,0,nearestGroundV,0);
        //for (int i=0;i<pixelsNumber;i++)
        //{
            for (int j=0;j<pixelsNumber;j++)
            {
                if ((nearestWaterH->data.fl[j] == responseWaterH) )//&& (nearestWaterH->data.fl[j] == responseWaterH + 5))
                        // mark water samples as green
                    comparator[0] = 1;
                else
                    comparator[0] = 0;
                if ((nearestWaterS->data.fl[j] == responseWaterS) )//&& (nearestWaterS->data.fl[j] < responseWaterS + 5))
                    //mark water samples as green
                    comparator[1] = 1;
                else
                    comparator[1] = 0;
                if ((nearestWaterV->data.fl[j] == responseWaterV) )//&& (nearestWaterV->data.fl[j] < responseWaterV + 5))
                //mark water samples as green
                    comparator[2] = 1;
                else
                    comparator[2] = 0;
                // similar sky pixels on the water
                //count votes
                for (int i3=0; i3 < 3; i3++)
                    votesSum = votesSum + comparator[i3]; 
                if (votesSum > 1)
                {
                    I[x][y-6+j].h = 0;
                    I[x][y-6+j].s = 255;
                    I[x][y-6+j].v = 255;
                }
                votesSum = 0;
            }
        }
        if (y < Y-1)
            //5 use to be equal to pixelsNumber-1.
            y = y + 5;
        if (y > Y-1)
            y = Y-1;
        else if (y == Y-1)
        {
            //5 use to be equal to pixelsNumber-1
            x = x + 1;
            y = 0;
        }
       // ix = 0;
    }
    
    /*********************************************************************/
    for(int i = 0; i < 3; i++)
    {   
        comparator[i] = 0;
    }
    //int counter = 0;
    column1 = 0;
    row1 = 0;
    x = boatFront->height/1.45;
    y = 0;
    while (x < X-1)
    {
        //get a random sample taken from the picture. Must be determined whether
        //it is water or ground
        for (int i = 0; i<6;i++)
        {
            column1 = y+i;
            if (column1 > Y-1)
                column1 = Y-1;
            cvmSet(sampleHue,0,i,I[x][column1].h);
            cvmSet(sampleSat,0,i,I[x][column1].s);
            cvmSet(sampleVal,0,i,I[x][column1].v);
        }
        for (int i=0;i<6;i++)
        {
            for (int j=0;j<6;j++)
            {
                if ((minH < cvmGet(sampleHue,0,j)) && (maxH > cvmGet(sampleHue,0,j)))
                    //mark water samples as green
                    comparator[0] = 1;
                else
                    comparator[0] = 0;
                if ((minS < cvmGet(sampleSat,0,j)) && (maxS > cvmGet(sampleSat,0,j)))
                //mark water samples as green
                    comparator[1] = 1;
                else
                    comparator[1] = 0;
                if ((minV < cvmGet(sampleVal,0,j)) && (maxV > cvmGet(sampleVal,0,j)))
                //mark water samples as red
                    comparator[2] = 1;
                else
                    comparator[2] = 0;
                //count votes
                for (int i3=0; i3 < 3; i3++)
                    votesSum = votesSum + comparator[i3];
                if (votesSum > 1)
                {
                    //use the known water samples as new training data
                    if((i<boatFront->height/xDivisor) && (j<boatFront->width/yDivisor))
                    {
                        cvmSet(resampleHue,i,j,cvmGet(sampleHue,0,j));
                        cvmSet(resampleSat,i,j,cvmGet(sampleSat,0,j));
                        cvmSet(resampleVal,i,j,cvmGet(sampleVal,0,j));
                    }
                    //6 use to be equal to pixelsNumber. 
                    I[x][y-6+j].h = 0;
                    I[x][y-6+j].s = 255;
                    I[x][y-6+j].v = 255;   
                }
                votesSum = 0;
            }
        }
        if (y < Y-1)
            //5 use to be equal to pixelsNumber-1.
            y = y + 5;
        if (y > Y-1)
            y = Y-1;
        else if (y == Y-1)
        {
            //5 use to be equal to pixelsNumber-1
            x = x + 1;
            y = 0;
        }
        //ix = 0;
    }
    
    /***************Deal with reflection*****************/
    for(int i = 0; i < 3; i++)
    {   
        comparator[i] = 0;
    }
    //int counter = 0;
    votesSum = 0;
    column1 = 0;
    row1 = 0;
    x = boatFront->height/1.45;
    y = 0;
    while (x < X-1)
    {
        //get a random sample taken from the picture. Must be determined whether
        //it is water or ground
        for (int i = 0; i<6;i++)
        {
            column1 = y+i;
            if (column1 > Y-1)
                column1 = Y-1;
            cvmSet(sampleHue,0,i,I[x][column1].h);
            cvmSet(sampleSat,0,i,I[x][column1].s);
            cvmSet(sampleVal,0,i,I[x][column1].v);
        }
        for (int i=0;i<6;i++)
        {
            for (int j=0;j<6;j++)
            {
                if ((minH < cvmGet(sampleHue,0,j)) && (maxH > cvmGet(sampleHue,0,j)))
                    //mark water samples as green
                    comparator[0] = 1;
                else
                    comparator[0] = 0;
                if ((0.8*255 > cvmGet(sampleSat,0,j)))// && (maxS < cvmGet(sampleSat,0,j)))
                //mark water samples as green
                    comparator[1] = 1;
                else
                    comparator[1] = 0;
                if ((0.6*255 < cvmGet(sampleVal,0,j)))// || (maxV < cvmGet(sampleVal,0,j)))
                //mark water samples as green
                    comparator[2] = 1;
                else
                    comparator[2] = 0;
                //count votes
                for (int i3=0; i3 < 3; i3++)
                    votesSum = votesSum + comparator[i3]; 
                if (votesSum > 1)
                {
                    //use the known water samples as new training data
                    if((i<boatFront->height/xDivisor) && (j<boatFront->width/yDivisor))
                    {
                        cvmSet(resampleHue,i,j,cvmGet(sampleHue,0,j));
                        cvmSet(resampleSat,i,j,cvmGet(sampleSat,0,j));
                        cvmSet(resampleVal,i,j,cvmGet(sampleVal,0,j));
                    }
                    //6 use to be equal to pixelsNumber. 
                    I[x][y-6+j].h = 0;
                    I[x][y-6+j].s = 255;
                    I[x][y-6+j].v = 255;   
                }
                votesSum = 0;
            }
        }
        if (y < Y-1)
            //5 use to be equal to pixelsNumber-1.
            y = y + 5;
        if (y > Y-1)
            y = Y-1;
        else if (y == Y-1)
        {
            //5 use to be equal to pixelsNumber-1
            x = x + 1;
            y = 0;
        }
        //ix = 0;
    }
    
    /**********Resample the entire patch**********/
    /*********find a new min and max for a new sample range*************/
    for(int i = 0; i < 3; i++)
    {   
        comparator[i] = 0;
    }
    //int counter = 0;
    votesSum = 0;
    column1 = 0;
    row1 = 0;
    x = boatFront->height/1.45;
    y = 0;
    maxH = cvmGet(resampleHue,0,0);
    maxS = cvmGet(resampleSat,0,0);
    maxV = cvmGet(resampleVal,0,0);
    minH = cvmGet(resampleHue,0,0);
    minS = cvmGet(resampleSat,0,0);
    minV = cvmGet(resampleVal,0,0);
    for (int i=0; i < boatFront->height/xDivisor; i++)
    {
        for (int j=0; j < boatFront->width/yDivisor; j++)
        {
            if (cvmGet(resampleHue,i,j) > maxH)
                maxH = cvmGet(resampleHue,i,j);
            if (cvmGet(resampleSat,i,j) > maxS)
                maxS = cvmGet(resampleSat,i,j);
            if (cvmGet(resampleVal,i,j) > maxV)
                maxV = cvmGet(resampleVal,i,j);
            if (cvmGet(resampleHue,i,j) < minH)
                minH = cvmGet(resampleHue,i,j);
            if (cvmGet(resampleSat,i,j) < minS)
                minS = cvmGet(resampleSat,i,j);
            if (cvmGet(resampleVal,i,j) < minV)
                minV = cvmGet(resampleVal,i,j);
        }
    }
    while (x < X-1)
    {
        for (int i=0;i<6;i++)
        {
            for (int j=0;j<6;j++)
            {
                if ((minH < I[x][y-6+j].h) && (maxH > I[x][y-6+j].h))
                    //mark water samples as red
                    I[x][y-6+j].h = 0;
                else
                    comparator[0] = 0;
                if ((minS < I[x][y-6+j].s) && (maxS > I[x][y-6+j].s))
                //mark water samples as red
                    I[x][y-6+j].s = 255;
                else
                    comparator[1] = 0;
                if ((minV < I[x][y-6+j].v) && (maxV > I[x][y-6+j].v))
                //mark water samples as red
                    I[x][y-6+j].v = 255;
            }
        }
        if (y < Y-1)
            //5 use to be equal to pixelsNumber-1.
            y = y + 5;
        if (y > Y-1)
            y = Y-1;
        else if (y == Y-1)
        {
            //5 use to be equal to pixelsNumber-1
            x = x + 1;
            y = 0;
        }
    }
    //cout << "Sample data from current images" << endl;
    //for (int i = 0; i<20;i++)
    //{
      //  cout << "HUE: " << cvmGet(sampleHue,0,i) << endl;
      //  cout << "Saturation: " << cvmGet(sampleSat,0,i) << endl;
      //  cout << "Value: " << cvmGet(sampleVal,0,i) << endl;
    //}
    //traverse through the image one more time, divide the image in grids of
    // 500x500 pixels, and see how many pixels of water are in each grid. If
    // most of the pixels are labeled water, then mark all the other pixels
    // as water as well
    //int counter = 0;
    votesSum = 0;
    column1 = 0;
    row1 = 0;
    x = boatFront->height/1.45;
    y = 0;
    
    /***************Divide the picture in cells for filtering**********/
    while (x < X-1)
    {
        //get a random sample taken from the picture. Must be determined whether
        //it is water or ground
        for (int i = 0; i < boatFront->height/xDivisor; i++)
        {
            for(int j = 0; j < boatFront->width/yDivisor; j++)
            {
                cvmSet(resampleHue2,i,j,I[x+i][y+j].h);
                cvmSet(resampleSat2,i,j,I[x+i][y+j].s);
                cvmSet(resampleVal2,i,j,I[x+i][y+j].v);
                if(cvmGet(resampleHue2,i,j)==0 && cvmGet(resampleSat2,i,j)==255 && cvmGet(resampleVal2,i,j)==255)
                {
                    votesSum++;
                }
            }
        }
        if (votesSum > (((boatFront->height/xDivisor)*(boatFront->width/yDivisor))*(4/5)))
        {   
        // if bigger than 4/5 the total number of pixels in a square, then consider the entire thing as water  
        // We might need to use other smaller quantities (like 5/6 maybe?)
            for (int i = 0; i < boatFront->height/xDivisor;i++)
            {
                for (int j = 0; j < boatFront->width/yDivisor; j++)
                {
                    row1 = x + i;
                    if (row1 > X-1)
                        row1 = X-1;
                    column1 = y+j;
                    if (column1 > Y-1)
                        column1 = Y-1;
                    I[row1][column1].h = 0;
                    I[row1][column1].s = 255;
                    I[row1][column1].v = 255;
                }
            }
        }
        else
        {   
        // If not water, eliminate all red pixels and turn those pixels
        // back to the original color
            for (int i = 0; i < boatFront->height/xDivisor;i++)
            {
                for (int j = 0; j < boatFront->width/yDivisor; j++)
                {
                    row1 = x + i;
                    if (row1 > X-1)
                        row1 = X-1;
                    column1 = y+j;
                    if (column1 > Y-1)
                        column1 = Y-1;
                    I[row1][column1].h = IBackUp[row1][column1].h;//255;//IBackUp[row1][column1].h;
                    I[row1][column1].s = IBackUp[row1][column1].s;//255;//IBackUp[row1][column1].s;
                    I[row1][column1].v = IBackUp[row1][column1].v;//255;//IBackUp[row1][column1].v;
                }
            }
        }
        y = y + boatFront->width/xDivisor;
        if (y > Y-1)
        {
            x = x + boatFront->height/yDivisor;
            y = 0;
        }
        votesSum = 0;
    }
    
    /********************Isolate obstacles************************/
    votesSum = 0;
    int paint = 0;
    column1 = 0;
    row1 = 0;
    x = boatFront->height/1.45;
    y = 0;
    xDiv = 20;
    yDiv = 20;
    /***************Divide the picture in cells for filtering**********/
    // Small pixel areas (noise) are going to be eliminated from the picture
    // living only the big obstacles
    while (x < X-2)
    {
        //get a random sample taken from the picture. Must be determined whether
        //it is water or ground
        for (int i = 0; i < boatFront->height/xDiv; i++)
        {
            for(int j = 0; j < boatFront->width/yDiv; j++)
            {
                row1 = x + i;
                if (row1 > X-2)
                    row1 = X-2;
                column1 = y+j;
                if (column1 > Y-1)
                    column1 = Y-1;
                cvmSet(resampleHue2,i,j,I[row1][column1].h);
                cvmSet(resampleSat2,i,j,I[row1][column1].s);
                cvmSet(resampleVal2,i,j,I[row1][column1].v);
                if(cvmGet(resampleHue2,i,j)==0 && cvmGet(resampleSat2,i,j)==255 && cvmGet(resampleVal2,i,j)==255)
                {
                    votesSum++;
                }
            }
        }
        if (votesSum > (((boatFront->height/xDiv)*(boatFront->width/yDiv))*(4.5/5)))
        {   
        // if bigger than 4/5 the total number of pixels in a square, then consider the entire thing as water  
        // We might need to use other smaller quantities (like 5/6 maybe?)
            for (int i = 0; i < boatFront->height/xDiv;i++)
            {
                for (int j = 0; j < boatFront->width/yDiv; j++)
                {
                    row1 = x + i;
                    if (row1 > X-2)
                        row1 = X-2;
                    column1 = y+j;
                    if (column1 > Y-1)
                        column1 = Y-1;
                    I[row1][column1].h = 0;
                    I[row1][column1].s = 255;
                    I[row1][column1].v = 255;
                }
            }
        }
        else
        {   
            int count = 0;
        // If not water, eliminate all red pixels and turn those pixels
        // back to the original color
            for (int i = 0; i < boatFront->height/xDiv;i++)
            {
                for (int j = 0; j < boatFront->width/yDiv; j++)
                {
                    row1 = x + i;
                    if (row1 > X-2)
                        row1 = X-2;
                    column1 = y+j;
                    if (column1 > Y-1)
                        column1 = Y-1;
                    I[row1][column1].h = IBackUp[row1][column1].h;//255;
                    I[row1][column1].s = IBackUp[row1][column1].s;//255;
                    I[row1][column1].v = IBackUp[row1][column1].v;//255;
                   // count++;
                }
            }
        }
        y = y + boatFront->width/yDiv;
        if (y > Y-1)
        {
            x = x + boatFront->height/xDiv;
            if (x > X-2)
                x = X-2;
            y = 0;
        }
        votesSum = 0;
    }
    
    /****************Find Obstacles boundaries*********************************/
    if( grayStorage == NULL )
    {
        grayStorage = cvCreateMemStorage(0);
    } 
    else 
    {
        cvClearMemStorage(grayStorage);
    }
    backUpImage = cvCloneImage(boatFront);
    //convert from HSV to RGB
    cvCvtColor(boatFront, boatFront, CV_HSV2BGR);
    cvCvtColor(backUpImage, backUpImage, CV_HSV2BGR);
    //do flood fill for obstacles
    cvFloodFill( backUpImage, seed_point, color, cvScalarAll(255), cvScalarAll(2), NULL, 8, NULL);
    //convert to to gray to do more obstacle segmentation
    cvCvtColor(backUpImage, grayImage, CV_BGR2GRAY);
    //convert to binary
    cvThreshold(grayImage, bwImage, 100, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
    //eliminate small unnecessary pixel areas
    //bwImage is a pointer, so no need to reuse findCountours
    int findCountours = bwareaopen_(bwImage, 100);          
    //find contours of obstacles in image
    cvFindContours(bwImage, grayStorage, &contours);
    cvZero( bwImage );                      //redraw clean contours
    for( CvSeq* c=contours; c!=NULL; c=c->h_next)
    {
        cvDrawContours(bwImage, c, cvScalarAll(255), cvScalarAll(255), 8);
        cout << "Contour area: " << cvContourArea(c, CV_WHOLE_SEQ) << endl;     //area in pixels                        
        //find the x,y coordinate of the center of a contour
        cvMoments(c, &moment, 0);
        //centroid/moment of the contour/obstacle
        //cout << "Contour center: " << moment.m10/moment.m00 << ", " << moment.m01/moment.m00 << endl;
        //The distance formula calculated by plotting points is given by:
        /***********  distance = 0.1622208546*pow(1.0186851612,pixels)  *****************/
        /***********  pixel = 87.0413255*pow(distance,0.4062956891) *****************/
        //These formulas only work for 640X480 images
        // x,y coordinates of the obstacle from the bottom center of the image
        //Ignore everything less than 0.3 meters apart (anything too close to the boat)
        //if ((X - (row1 -(boatFront->height/xDiv)/2)) > (87.0413255*pow(0.3,0.4062956891)))
        //{
            xObstacleDistance = 0.1622208546*pow(1.0186851612,X - (moment.m10/moment.m00));
            if (xObstacleDistance == 0.0)                  //try to ignore obstacle that are too close
                    xObstacleDistance = 0.01;                  //robot shall tell operator if there is
                                                       //a problem with a close by obstacle
            yObstacleDistance = 0.1622208546*pow(1.0186851612,Y/2 - (moment.m01/moment.m00));
            //obstacle distance
            obstacleDistance = sqrt(pow(xObstacleDistance,2) + pow(yObstacleDistance,2));
            //obstacle heading
            obstacleHeading = tan((yObstacleDistance/xObstacleDistance)*PI/180);
            cout << "Obstacle polar coordinates: " << endl;
            cout << "x: " << xObstacleDistance << " Y: " << yObstacleDistance << endl;
            cout << "Distance (meters) " << obstacleDistance << endl;
            cout << "Direction (degrees): " << obstacleHeading << endl << endl;
        //}
    }
  /**************************************************************************/
	try
  {
  	//fprintf(stderr,"\n boatFront\n");
    cvShowImage("Boat Front", boatFront);
    //cvShowImage("Color Segment", backUpImage);
    //cvShowImage("Obstacles", bwImage);
  }
  catch (sensor_msgs::CvBridgeException& e)
  {
    ROS_ERROR("Could not convert from '%s' to 'bgr8'.", msg->encoding.c_str());
  }
}
bool potential_cloud_shadow_snow_mask
(
 Input_t *input,
 float cloud_prob_threshold,
 float *ptm,
 float *t_templ,
 float *t_temph,
 unsigned char **cloud_mask,
 unsigned char **shadow_mask,
 unsigned char **snow_mask,
 unsigned char **water_mask,
 unsigned char **final_mask
)
{
    char errstr[MAX_STR_LEN];
    int nrows = input->size.l;
    int ncols = input->size.s;
    int ib = 0;
    int row =0; 
    int col = 0;
    int mask_counter = 0;
    int clear_pixel_counter = 0;
    int clear_land_pixel_counter = 0;
    float ndvi, ndsi;
    int16 *f_temp = NULL;
    int16 *f_wtemp = NULL;
    float visi_mean;
    float whiteness = 0;
    float hot;
    float lndptm;
    float l_pt;
    float h_pt;
    int mask;
    float t_wtemp;
    float **wfinal_prob;
    float **final_prob;
    float wtemp_prob;
    int t_bright;
    float brightness_prob;
    int t_buffer;
    float temp_l;
    float temp_prob;
    float vari_prob;
    float max_value;
    float *prob = NULL;
    float clr_mask;
    float wclr_mask;
    int16 *nir = NULL;
    int16 *swir = NULL;
    float backg_b4;
    float backg_b5;
    float shadow_prob;
    int status;

    /* Dynamic memory allocation */
    unsigned char **clear_mask;
    unsigned char **clear_land_mask;

    clear_mask = (unsigned char **)ias_misc_allocate_2d_array(input->size.l, 
                 input->size.s, sizeof(unsigned char)); 
    clear_land_mask = (unsigned char **)ias_misc_allocate_2d_array(
                 input->size.l, input->size.s, sizeof(unsigned char)); 
    if (clear_mask == NULL || clear_land_mask ==NULL)
    {
        sprintf (errstr, "Allocating mask memory");
        ERROR (errstr, "pcloud");
    }
    
    printf("The first pass\n");

    /* Loop through each line in the image */
    for (row = 0; row < nrows; row++)
    {
        /* Print status on every 100 lines */
        if (!(row%1000)) 
        {
           printf ("Processing line %d\r",row);
           fflush (stdout);
        }

        /* For each of the image bands */
        for (ib = 0; ib < input->nband; ib++)
        {
            /* Read each input reflective band -- data is read into
               input->buf[ib] */
            if (!GetInputLine(input, ib, row))
            {
                sprintf (errstr, "Reading input image data for line %d, "
                    "band %d", row, ib);
                ERROR (errstr, "pcloud");
            }
        }

	/* For the thermal band */
	/* Read the input thermal band -- data is read into input->therm_buf */
	if (!GetInputThermLine(input, row))
        {
	  sprintf (errstr, "Reading input thermal data for line %d", row);
	  ERROR (errstr, "pcloud");
	}

   for (col = 0; col < ncols; col++)
    {
     if ((input->buf[2][col] +  input->buf[3][col]) != 0)
      ndvi = (input->buf[3][col] -  input->buf[2][col]) / 
       (input->buf[3][col] +  input->buf[2][col]);
     else
      ndvi = 0.01;

     if ((input->buf[1][col] +  input->buf[4][col]) != 0)
      ndsi = (input->buf[1][col] -  input->buf[4][col]) / 
       (input->buf[1][col] +  input->buf[4][col]);
     else
      ndsi = 0.01;

     /* process non-fill pixels only */
     if (input->therm_buf[col] > -9999)
       {
	 mask = 1;
	 mask_counter++;
       }
     else
       mask = 0;

     /* Basic cloud test */
     if ((ndsi < 0.8) && (ndvi < 0.8) && 
         (input->buf[5][col] > 300) && (input->therm_buf[col] < 2700))
         cloud_mask[row][col] = 1;
     else
         cloud_mask[row][col] = 0;

     /* It takes every snow pixels including snow pixel under thin clouds or 
        icy clouds */
     if ((ndsi > 0.15) && (input->therm_buf[col] < 380) && 
         (input->buf[3][col] > 1100) && (input->buf[1][col] > 1000))
         snow_mask[row][col] = 1;
     else
         snow_mask[row][col] = 0;

     /* Zhe's water test (works over thin cloud) */
     if (((ndvi < 0.01) && (input->buf[3][col] < 1100)) || 
         ((ndvi < 0.1) && (ndvi > 0.0) && 
          (input->buf[3][col] < 500)))
         water_mask[row][col] = 1;
     else 
         water_mask[row][col] = 0;
     if (mask == 0)
         water_mask[row][col] = 255;

     /* visible bands flatness (sum(abs)/mean < 0.6 => brigt and dark cloud) */
     visi_mean = (input->buf[0][col] + input->buf[1][col] +
                  input->buf[2][col]) / 3.0;
     whiteness = ((abs(input->buf[0][col] - visi_mean) + 
      abs(input->buf[1][col] - visi_mean) +
                   abs(input->buf[2][col] - visi_mean)))/ visi_mean;

     /* Update cloud_mask,  if one visible band is saturated, whiteness = 0 */
     if (input->buf[0][col] > input->meta.therm_satu_value_ref ||
	 input->buf[1][col] > input->meta.therm_satu_value_ref ||
	 input->buf[2][col] > input->meta.therm_satu_value_ref)
      whiteness = 0;
     if (cloud_mask[row][col] == 1 && whiteness < 0.7)
      cloud_mask[row][col] = 1; 
     else
      cloud_mask[row][col] = 0;

     /* Haze test */
     hot = input->buf[0][col] - 0.5 *input->buf[2][col] - 800;
     if (cloud_mask[row][col] == 1 && (hot > 0.0 || abs(whiteness) < MINSIGMA))
       cloud_mask[row][col] = 1;
     else
       cloud_mask[row][col] = 0;

     /* Ratio 4/5 > 0.75 test */
     if (cloud_mask[row][col] == 1 && (input->buf[3][col] / 
         input->buf[4][col] > 0.75))
       cloud_mask[row][col] = 1;
     else
       cloud_mask[row][col] = 0;
     
     /* Test whether use thermal band or not */
     if (cloud_mask[row][col] == 0 && mask == 1)
       {
	 clear_mask[row][col] = 1;
	 clear_pixel_counter++;

       }
     else
         clear_mask[row][col] = 0;

     if (water_mask[row][col] != 1 && clear_mask[row][col] == 1)
       {
	 clear_land_mask[row][col] = 1;
         clear_land_pixel_counter++;
       }
     else
       clear_land_mask[row][col] = 0;
    }
}

    *ptm = 100. * ((float)clear_pixel_counter / (float)mask_counter);
    lndptm = 100. * ((float)clear_land_pixel_counter / (float)mask_counter);

    if (*ptm <= 0.1)
     majority_filter(cloud_mask, nrows, ncols);
    else
    {
        f_temp = malloc(input->size.l * input->size.s * sizeof(int16));
	f_wtemp = malloc(input->size.l * input->size.s * sizeof(int16));
	if (f_temp == NULL   || f_wtemp == NULL)
	{
	     sprintf (errstr, "Allocating temp memory");
	     ERROR (errstr, "pcloud");
	}
    }
     
     printf("The second pass\n");
     int16 f_temp_max = 0;
     int16 f_temp_min = 0;
     int16 f_wtemp_max = 0;
     int16 f_wtemp_min = 0;
     int index = 0;
     int index2 = 0;
    /* Loop through each line in the image */
    for (row = 0; row < nrows; row++)
    {
        /* Print status on every 100 lines */
        if (!(row%1000)) 
        {
	     printf ("Processing line %d\r", row);
	     fflush (stdout);
	   }
	 
	 /* For each of the image bands */
	 for (ib = 0; ib < input->nband; ib++)
	   {
	     /* Read each input reflective band -- data is read into
		input->buf[ib] */
	     if (!GetInputLine(input, ib, row))
	       {
		 sprintf (errstr, "Reading input image data for line %d, "
			  "band %d", row, ib);
		 ERROR (errstr, "pcloud");
	       }
	   }

	 /* For the thermal band */
	 /* Read the input thermal band -- data is read into input->therm_buf */
	 if (!GetInputThermLine(input, row))
	   {
	     sprintf (errstr, "Reading input thermal data for line %d", row);
	     ERROR (errstr, "pcloud");
	   }

	 for (col =0; col < ncols; col++)
	   {
	     if (*ptm <= 0.1) /* No thermal test, 
                                meaningless for snow detection */
	     {
		 /* All cloud */
		 if (cloud_mask[row][col] != 1)
		   shadow_mask[row][col] = 1;
                 else
		   shadow_mask[row][col] = 0;
#if 0
                 /* Tempoarary outpouts */
                 if (water_mask[row][col] == 1)
                     final_mask[row][col] = 1;
                 if (shadow_mask[row][col] == 1)
                     final_mask[row][col] = 2;
                 if (cloud_mask[row][col] == 1)
	             final_mask[row][col] = 4;
                 if (input->therm_buf[col] = -9999)
                     final_mask[row][col] = 255;
#endif
	     }
	     else
	     {		 
		 if (lndptm >= 0.1)
		 {
                     /* get clear land temperature */
		     if (clear_land_mask[row][col] == 1 && 
                         input->therm_buf[col] != -9999)
	             {
			 f_temp[index] = input->therm_buf[col];
                         if (f_temp_max < f_temp[index])
                            f_temp_max = f_temp[index];
                         if (f_temp_min > f_temp[index])
                            f_temp_min = f_temp[index];
			 index++;
	             }
	         }
		 else
	         {
		     /*get clear water temperature */
		     if (clear_mask[row][col] == 1 &&  
                         input->therm_buf[col] != -9999)
	             {
			 f_temp[index] = input->therm_buf[col];
                         if (f_temp_max < f_temp[index])
                            f_temp_max = f_temp[index];
                         if (f_temp_min > f_temp[index])
                            f_temp_min = f_temp[index];
			 index++;
	             }
	         }
		 if (water_mask[row][col] == 1 && input->therm_buf[col] <= 300
                     && input->therm_buf[col] != -9999)
	         {
		     f_wtemp[index2] = input->therm_buf[col];
                     if (f_wtemp[index2] > f_wtemp_max)
                        f_wtemp_max = f_wtemp[index2];
                     if (f_wtemp[index2] < f_wtemp_max)
                        f_wtemp_min = f_wtemp[index2];
                     index2++;
	         }
	     }
         }
    }

   printf("Clear sky pixel percentage in this scene = %.2f\n", *ptm);

   if (*ptm <= 0.1)
   {
      *t_templ = -1.0;
      *t_temph = -1.0;
      return 0;
   }
   else
   {
     /* Tempearture for snow test */
     l_pt = 0.175;
     h_pt = 1 - l_pt;

     printf("====%d,%d,%d,%d\n",f_wtemp_max,f_wtemp_min,f_temp_max,f_temp_min);

#if 0
     prctile(f_wtemp, index2 + 1, 100*h_pt, &t_wtemp);
     /* 0.175 percentile background temperature (low) */
     prctile(f_temp, index + 1, 100*l_pt, t_templ);
     /* 0.825 percentile background temperature (high) */
     prctile (f_temp, index + 1, 100*h_pt, t_temph);
#endif
     t_wtemp = h_pt * (float)(f_wtemp_max-f_wtemp_min) + (float)f_wtemp_min;
     *t_templ = l_pt * (float)(f_temp_max-f_temp_min) + (float)f_temp_min;
     *t_temph = h_pt * (float)(f_temp_max-f_temp_min) + (float)f_temp_min; 
     int f_temp_length;
     int f_wtemp_length;

     f_temp_length = f_temp_max - f_temp_min + 1;
     f_wtemp_length = f_wtemp_max - f_wtemp_min + 1;
#if 0
     prctile(f_wtemp, index2 + 1, f_wtemp_length, 100*h_pt, &t_wtemp);
     /* 0.175 percentile background temperature (low) */
     prctile(f_temp, index + 1, f_temp_length, 100*l_pt, t_templ);
     /* 0.825 percentile background temperature (high) */
     prctile (f_temp, index + 1, f_temp_length, 100*h_pt, t_temph);
#endif
     printf("index, index2 = %d,%d\n",index,index2);

     /* Temperature test */
     t_buffer = 4*100;    
     *t_templ -= t_buffer;
     *t_temph += t_buffer;
     temp_l=*t_temph-*t_templ;

     printf("t_wtemp,t_templ,t_temph = %f,%f,%f\n",t_wtemp,*t_templ,*t_temph);

     /* Relase f_temp memory */
     free(f_wtemp);
     free(f_temp);

     wfinal_prob = (float **)ias_misc_allocate_2d_array(input->size.l, 
                 input->size.s, sizeof(float)); 
     final_prob = (float **)ias_misc_allocate_2d_array(input->size.l, 
                 input->size.s, sizeof(float)); 
     if (wfinal_prob == NULL   ||  final_prob == NULL)
     {
	 sprintf (errstr, "Allocating prob memory");
	 ERROR (errstr, "pcloud");
     }

     printf("The third pass\n");
     /* Loop through each line in the image */
     for (row = 0; row < nrows; row++)
     {
        /* Print status on every 100 lines */
        if (!(row%1000)) 
        {
           printf ("Processing line %d\r",row);
           fflush (stdout);
        }

        /* For each of the image bands */
        for (ib = 0; ib < input->nband; ib++)
        {
            /* Read each input reflective band -- data is read into
               input->buf[ib] */
            if (!GetInputLine(input, ib, row))
            {
                sprintf (errstr, "Reading input image data for line %d, "
                    "band %d", row, ib);
                ERROR (errstr, "pcloud");
            }
        }

	/* For the thermal band */
	/* Read the input thermal band -- data is read into input->therm_buf */
	if (!GetInputThermLine(input, row))
        {
          sprintf (errstr, "Reading input thermal data for line %d", row);
          ERROR (errstr, "pcloud");
	}

	for (col = 0; col <ncols; col++)
	{
	    /* Get cloud prob over water */
	    /* Temperature test over water */
	    wtemp_prob = (t_wtemp - input->therm_buf[col]) / 400.0;
	    
	    /* Brightness test (over water) */
	    t_bright = 1100;
	    brightness_prob = input->buf[4][col] / t_bright;
	    if (brightness_prob > 1)
	      brightness_prob = 1;
	    
	    /*Final prob mask (water), cloud over water probability */
	    wfinal_prob[row][col] =100 * wtemp_prob * brightness_prob;
	    
            temp_prob=(*t_temph-input->therm_buf[col]) / temp_l;
	    /* Temperature can have prob > 1 */
	    if (temp_prob < 0)
	      temp_prob = 0;
	    
            if ((input->buf[2][col] +  input->buf[3][col]) != 0)
                ndvi = (input->buf[3][col] -  input->buf[2][col]) / 
                   (input->buf[3][col] +  input->buf[2][col]);
            else
                ndvi = 0.01;

            if ((input->buf[1][col] +  input->buf[4][col]) != 0)
                ndsi = (input->buf[1][col] -  input->buf[4][col]) / 
                    (input->buf[1][col] +  input->buf[4][col]);
            else
                ndsi = 0.01;
	    
	    /* NDVI and NDSI should not be negative */
	    if (input->buf[2][col] >= input->meta.therm_satu_value_ref 
                && ndsi < 0)
	      ndsi = 0;
	    if (input->buf[3][col] >= input->meta.therm_satu_value_ref 
                && ndvi < 0)
	      ndvi = 0;
	    
	    /*      Vari_prob=1-max(max(abs(NDSI),abs(NDVI)),whiteness); */
	    if (abs(ndsi) > abs(ndvi))
	      max_value = abs(ndsi);
	    else
	      max_value = abs(ndvi);
	    if (whiteness > max_value)
	      max_value = whiteness;
	    vari_prob = 1 - max_value;
	    
	    /*Final prob mask (land) */
	    final_prob[row][col] = 100 * (temp_prob * vari_prob);
        }
     }

     prob = malloc(input->size.l * input->size.s * sizeof(float));
     if(prob == NULL)
     {
          sprintf (errstr, "Allocating prob memory");
	  ERROR (errstr, "pcloud");
     }

     float prob_max = 0.0;
     float prob_min = 0.0;
     int index3 = 0;
     for (row = 0; row < nrows; row++)
     {
	for (col = 0; col <ncols; col++)
	{	    
	    if (clear_land_mask[row][col] == 1);
	    {
		prob[index3] = final_prob[row][col];
                if ((prob[index3] - prob_max) > MINSIGMA)
                    prob_max = prob[index3];
                if ((prob_min - prob[index3]) > MINSIGMA)
                    prob_min = prob[index3];
		index3++;
	    }
        }
    }

    /*Dynamic threshold for land */
    //    prctile2(prob, index3+1, 100*h_pt, &clr_mask);
    printf("index3,prob_max,prob_min =%d, %f, %f\n",index3,prob_max,prob_min);
    clr_mask = h_pt * (prob_max - prob_min) + prob_min;
    printf("clr_mask =%d, %f\n",index3,clr_mask);
#if 0
    prctile2(prob, index3+1, 100*h_pt, &clr_mask);
    printf("clr_mask = %f\n",clr_mask);
#endif
    clr_mask += cloud_prob_threshold;

    printf("clr_mask = %f\n",clr_mask);
	    
    /* Relase memory for prob */
    free(prob);
	    
    /* Fixed threshold for water */
    wclr_mask = 50.0;
	    
    printf("pcloud probability threshold (land) = %.2f\n", clr_mask);
    
    printf("The fourth pass\n");
    /* Loop through each line in the image */
    for (row = 0; row < nrows; row++)
    {
        /* Print status on every 100 lines */
        if (!(row%1000)) 
        {
           printf ("Processing line %d\r",row);
           fflush (stdout);
        }

        /* For each of the image bands */
        for (ib = 0; ib < input->nband; ib++)
        {
            /* Read each input reflective band -- data is read into
               input->buf[ib] */
            if (!GetInputLine(input, ib, row))
            {
                sprintf (errstr, "Reading input image data for line %d, "
                    "band %d", row, ib);
                ERROR (errstr, "pcloud");
            }
        }

	/* For the thermal band */
	/* Read the input thermal band -- data is read into input->therm_buf */
	if (!GetInputThermLine(input, row))
        {
	  sprintf (errstr, "Reading input thermal data for line %d", row);
	  ERROR (errstr, "pcloud");
	}

        for (col =0; col < ncols; col++)
        {
           if ((cloud_mask[row][col] == 1 && final_prob[row][col] > clr_mask &&
              water_mask[row][col] == 0) || (cloud_mask[row][col] == 1 && 
              wfinal_prob[row][col] > wclr_mask && water_mask[row][col] == 1) 
              || (final_prob[row][col] > 99 && water_mask[row][col] == 0) ||
              (input->therm_buf[col] < *t_templ - 3500))
                 cloud_mask[row][col] = 1;
        }
    }

    /* Free the memory */
    status = ias_misc_free_2d_array((void **)wfinal_prob);
    status = ias_misc_free_2d_array((void **)final_prob);

    /* Band 4 flood fill */
    nir = malloc(input->size.l * input->size.s * sizeof(int16)); 
    swir = malloc(input->size.l * input->size.s * sizeof(int16)); 
    if (nir == NULL   || swir == NULL)
    {
        sprintf(errstr, "Allocating nir and swir memory");
        ERROR (errstr, "pcloud");
    }
      
    int16 nir_max = 0;
    int16 swir_max = 0;
    index = 0;
    index2 = 0;
    for (row = 0; row < nrows; row++)
    {
      for (col = 0; col < ncols; col++)
      {
        if (clear_land_mask[row][col] == 1)
	{
	  nir[index] = input->buf[3][col];
          if (nir[index] > nir_max)
           nir_max = nir[index];
	  index++;
	}
      
        if (clear_land_mask[row][col] == 1)
	{
	  nir[index2] = input->buf[4][col];
          if (swir[index2] > swir_max)
           swir_max = swir[index2];
	  index2++;
	}
      }
    }

    status = ias_misc_free_2d_array((void **)clear_mask);
    status = ias_misc_free_2d_array((void **)clear_land_mask);

    /* Improve cloud mask by majority filtering */
    majority_filter(cloud_mask, nrows, ncols);

    /* Estimating background (land) Band 4 Ref */
    backg_b4 = l_pt * nir_max;
    backg_b5 = h_pt * swir_max;
    /* Release the memory */
    free(nir);
    free(swir);
	
    /* May need allocate two memory for new band 4 and 5 after imfill 
       (flood filling), also may need read in whole scene of bands 4 and 5
       for flood filling purpose */
    int16 **new_nir;
    int16 **new_swir;   

    new_nir = (int16 **)ias_misc_allocate_2d_array(input->size.l, 
              input->size.s, sizeof(int16)); 
    new_swir = (int16 **)ias_misc_allocate_2d_array(input->size.l, 
              input->size.s, sizeof(int16)); 
    if (wfinal_prob == NULL  || final_prob == NULL)
    {
        sprintf (errstr, "Allocating prob memory");
        ERROR (errstr, "pcloud");
    }

    printf("The fifth pass\n");

    /* Loop through each line in the image */
    for (row = 0; row < nrows; row++)
    {
       /* Print status on every 100 lines */
        if (!(row%1000)) 
        {
           printf ("Processing line %d\r",row);
           fflush (stdout);
        }

        /* For each of the image bands */
        for (ib = 0; ib < input->nband; ib++)
        {
            /* Read each input reflective band -- data is read into
               input->buf[ib] */
            if (!GetInputLine(input, ib, row))
            {
                sprintf (errstr, "Reading input image data for line %d, "
                    "band %d", row, ib);
                ERROR (errstr, "pcloud");
            }
        }

	/* For the thermal band */
	/* Read the input thermal band -- data is read into input->therm_buf */
	if (!GetInputThermLine(input, row))
        {
	  sprintf (errstr, "Reading input thermal data for line %d", row);
	  ERROR (errstr, "pcloud");
	}

        for (col = 0; col < ncols; col++)
        {
           if (input->therm_buf[col] == -9999)
           {
               new_nir[row][col] = backg_b4;
	       new_swir[row][col] = backg_b5;
           }
           else
           {
	       new_nir[row][col] = input->buf[3][col];
	       new_swir[row][col] = input->buf[4][col];
           }
        }
    }

    /* TODO: Fill in regional minimum band 4 ref*/
    IplImage* img = cvCreateImage(cvSize(ncols, nrows), IPL_DEPTH_8U, 1);
    if (!img)
    {
        sprintf (errstr, "Reading input image data for line %d, "
                 "band %d", row, ib);
        ERROR (errstr, "pcloud");
    }
    //     cvSet2D(img, ncols, nrows, new_nir);
    for (row = 0; row < nrows; row++)
    {
       for (col = 0; col < ncols; col++)
       {
           img->imageData[row*ncols+col] = new_nir[row][col];
           // cvSet2D(img, col, row, new_nir[row][col]);
       }
    }
    CvPoint seed_point = cvPoint(3,3);
    CvScalar color = CV_RGB(1,0,0);

    cvFloodFill(img, seed_point, color, cvScalarAll(5.0), cvScalarAll(5.0), 
                NULL, 4, NULL );

    // cvGet2D(img, ncols, nrows, new_nir);
    for (row = 0; row < nrows; row++)
    {
       for (col = 0; col < ncols; col++)
       {
           new_nir[row][col] = img->imageData[row*ncols+col];
           // new_nir[row][col] = cvGet2D(img, col, row);          
       }
    }

    /* Release image memory */
    cvReleaseImage(&img);

    /* TODO: Fill in regional minimum band 5 ref*/
    IplImage* img2 = cvCreateImage(cvSize(ncols, nrows), IPL_DEPTH_8U, 1);
    if (!img2)
    {
        sprintf (errstr, "Reading input image data for line %d, "
                 "band %d", row, ib);
        ERROR (errstr, "pcloud");
    }
    //     cvSet2D(img, ncols, nrows, new_swir);
    for (row = 0; row < nrows; row++)
    {
       for (col = 0; col < ncols; col++)
       {
           img2->imageData[row*ncols+col] = new_swir[row][col];
           // cvSet2D(img2, col, row, new_swir[row][col]);
       }
    }

    cvFloodFill(img2, seed_point, color, cvScalarAll(5.0), cvScalarAll(5.0), 
                NULL, 4, NULL );

    //     cvGet2D(img, ncols, nrows, new_swir);
    for (row = 0; row < nrows; row++)
    {
       for (col = 0; col < ncols; col++)
       {
           new_swir[row][col] = img2->imageData[row*ncols+col];
           // new_swir[row][col] = cvGet2D(img2, col, row);          
       }
    }

    /* Release image memory */
    cvReleaseImage(&img2);

    for (row = 0; row < nrows; row++)
    {
      for (col = 0; col < ncols; col++)
      {
        if (new_nir[row][col] < new_swir[row][col])
	  shadow_prob = new_nir[row][col];
        else
	  shadow_prob = new_swir[row][col];
      
        if (shadow_prob > 200)
	  shadow_mask[row][col] = 1;
        else
	  shadow_mask[row][col] = 0;
      }
    }
    status = ias_misc_free_2d_array((void **)new_nir);
    status = ias_misc_free_2d_array((void **)new_swir);
   }

    printf("The sixth pass\n");
    /* Loop through each line in the image */
    for (row = 0; row < nrows; row++)
    {
       /* Print status on every 100 lines */
        if (!(row%1000)) 
        {
           printf ("Processing line %d\r",row);
           fflush (stdout);
        }

        /* For each of the image bands */
        for (ib = 0; ib < input->nband; ib++)
        {
            /* Read each input reflective band -- data is read into
               input->buf[ib] */
            if (!GetInputLine(input, ib, row))
            {
                sprintf (errstr, "Reading input image data for line %d, "
                    "band %d", row, ib);
                ERROR (errstr, "pcloud");
            }
        }

	/* For the thermal band */
	/* Read the input thermal band -- data is read into input->therm_buf */
	if (!GetInputThermLine(input, row))
        {
	  sprintf (errstr, "Reading input thermal data for line %d", row);
	  ERROR (errstr, "pcloud");
	}
     for (col = 0; col < ncols; col++)
     {
        /* refine Water mask - Zhe's water mask (no confusion water/cloud) */
        if (water_mask[row][col] == 1 && cloud_mask[row][col] == 0)
          water_mask[row][col] = 1;
        else
	  water_mask[row][col] = 0;

        if (input->therm_buf[col]==-9999)
	{
	  cloud_mask[row][col] = 255;
	  shadow_mask[row][col] = 255;
          //          final_mask[row][col] = 255;
	}
#if 0
      /* Temporary outputs */      
      if (water_mask[row][col] == 1)
	final_mask[row][col] = 1;
      if (snow_mask[row][col] == 1)
        final_mask[row][col] = 3;
      if (shadow_mask[row][col] == 1)
	final_mask[row][col] = 2;
      if (cloud_mask[row][col] == 1)
	final_mask[row][col] = 4;

      if ((water_mask[row][col] != 1) && (snow_mask[row][col] != 1) &&
          (shadow_cal[row][col] != 1) && (cloud_cal[row][col] != 1) &&
          boundary_test[row][col] != 255)
         final_mask[row][col] = 0;
#endif
     }
   }

   printf("t_wtemp,t_templ,t_temph = %f,%f,%f\n",t_wtemp,*t_templ,*t_temph);

    return 0;
}
Пример #15
0
int main( int argc, char** argv ) {

    if (argc>=2){
        //Load image
        IplImage*src = cvLoadImage( argv[1]);

        //Create Windows and Position
        cvNamedWindow("Input",0);
        cvResizeWindow("Input",500,350);
        cvMoveWindow("Input", 0, 0);

        cvNamedWindow("Output",0);
        cvResizeWindow("Output",500,350);
        cvMoveWindow("Output", 0, 600);

        cvNamedWindow( "Hough", 0 );
        cvResizeWindow("Hough",500,350);
        cvMoveWindow("Hough",700,0);

        cvNamedWindow( "FloodFill", 0 );
        cvResizeWindow("FloodFill",500,350);
        cvMoveWindow("FloodFill",700,600);

        //Display Original Image
        cvShowImage( "Input", src );
        IplImage*srcCopy = cvCloneImage(src);

        //Flood Fill
        CvPoint seedPoint= cvPoint((srcCopy->width)/2,(srcCopy->height)/2);
        CvScalar pixColor=avgpixelcolor(srcCopy,seedPoint,5); //Takes avg pixel color value (5x5 grid)
        cvLine( srcCopy, cvPoint(seedPoint.x,srcCopy->height*.9), cvPoint(seedPoint.x,srcCopy->height*.1), pixColor, 3, 8 );
        cvFloodFill(srcCopy,seedPoint,cvScalarAll(255),cvScalarAll(50),cvScalarAll(50),NULL,8|CV_FLOODFILL_FIXED_RANGE, NULL);
        cvShowImage("FloodFill",srcCopy);

        //Convert to Grayscale
        IplImage*dst = cvCreateImage( cvGetSize(src), IPL_DEPTH_8U, 1 );
        cvCvtColor( srcCopy, dst , CV_BGR2GRAY );

        //Display Flood Fill Results
        cvCircle(srcCopy,seedPoint,5,cvScalarAll(0),3,8,0);

        //Threshold
        IplImage*thresh = cvCreateImage(cvGetSize(dst), IPL_DEPTH_8U,1);
        cvThreshold(dst,thresh,
                    230,        //Set Manually during Initialization
                    255,        //Max Pixel Intensity Value (Do not Change)
                    CV_THRESH_TOZERO
                    );

        //Canny Edge Detection
        cvCanny( thresh, dst,
                 0,    //Low Threshold
                 255,   //High Threshold
                 3
                 );

        //Storage for Hough Line Endpoints
        CvMemStorage* storage = cvCreateMemStorage(0);

        //Hough
        CvSeq* lines = cvHoughLines2( dst,storage,CV_HOUGH_PROBABILISTIC,
                                      1,               //rho
                                      1*CV_PI/180,     //theta
                                      150,             //Accumulator threshold
                                      500,             //Min Line Length
                                      200              //Min Colinear Separation
                                      );

        //Draw Vertical Lines on src image
        for(int i = 0; i < lines->total; i++ )
        {
            CvPoint* Point = (CvPoint*)cvGetSeqElem(lines,i);
            cvLine( src, Point[0], Point[1], CV_RGB(0,220,20), 3, 8 );

            //Reject Horizontal lines
            float slope=(Point[0].y-Point[1].y)/(Point[0].x-Point[1].x);

        }

        //Create a Trapazodal Mask

        //Detect Horizontal Lines

        //Isolate 4 points

        //Display Image
        cvShowImage( "Output", src);

        //For Calibration Purposes "what the Hough transform sees"
        cvShowImage( "Hough", dst );

        //Wait for User 10sec
        cvWaitKey(10000);

        //Deallocate Memory
        cvReleaseImage( &src );
        cvReleaseImage( &dst );
        cvReleaseImage( &thresh );
        cvDestroyWindow( "Input" );
        cvDestroyWindow( "Output" );
        cvDestroyWindow("Hough");

    }
    else{
        printf("Hough Transform Code Requires \n");
        return 0;
    }
}
Пример #16
0
int main (int argc, const char * argv[])
{
	if ( argc != 4 ) {
		fprintf(stderr, "Expected 3 image filenames <no_cup> <with_cup> <outdoor_scene>.\n");
		exit(1);
	}
	
	IplImage* src1 = cvLoadImage(argv[1], CV_LOAD_IMAGE_COLOR);
	
	if ( src1 == NULL ) {
		fprintf(stderr, "Couldn't load file 1 %s\n", argv[1]);
		exit(1);
	}
	
	IplImage* src2 = cvLoadImage(argv[2], CV_LOAD_IMAGE_COLOR);
	
	if ( src2 == NULL ) {
		fprintf(stderr, "Couldn't load file 2 %s\n", argv[2]);
		exit(1);
	}
	
	if ( src1->width != src2->width || src1->height != src2->height ) {
		fprintf(stderr, "2 images should have the same width and height but they don't.\n");
		exit(1);
	}
	
	IplImage* grayscale1 = cvCreateImage(cvSize(src1->width, src1->height), src1->depth, 1);
	IplImage* grayscale2 = cvCreateImage(cvSize(src2->width, src2->height), src2->depth, 1);
	
	cvCvtColor(src1, grayscale1, CV_RGB2GRAY);
	cvCvtColor(src2, grayscale2, CV_RGB2GRAY);
	
	IplImage* diff = cvCreateImage(cvSize(src2->width, src2->height), src2->depth, 1);
	cvAbsDiff(grayscale1, grayscale2, diff);
	
	IplImage* result = cvCreateImage(cvSize(src2->width, src2->height), src2->depth, 1);
	cvThreshold(diff, result, 40, 255, CV_THRESH_BINARY);
	
	IplImage* mopResult = cvCreateImage(cvSize(diff->width, diff->height), diff->depth, 1);
	cvMorphologyEx(result, mopResult, NULL, NULL, CV_MOP_OPEN, 1);
	
	// start of exercise 5.6 specific code (the above is from 5.5).
	
	CvConnectedComp largestComponent;
	bzero(&largestComponent, sizeof(largestComponent));
	CvPoint largestRegionPoint = cvPoint(-1, -1);
	
	int x, y;
	for(y = 0; y < mopResult->height; ++y)
	{
		unsigned char* row = (unsigned char*)(mopResult->imageData + mopResult->widthStep * y);
		
		for(x = 0; x < mopResult->width; ++x)
		{
			if ( row[x] == 255 )
			{
				CvConnectedComp region;
				cvFloodFill(mopResult, cvPoint(x, y), cvScalarAll(100), cvScalarAll(0), cvScalarAll(0), &region, 4, NULL);
				
				if ( largestRegionPoint.x == -1 )
				{
					// first region found
					largestRegionPoint = cvPoint(x, y);
					largestComponent = region;
				}
				else if ( largestComponent.area < region.area )
				{
					// Clear the last area.
					cvFloodFill(mopResult, largestRegionPoint, cvScalarAll(0), cvScalarAll(0), cvScalarAll(0), NULL, 4, NULL);
					largestRegionPoint = cvPoint(x, y);
					largestComponent = region;
				}
				else
				{
					cvFloodFill(mopResult, cvPoint(x, y), cvScalarAll(0), cvScalarAll(0), cvScalarAll(0), NULL, 4, NULL);
				}
			}
		}
	}
	
	if ( largestRegionPoint.x != -1 )
	{
		cvFloodFill(mopResult, largestRegionPoint, cvScalarAll(255), cvScalarAll(0), cvScalarAll(0), NULL, 4, NULL);
	}
	
	// Start of Exercise 5.7. Before this is the same as 5.6
	
	IplImage* outdoorScene = cvLoadImage(argv[3], CV_LOAD_IMAGE_COLOR);
	
	if ( outdoorScene == NULL ) {
		fprintf(stderr, "Couldn't load file 3 %s\n", argv[3]);
		exit(1);
	}
	
	cvCopy(src2, outdoorScene, mopResult);
	
	cvNamedWindow("outdoorScene", CV_WINDOW_NORMAL);
	cvShowImage("outdoorScene", outdoorScene);
	cvWaitKey(0);
	
    return 0;
}
Пример #17
0
CV_IMPL CvSeq*
cvSegmentMotion( const CvArr* mhiimg, CvArr* segmask, CvMemStorage* storage,
                 double timestamp, double seg_thresh )
{
    CvSeq* components = 0;
    cv::Ptr<CvMat> mask8u;

    CvMat  mhistub, *mhi = cvGetMat(mhiimg, &mhistub);
    CvMat  maskstub, *mask = cvGetMat(segmask, &maskstub);
    Cv32suf v, comp_idx;
    int stub_val, ts;
    int x, y;

    if( !storage )
        CV_Error( CV_StsNullPtr, "NULL memory storage" );

    mhi = cvGetMat( mhi, &mhistub );
    mask = cvGetMat( mask, &maskstub );

    if( CV_MAT_TYPE( mhi->type ) != CV_32FC1 || CV_MAT_TYPE( mask->type ) != CV_32FC1 )
        CV_Error( CV_BadDepth, "Both MHI and the destination mask" );

    if( !CV_ARE_SIZES_EQ( mhi, mask ))
        CV_Error( CV_StsUnmatchedSizes, "" );

    mask8u = cvCreateMat( mhi->rows + 2, mhi->cols + 2, CV_8UC1 );
    cvZero( mask8u );
    cvZero( mask );
    components = cvCreateSeq( CV_SEQ_KIND_GENERIC, sizeof(CvSeq),
                              sizeof(CvConnectedComp), storage );
    
    v.f = (float)timestamp; ts = v.i;
    v.f = FLT_MAX*0.1f; stub_val = v.i;
    comp_idx.f = 1;

    for( y = 0; y < mhi->rows; y++ )
    {
        int* mhi_row = (int*)(mhi->data.ptr + y*mhi->step);
        for( x = 0; x < mhi->cols; x++ )
        {
            if( mhi_row[x] == 0 )
                mhi_row[x] = stub_val;
        }
    }

    for( y = 0; y < mhi->rows; y++ )
    {
        int* mhi_row = (int*)(mhi->data.ptr + y*mhi->step);
        uchar* mask8u_row = mask8u->data.ptr + (y+1)*mask8u->step + 1;

        for( x = 0; x < mhi->cols; x++ )
        {
            if( mhi_row[x] == ts && mask8u_row[x] == 0 )
            {
                CvConnectedComp comp;
                int x1, y1;
                CvScalar _seg_thresh = cvRealScalar(seg_thresh);
                CvPoint seed = cvPoint(x,y);

                cvFloodFill( mhi, seed, cvRealScalar(0), _seg_thresh, _seg_thresh,
                            &comp, CV_FLOODFILL_MASK_ONLY + 2*256 + 4, mask8u );

                for( y1 = 0; y1 < comp.rect.height; y1++ )
                {
                    int* mask_row1 = (int*)(mask->data.ptr +
                                    (comp.rect.y + y1)*mask->step) + comp.rect.x;
                    uchar* mask8u_row1 = mask8u->data.ptr +
                                    (comp.rect.y + y1+1)*mask8u->step + comp.rect.x+1;

                    for( x1 = 0; x1 < comp.rect.width; x1++ )
                    {
                        if( mask8u_row1[x1] > 1 )
                        {
                            mask8u_row1[x1] = 1;
                            mask_row1[x1] = comp_idx.i;
                        }
                    }
                }
                comp_idx.f++;
                cvSeqPush( components, &comp );
            }
        }
    }

    for( y = 0; y < mhi->rows; y++ )
    {
        int* mhi_row = (int*)(mhi->data.ptr + y*mhi->step);
        for( x = 0; x < mhi->cols; x++ )
        {
            if( mhi_row[x] == stub_val )
                mhi_row[x] = 0;
        }
    }

    return components;
}
Пример #18
0
/*=================================================== Test body ========================== */
static int fmaFloodFill( void )
{
    /* Some Variables */
    int nx, ny, stepX, stepY, numTest, ROI_offset, mp=0, mp4=0;
    int i, j, k, ij, it, n, n4, ov, d1, d2, ntest2, nerr, nerr1=0, nerr2=0, nerr3=0, nerr4=0;
    int step, step4;
    uchar *pI0, *pI1, *pI2;
    float* pI3, *pI4;
    IplImage *I0, *I1, *I2, *I3, *I4;
    CvSize  size;
    CvPoint seed;
    CvConnectedComp Comp;
    CvStatus r;

    /* Reading test parameters */
    trsiRead( &nx,        "64", "Image width" );
    trsiRead( &stepX,     "16", "Seed point horizontal step" );
    trsiRead( &numTest,   "32", "Number of each seed point tests" );
    trsiRead( &ROI_offset, "0", "ROI offset" );

    ny = nx;
    stepY = stepX;
    n = nx*ny;
    ntest2 = numTest/2;
    size.width  = nx;
    size.height = ny;

    I0  = cvCreateImage( size, IPL_DEPTH_8U, 1 );
    I1  = cvCreateImage( size, IPL_DEPTH_8U, 1 );
    I2  = cvCreateImage( size, IPL_DEPTH_8U, 1 );
    I3  = cvCreateImage( size, IPL_DEPTH_32F,1 );
    I4  = cvCreateImage( size, IPL_DEPTH_32F,1 );

    pI0 = (uchar*)I0->imageData;
    pI1 = (uchar*)I1->imageData;
    pI2 = (uchar*)I2->imageData;
    pI3 = (float*)I3->imageData;
    pI4 = (float*)I4->imageData;

    step = I1->widthStep;  step4 = I3->widthStep;
    n = step*ny;  n4 = (step4/4)*ny;

    if(ROI_offset)
    {
        mp = ROI_offset + ROI_offset*step;
        mp4= ROI_offset + ROI_offset*step4;
        size.width  = nx - 2*ROI_offset;
        size.height = ny - 2*ROI_offset;
        I1->roi->xOffset = I1->roi->yOffset = ROI_offset;
        I1->roi->height  = size.height;  I1->roi->width = size.width;
        I3->roi->xOffset = I3->roi->yOffset = ROI_offset;
        I3->roi->height = size.height;  I3->roi->width = size.width;
    }

    /*  T E S T I N G  */

/* Zero interval */
    d1 = d2 = 0;
    ats1bInitRandom ( 0, 1.5, pI0, n );
        /*for(i=0;i<n;i++)printf(" %d",pI0[i]);getchar(); */
    for(j=0; j<size.height; j=j+stepY)
    {
        seed.y = j;
        for(i=0; i<size.width; i=i+stepX)
        {
            seed.x = i;
            for(k=0; k<n;  k++) pI1[k]=pI2[k]=pI0[k];
            for(k=0; k<n4; k++) pI3[k]=pI4[k]=(float)pI0[k];
     /* 8U */
            Counter = 0;   X1 = X2 = i;    Y1 = Y2 = j;
            /* Run CVL function */
            cvFloodFill ( I1, seed, 10.0, 0.0, 0.0, &Comp );
            /* Run test function */
            r = _cvFloodFill8uC1R_slow (pI2+mp, step, size, seed, 10, 0, 0 );
            /* Comparison */
                for(k=0; k<n; k++) if( (pI1[k]-pI2[k]) ) nerr1++;
                if( Comp.area!=Counter ) nerr1++;
            if(X1!=Comp.rect.x) nerr1++;
            if(Y1!=Comp.rect.y) nerr1++;
            if((X2-X1+1)!=Comp.rect.width) nerr1++;
            if((Y2-Y1+1)!=Comp.rect.height) nerr1++;
     /* 32F */
            Counter = 0;   X1 = X2 = i;    Y1 = Y2 = j;
            /* Run CVL function */
            cvFloodFill ( I3, seed, 10.0, 0.0, 0.0, &Comp );
            /* Run test function */
            r = _cvFloodFill32fC1R_slow (pI4+mp4, step4, size, seed, 10.0, 0.0f, 0.0f );
            /* Comparison */
                for(k=0; k<n4; k++) if( (pI3[k]-pI4[k]) ) nerr2++;
                if( Comp.area!=Counter ) nerr2++;
            if(X1!=Comp.rect.x) nerr2++;
            if(Y1!=Comp.rect.y) nerr2++;
            if((X2-X1+1)!=Comp.rect.width) nerr2++;
            if((Y2-Y1+1)!=Comp.rect.height) nerr2++;
            if( nerr1 != 0 || nerr2 != 0 )
                goto test_end;
        }
    }

/* Non-zero interval */
    ats1bInitRandom ( 0, 254.99, pI0, n );
    for(j=1; j<size.height; j=j+stepY)
    {
        seed.y = j;
        for(i=1; i<size.width; i=i+stepX)
        {
            ij=i+step*j;   ov=pI0[ij+mp];
            seed.x = i;
            for(it=0; it<numTest; it++)
            {
                for(k=0; k<n;  k++) pI1[k]=pI2[k]=pI0[k];
                for(k=0; k<n4; k++) pI3[k]=pI4[k]=(float)pI0[k];
                if(it<ntest2)  /* sequential increase interval */
                { d1=(ov*(it+1))/ntest2;  d2=((255-ov)*(it+1))/ntest2; }
                else           /* random interval */
                {
                    d1 = (int)atsInitRandom(1.0, 127);
                    d2 = (int)atsInitRandom(1.0, 127);
                    if(it>(3*numTest)/4){d1/=2; d2/=2;}
                }

     /* 8U */
                Counter = 0; X1 = X2 = i;    Y1 = Y2 = j;
                /* Run CVL function */
                cvFloodFill ( I1, seed, 255.0, (double)d1, (double)d2, &Comp );
                /* Run test function */
                r = _cvFloodFill8uC1R_slow (pI2+mp, step, size, seed, 255, d1, d2 );
                /* Comparison */
                    for(k=0; k<n; k++) if( (pI1[k]-pI2[k]) ) nerr3++;
                    if( Comp.area!=Counter ) nerr3++;
                if(X1!=Comp.rect.x) nerr3++;
                if(Y1!=Comp.rect.y) nerr3++;
                if((X2-X1+1)!=Comp.rect.width) nerr3++;
                if((Y2-Y1+1)!=Comp.rect.height) nerr3++;
     /* 32F */
                Counter = 0; X1 = X2 = i;    Y1 = Y2 = j;
                /* Run CVL function */
                cvFloodFill ( I3, seed, 255.0, (double)d1, (double)d2, &Comp );
                /* Run test function */
                r = _cvFloodFill32fC1R_slow (pI4+mp4, step4, size, seed, 255.0, (float)d1, (float)d2 );
                /* Comparison */
                    for(k=0; k<n4; k++) if( (pI3[k]-pI4[k]) ) nerr4++;
                    if( Comp.area!=Counter ) nerr4++;
                if(X1!=Comp.rect.x) nerr4++;
                if(Y1!=Comp.rect.y) nerr4++;
                if((X2-X1+1)!=Comp.rect.width) nerr4++;
                if((Y2-Y1+1)!=Comp.rect.height) nerr4++;
                if( nerr3 != 0 || nerr4 != 0 )
                    goto test_end;
            }
        }
        trsWrite(TW_RUN|TW_CON, " %d%% ", ((j+stepY)*100)/size.height);
    }

test_end:
    cvReleaseImage( &I0 );
    cvReleaseImage( &I1 );
    cvReleaseImage( &I2 );
    cvReleaseImage( &I3 );
    cvReleaseImage( &I4 );
    nerr = nerr1 + nerr2 + nerr3 + nerr4;
            printf( "\n  zero:  %d  %d     non-zero:  %d  %d\n", nerr1, nerr2, nerr3, nerr4 );
    trsWrite(TW_RUN|TW_CON|TW_SUM, "    Nerr = %d\n", nerr);
    if( nerr == 0 ) return trsResult( TRS_OK, "No errors fixed by this test" );
    else return trsResult( TRS_FAIL, "Total fixed %d errors", nerr );
} /*fma*/