void Graph<Tv, Te>::DFS(int v, int &clock){ //深度优先搜索DFS算法(单个连通域) dTime(v) = ++clock; status(v) = DISCOVERED; //发现当前顶点v for( int u = firstNbr(v); -1 < u; u = nextNbr(v, u) ){ //枚举v的所有邻居u switch(status(u)){ case UNDISCOVERED://u尚未发现,意味着支撑树可在此拓展 type(v, u) = TREE; parent(u) = v; DFS(u, clock); break; case DISCOVERED: //u已被发现但未访问完毕, 应属被后代指向的祖先 type(v, u) = BACKWARD; break; default: //u已访问完毕(VISITED, 有向图), 则视承袭关系分为前向边或跨边 type(v, u) = (dTime(v) < dTime(u) ) ? FORWARD : CROSS; break; } } status(v) = VISITED; fTime(v) = ++clock; //至此,当前顶点v方告访问完毕 }
QDateTime WavReader::dateTime() { QDate date(auxInfo.StartTime.wYear, auxInfo.StartTime.wMonth, auxInfo.StartTime.wDay); QTime time(auxInfo.StartTime.wHour, auxInfo.StartTime.wMinute, auxInfo.StartTime.wSecond); QDateTime dTime(date, time); return(dTime); }
bool Graph<Tv, Te>::TSort(int v, int &clock, MyStack<Tv> *S){ //assert: 0 <= v < n dTime(v) = ++clock; status(v) = DISCOVERED; //发现顶点v for(int u = firstNbr(v); -1 < u; u = nextNbr(v, u)) //枚举v的所有邻居u switch(status(v)){ case UNDISCOVERED: parent(u) = v; type(v, u) = TREE; if( !TSort(u, clock, S)) //从顶点u处出发深入搜索 return false; //若u及其后代不能拓扑程序(则全图亦必如此), 故返回并报告 break; case DISCOVERED: type(v, u) = BACKWARD; //一旦发现后向边(非DAG), 则 return false; //不必深入,故返回并报告 default: //VISITED(digraphs only) type(v, u) = (dTime(v) < dTime(u) ) ? FORWARD : CROSS; break; } status(v) = VISITED; S->push(vertex(v) ); //顶点被标记为VISITED时, 随即入栈 return true; //v及其后代可以拓扑排序 }
void Graph<Tv, Te>::BCC(int v, int &clock, MyStack<int> &S){ //assert: 0 <= v < n hca(v) = dTime(v) = ++clock; status(v) = DISCOVERED; S.push(v); //v被发现并入栈 for(int u = firstNbr(v); -1 < u; u = nextNbr(v, u)) //枚举v的所有邻居u switch(status(u)){ //并视u的状态分别处理 case UNDISCOVERED: parent(u) = v; type(v,u) = TREE; BCC(u, clock, S); //从顶点u处深入 if(hca(u) < dTime(v)) //遍历返回后, 若发现u(通过回边)可指向v的真祖先 hca(v) = min( hca(v), hca(u) ); //则v亦必如此 else{ //否则,以v为关节点(u以下即是一个BCC, 且其中顶点此时正集中于栈s的顶部) while( v != S.pop() ); //依次弹出当前BCC中的节点,亦可根据实际需求转存至其他结构 S.push(v); //最后一个顶点(关节点)重新入栈---总计至多两次 } break; case DISCOVERED: type(v, u) = BACKWARD; //标记(v,u), 并按照"越小越高"的准则 if( u != parent(v) ) hca(v) = min(hca(v), dTime(u)); //更新hca(v) break; default: //VISITED(digraphs only) type(v, u) = (dTime(V) < dTime(u) ? FORWARD : CROSS); break; } status(v) = VISITED; //对v的访问结束 }
void Graph<Tv, Te>::BFS(int v, int &clock){ MyQueue<int> Q; //引入辅助队列 status(v) = DISCOVERED; Q.enqueue(v); //初始化起点 while(!Q.empty()){ //在Q变空之前,不断 int v = Q.dequeue(); dTime(v) = ++clock; //取出队首顶点v for(int u = firstNbr(v); -1 < u; u = nextNbr(v, u)) //枚举v的所有邻居 if(UNDISCOVERED == status(u)){ //尚未被发现,则 status(u) = DISCOVERED; //设置为已发现 Q.enqueue(u); //并且将该顶点入队 type(v, u) = TREE; parent(u) = v; //引入树边拓展支撑树 }else{ type(v, u) = CROSS; //将(v,u)归类于跨边 } status(v) = VISITED; //至此,当前节点访问完毕 } }
int main(int argc, char ** argv) { MPI_Init(&argc, &argv); NcError error(NcError::silent_nonfatal); try { // Input filename std::string strInputFile; // Output filename std::string strOutputFile; // Separate topography file std::string strTopographyFile; // List of variables to extract std::string strVariables; // Extract geopotential height bool fGeopotentialHeight; // Pressure levels to extract std::string strPressureLevels; // Height levels to extract std::string strHeightLevels; // Extract variables at the surface bool fExtractSurface; // Extract total energy bool fExtractTotalEnergy; // Parse the command line BeginCommandLine() CommandLineString(strInputFile, "in", ""); CommandLineString(strOutputFile, "out", ""); CommandLineString(strVariables, "var", ""); CommandLineBool(fGeopotentialHeight, "output_z"); CommandLineBool(fExtractTotalEnergy, "output_energy"); CommandLineString(strPressureLevels, "p", ""); CommandLineString(strHeightLevels, "z", ""); CommandLineBool(fExtractSurface, "surf"); ParseCommandLine(argc, argv); EndCommandLine(argv) AnnounceBanner(); // Check command line arguments if (strInputFile == "") { _EXCEPTIONT("No input file specified"); } if (strOutputFile == "") { _EXCEPTIONT("No output file specified"); } if (strVariables == "") { _EXCEPTIONT("No variables specified"); } // Parse variable string std::vector< std::string > vecVariableStrings; ParseVariableList(strVariables, vecVariableStrings); // Check variables if (vecVariableStrings.size() == 0) { _EXCEPTIONT("No variables specified"); } // Parse pressure level string std::vector<double> vecPressureLevels; ParseLevelArray(strPressureLevels, vecPressureLevels); int nPressureLevels = (int)(vecPressureLevels.size()); for (int k = 0; k < nPressureLevels; k++) { if (vecPressureLevels[k] <= 0.0) { _EXCEPTIONT("Non-positive pressure values not allowed"); } } // Parse height level string std::vector<double> vecHeightLevels; ParseLevelArray(strHeightLevels, vecHeightLevels); int nHeightLevels = (int)(vecHeightLevels.size()); // Check pressure levels if ((nPressureLevels == 0) && (nHeightLevels == 0) && (!fExtractSurface) ) { _EXCEPTIONT("No pressure / height levels to process"); } // Open input file AnnounceStartBlock("Loading input file"); NcFile ncdf_in(strInputFile.c_str(), NcFile::ReadOnly); if (!ncdf_in.is_valid()) { _EXCEPTION1("Unable to open file \"%s\" for reading", strInputFile.c_str()); } // Load time array Announce("Time"); NcVar * varTime = ncdf_in.get_var("time"); if (varTime == NULL) { _EXCEPTION1("File \"%s\" does not contain variable \"time\"", strInputFile.c_str()); } int nTime = varTime->get_dim(0)->size(); DataArray1D<double> dTime(nTime); varTime->set_cur((long)0); varTime->get(&(dTime[0]), nTime); // Load latitude array Announce("Latitude"); NcVar * varLat = ncdf_in.get_var("lat"); if (varLat == NULL) { _EXCEPTION1("File \"%s\" does not contain variable \"lat\"", strInputFile.c_str()); } int nLat = varLat->get_dim(0)->size(); DataArray1D<double> dLat(nLat); varLat->set_cur((long)0); varLat->get(&(dLat[0]), nLat); // Load longitude array Announce("Longitude"); NcVar * varLon = ncdf_in.get_var("lon"); if (varLon == NULL) { _EXCEPTION1("File \"%s\" does not contain variable \"lon\"", strInputFile.c_str()); } int nLon = varLon->get_dim(0)->size(); DataArray1D<double> dLon(nLon); varLon->set_cur((long)0); varLon->get(&(dLon[0]), nLon); // Load level array Announce("Level"); NcVar * varLev = ncdf_in.get_var("lev"); if (varLev == NULL) { _EXCEPTION1("File \"%s\" does not contain variable \"lev\"", strInputFile.c_str()); } int nLev = varLev->get_dim(0)->size(); DataArray1D<double> dLev(nLev); varLev->set_cur((long)0); varLev->get(&(dLev[0]), nLev); // Load level interface array Announce("Interface"); NcVar * varILev = ncdf_in.get_var("ilev"); int nILev = 0; DataArray1D<double> dILev; if (varILev == NULL) { Announce("Warning: Variable \"ilev\" not found"); } else { nILev = varILev->get_dim(0)->size(); if (nILev != nLev + 1) { _EXCEPTIONT("Variable \"ilev\" must have size lev+1"); } dILev.Allocate(nILev); varILev->set_cur((long)0); varILev->get(&(dILev[0]), nILev); } // Load topography Announce("Topography"); NcVar * varZs = ncdf_in.get_var("Zs"); if (varZs == NULL) { _EXCEPTION1("File \"%s\" does not contain variable \"Zs\"", strInputFile.c_str()); } DataArray2D<double> dZs(nLat, nLon); varZs->set_cur((long)0, (long)0); varZs->get(&(dZs[0][0]), nLat, nLon); AnnounceEndBlock("Done"); // Open output file AnnounceStartBlock("Constructing output file"); NcFile ncdf_out(strOutputFile.c_str(), NcFile::Replace); if (!ncdf_out.is_valid()) { _EXCEPTION1("Unable to open file \"%s\" for writing", strOutputFile.c_str()); } CopyNcFileAttributes(&ncdf_in, &ncdf_out); // Output time array Announce("Time"); NcDim * dimOutTime = ncdf_out.add_dim("time"); NcVar * varOutTime = ncdf_out.add_var("time", ncDouble, dimOutTime); varOutTime->set_cur((long)0); varOutTime->put(&(dTime[0]), nTime); CopyNcVarAttributes(varTime, varOutTime); // Output pressure array NcDim * dimOutP = NULL; NcVar * varOutP = NULL; if (nPressureLevels > 0) { Announce("Pressure"); dimOutP = ncdf_out.add_dim("p", nPressureLevels); varOutP = ncdf_out.add_var("p", ncDouble, dimOutP); varOutP->set_cur((long)0); varOutP->put(&(vecPressureLevels[0]), nPressureLevels); } // Output height array NcDim * dimOutZ = NULL; NcVar * varOutZ = NULL; if (nHeightLevels > 0) { Announce("Height"); dimOutZ = ncdf_out.add_dim("z", nHeightLevels); varOutZ = ncdf_out.add_var("z", ncDouble, dimOutZ); varOutZ->set_cur((long)0); varOutZ->put(&(vecHeightLevels[0]), nHeightLevels); } // Output latitude and longitude array Announce("Latitude"); NcDim * dimOutLat = ncdf_out.add_dim("lat", nLat); NcVar * varOutLat = ncdf_out.add_var("lat", ncDouble, dimOutLat); varOutLat->set_cur((long)0); varOutLat->put(&(dLat[0]), nLat); CopyNcVarAttributes(varLat, varOutLat); Announce("Longitude"); NcDim * dimOutLon = ncdf_out.add_dim("lon", nLon); NcVar * varOutLon = ncdf_out.add_var("lon", ncDouble, dimOutLon); varOutLon->set_cur((long)0); varOutLon->put(&(dLon[0]), nLon); CopyNcVarAttributes(varLon, varOutLon); // Output topography Announce("Topography"); NcVar * varOutZs = ncdf_out.add_var( "Zs", ncDouble, dimOutLat, dimOutLon); varOutZs->set_cur((long)0, (long)0); varOutZs->put(&(dZs[0][0]), nLat, nLon); AnnounceEndBlock("Done"); // Done AnnounceEndBlock("Done"); // Load all variables Announce("Loading variables"); std::vector<NcVar *> vecNcVar; for (int v = 0; v < vecVariableStrings.size(); v++) { vecNcVar.push_back(ncdf_in.get_var(vecVariableStrings[v].c_str())); if (vecNcVar[v] == NULL) { _EXCEPTION1("Unable to load variable \"%s\" from file", vecVariableStrings[v].c_str()); } } // Physical constants Announce("Initializing thermodynamic variables"); NcAtt * attEarthRadius = ncdf_in.get_att("earth_radius"); double dEarthRadius = attEarthRadius->as_double(0); NcAtt * attRd = ncdf_in.get_att("Rd"); double dRd = attRd->as_double(0); NcAtt * attCp = ncdf_in.get_att("Cp"); double dCp = attCp->as_double(0); double dGamma = dCp / (dCp - dRd); NcAtt * attP0 = ncdf_in.get_att("P0"); double dP0 = attP0->as_double(0); double dPressureScaling = dP0 * std::pow(dRd / dP0, dGamma); NcAtt * attZtop = ncdf_in.get_att("Ztop"); double dZtop = attZtop->as_double(0); // Input data DataArray3D<double> dataIn(nLev, nLat, nLon); DataArray3D<double> dataInt(nILev, nLat, nLon); // Output data DataArray2D<double> dataOut(nLat, nLon); // Pressure in column DataArray1D<double> dataColumnP(nLev); // Height in column DataArray1D<double> dataColumnZ(nLev); DataArray1D<double> dataColumnIZ(nILev); // Column weights DataArray1D<double> dW(nLev); DataArray1D<double> dIW(nILev); // Loop through all times, pressure levels and variables AnnounceStartBlock("Interpolating"); // Add energy variable NcVar * varEnergy; if (fExtractTotalEnergy) { varEnergy = ncdf_out.add_var("TE", ncDouble, dimOutTime); } // Create output pressure variables std::vector<NcVar *> vecOutNcVarP; if (nPressureLevels > 0) { for (int v = 0; v < vecVariableStrings.size(); v++) { vecOutNcVarP.push_back( ncdf_out.add_var( vecVariableStrings[v].c_str(), ncDouble, dimOutTime, dimOutP, dimOutLat, dimOutLon)); // Copy attributes CopyNcVarAttributes(vecNcVar[v], vecOutNcVarP[v]); } } // Create output height variables std::vector<NcVar *> vecOutNcVarZ; if (nHeightLevels > 0) { for (int v = 0; v < vecVariableStrings.size(); v++) { std::string strVarName = vecVariableStrings[v]; if (nPressureLevels > 0) { strVarName += "z"; } vecOutNcVarZ.push_back( ncdf_out.add_var( strVarName.c_str(), ncDouble, dimOutTime, dimOutZ, dimOutLat, dimOutLon)); // Copy attributes CopyNcVarAttributes(vecNcVar[v], vecOutNcVarZ[v]); } } // Create output surface variable std::vector<NcVar *> vecOutNcVarS; if (fExtractSurface) { for (int v = 0; v < vecVariableStrings.size(); v++) { std::string strVarName = vecVariableStrings[v]; strVarName += "S"; vecOutNcVarS.push_back( ncdf_out.add_var( strVarName.c_str(), ncDouble, dimOutTime, dimOutLat, dimOutLon)); // Copy attributes CopyNcVarAttributes(vecNcVar[v], vecOutNcVarS[v]); } } // Loop over all times for (int t = 0; t < nTime; t++) { char szAnnounce[256]; sprintf(szAnnounce, "Time %i", t); AnnounceStartBlock(szAnnounce); // Rho DataArray3D<double> dataRho(nLev, nLat, nLon); NcVar * varRho = ncdf_in.get_var("Rho"); if (varRho == NULL) { _EXCEPTIONT("Unable to load variable \"Rho\" from file"); } varRho->set_cur(t, 0, 0, 0); varRho->get(&(dataRho[0][0][0]), 1, nLev, nLat, nLon); // Pressure DataArray3D<double> dataP(nLev, nLat, nLon); if (nPressureLevels != 0) { NcVar * varP = ncdf_in.get_var("P"); if (varP == NULL) { _EXCEPTIONT("Unable to load variable \"P\" from file"); } varP->set_cur(t, 0, 0, 0); varP->get(&(dataP[0][0][0]), 1, nLev, nLat, nLon); } /* // Populate pressure array if (nPressureLevels > 0) { // Calculate pointwise pressure for (int k = 0; k < nLev; k++) { for (int i = 0; i < nLat; i++) { for (int j = 0; j < nLon; j++) { dataP[k][i][j] = dPressureScaling * exp(log(dataRho[k][i][j] * dataP[k][i][j]) * dGamma); } } } } */ // Height everywhere DataArray3D<double> dataZ(nLev, nLat, nLon); DataArray3D<double> dataIZ; if (nILev != 0) { dataIZ.Allocate(nILev, nLat, nLon); } // Populate height array if ((nHeightLevels > 0) || (fGeopotentialHeight)) { for (int k = 0; k < nLev; k++) { for (int i = 0; i < nLat; i++) { for (int j = 0; j < nLon; j++) { dataZ[k][i][j] = dZs[i][j] + dLev[k] * (dZtop - dZs[i][j]); } } } for (int k = 0; k < nILev; k++) { for (int i = 0; i < nLat; i++) { for (int j = 0; j < nLon; j++) { dataIZ[k][i][j] = dZs[i][j] + dILev[k] * (dZtop - dZs[i][j]); } } } } // Loop through all pressure levels and variables for (int v = 0; v < vecNcVar.size(); v++) { bool fOnInterfaces = false; // Load in the data array vecNcVar[v]->set_cur(t, 0, 0, 0); if (vecNcVar[v]->get_dim(1)->size() == nLev) { vecNcVar[v]->get(&(dataIn[0][0][0]), 1, nLev, nLat, nLon); Announce("%s (n)", vecVariableStrings[v].c_str()); } else if (vecNcVar[v]->get_dim(1)->size() == nILev) { vecNcVar[v]->get(&(dataInt[0][0][0]), 1, nILev, nLat, nLon); fOnInterfaces = true; Announce("%s (i)", vecVariableStrings[v].c_str()); } else { _EXCEPTION1("Variable \"%s\" has invalid level dimension", vecVariableStrings[v].c_str()); } // At the physical surface if (fExtractSurface) { if (fOnInterfaces) { for (int i = 0; i < nLat; i++) { for (int j = 0; j < nLon; j++) { dataOut[i][j] = dataInt[0][i][j]; } } } else { int kBegin = 0; int kEnd = 3; PolynomialInterp::LagrangianPolynomialCoeffs( 3, dLev, dW, 0.0); // Loop thorugh all latlon indices for (int i = 0; i < nLat; i++) { for (int j = 0; j < nLon; j++) { // Interpolate in the vertical dataOut[i][j] = 0.0; for (int k = kBegin; k < kEnd; k++) { dataOut[i][j] += dW[k] * dataIn[k][i][j]; } } } } // Write variable vecOutNcVarS[v]->set_cur(t, 0, 0); vecOutNcVarS[v]->put(&(dataOut[0][0]), 1, nLat, nLon); } // Loop through all pressure levels for (int p = 0; p < nPressureLevels; p++) { // Loop thorugh all latlon indices for (int i = 0; i < nLat; i++) { for (int j = 0; j < nLon; j++) { // Store column pressure for (int k = 0; k < nLev; k++) { dataColumnP[k] = dataP[k][i][j]; } // Find weights int kBegin = 0; int kEnd = 0; // On a pressure surface InterpolationWeightsLinear( vecPressureLevels[p], dataColumnP, kBegin, kEnd, dW); // Interpolate in the vertical dataOut[i][j] = 0.0; for (int k = kBegin; k < kEnd; k++) { dataOut[i][j] += dW[k] * dataIn[k][i][j]; } } } // Write variable vecOutNcVarP[v]->set_cur(t, p, 0, 0); vecOutNcVarP[v]->put(&(dataOut[0][0]), 1, 1, nLat, nLon); } // Loop through all height levels for (int z = 0; z < nHeightLevels; z++) { // Loop thorugh all latlon indices for (int i = 0; i < nLat; i++) { for (int j = 0; j < nLon; j++) { // Find weights int kBegin = 0; int kEnd = 0; // Interpolate from levels to z surfaces if (!fOnInterfaces) { for (int k = 0; k < nLev; k++) { dataColumnZ[k] = dataZ[k][i][j]; } InterpolationWeightsLinear( vecHeightLevels[z], dataColumnZ, kBegin, kEnd, dW); dataOut[i][j] = 0.0; for (int k = kBegin; k < kEnd; k++) { dataOut[i][j] += dW[k] * dataIn[k][i][j]; } // Interpolate from interfaces to z surfaces } else { for (int k = 0; k < nILev; k++) { dataColumnIZ[k] = dataIZ[k][i][j]; } InterpolationWeightsLinear( vecHeightLevels[z], dataColumnIZ, kBegin, kEnd, dIW); dataOut[i][j] = 0.0; for (int k = kBegin; k < kEnd; k++) { dataOut[i][j] += dIW[k] * dataInt[k][i][j]; } } } } // Write variable vecOutNcVarZ[v]->set_cur(t, z, 0, 0); vecOutNcVarZ[v]->put(&(dataOut[0][0]), 1, 1, nLat, nLon); } } // Output geopotential height if (fGeopotentialHeight) { Announce("Geopotential height"); // Output variables NcVar * varOutZ; NcVar * varOutZs; if (nPressureLevels > 0) { varOutZ = ncdf_out.add_var( "PHIZ", ncDouble, dimOutTime, dimOutP, dimOutLat, dimOutLon); } if (fExtractSurface) { varOutZs = ncdf_out.add_var( "PHIZS", ncDouble, dimOutTime, dimOutLat, dimOutLon); } // Interpolate onto pressure levels for (int p = 0; p < nPressureLevels; p++) { // Loop thorugh all latlon indices for (int i = 0; i < nLat; i++) { for (int j = 0; j < nLon; j++) { int kBegin = 0; int kEnd = 0; for (int k = 0; k < nLev; k++) { dataColumnP[k] = dataP[k][i][j]; } InterpolationWeightsLinear( vecPressureLevels[p], dataColumnP, kBegin, kEnd, dW); // Interpolate in the vertical dataOut[i][j] = 0.0; for (int k = kBegin; k < kEnd; k++) { dataOut[i][j] += dW[k] * dataZ[k][i][j]; } } } // Write variable varOutZ->set_cur(t, p, 0, 0); varOutZ->put(&(dataOut[0][0]), 1, 1, nLat, nLon); } // Interpolate onto the physical surface if (fExtractSurface) { int kBegin = 0; int kEnd = 3; PolynomialInterp::LagrangianPolynomialCoeffs( 3, dLev, dW, 0.0); // Loop thorugh all latlon indices for (int i = 0; i < nLat; i++) { for (int j = 0; j < nLon; j++) { // Interpolate in the vertical dataOut[i][j] = 0.0; for (int k = kBegin; k < kEnd; k++) { dataOut[i][j] += dW[k] * dataZ[k][i][j]; } } } // Write variable varOutZs->set_cur(t, 0, 0); varOutZs->put(&(dataOut[0][0]), 1, nLat, nLon); } } // Extract total energy if (fExtractTotalEnergy) { Announce("Total Energy"); // Zonal velocity DataArray3D<double> dataU(nLev, nLat, nLon); NcVar * varU = ncdf_in.get_var("U"); varU->set_cur(t, 0, 0, 0); varU->get(&(dataU[0][0][0]), 1, nLev, nLat, nLon); // Meridional velocity DataArray3D<double> dataV(nLev, nLat, nLon); NcVar * varV = ncdf_in.get_var("V"); varV->set_cur(t, 0, 0, 0); varV->get(&(dataV[0][0][0]), 1, nLev, nLat, nLon); // Vertical velocity DataArray3D<double> dataW(nLev, nLat, nLon); NcVar * varW = ncdf_in.get_var("W"); varW->set_cur(t, 0, 0, 0); varW->get(&(dataW[0][0][0]), 1, nLev, nLat, nLon); // Calculate total energy double dTotalEnergy = 0.0; double dElementRefArea = dEarthRadius * dEarthRadius * M_PI / static_cast<double>(nLat) * 2.0 * M_PI / static_cast<double>(nLon); for (int k = 0; k < nLev; k++) { for (int i = 0; i < nLat; i++) { for (int j = 0; j < nLon; j++) { double dKineticEnergy = 0.5 * dataRho[k][i][j] * ( dataU[k][i][j] * dataU[k][i][j] + dataV[k][i][j] * dataV[k][i][j] + dataW[k][i][j] * dataW[k][i][j]); double dInternalEnergy = dataP[k][i][j] / (dGamma - 1.0); dTotalEnergy += (dKineticEnergy + dInternalEnergy) * std::cos(M_PI * dLat[i] / 180.0) * dElementRefArea * (dZtop - dZs[i][j]) / static_cast<double>(nLev); } } } // Put total energy into file varEnergy->set_cur(t); varEnergy->put(&dTotalEnergy, 1); } AnnounceEndBlock("Done"); } AnnounceEndBlock("Done"); } catch(Exception & e) { Announce(e.ToString().c_str()); } // Finalize MPI MPI_Finalize(); }