Пример #1
0
float StreamPeer::get_double() {

	uint8_t buf[8];
	get_data(buf, 8);

	if (big_endian) {
		uint64_t *p64 = (uint64_t *)buf;
		*p64 = BSWAP64(*p64);
	}

	return decode_double(buf);
}
int php_deserialize( rabbit * r, rawbuffer * buf, TValue * tv )
{
	if(!buf || !tv) {
		return -1;
	}
	setnilvalue(tv);

	int c = decode_read_byte( buf );

	switch( c ) {
		case PHP_NULL:
	//		kLOG(r, 0,"php decode nil\n");
			return decode_null( r, buf, tv );

		case PHP_INT:
	//		kLOG(r, 0,"php decode int\n");
			return decode_int( r, buf, tv );

		case PHP_DOUBLE:
	//		kLOG(r, 0,"php decode double\n");
			return decode_double(r, buf, tv);

		case PHP_STRING:
	//		kLOG(r, 0,"php decode string\n");
			return decode_string(r, buf, tv);

		case PHP_ARRAY:
	//		kLOG(r, 0,"php decode array\n");
			return decode_array(r, buf, tv);

		case PHP_BOOL:
			return decode_bool(r, buf, tv);

		default:
			kLOG(r, 0, "php decode unknow:%c\n",c);
			break;
	}

	return -1;
}
Пример #3
0
static gint
gpm_render (GnomePrintContext *dest, const guchar *data, gint pos, gint len, gboolean pageops)
{
	const guchar *end;

	data = data + pos;
	end = data + len;
	while (data < end){
		gint32 opcode, i;
		guchar *cval;
		gint32 ival;
		gdouble dval;
		ArtBpath *bpath;

		data = decode_int (data, &opcode);
		switch ((GnomeMetaType) opcode) {
		case GNOME_META_BEGINPAGE:
			data = gpm_decode_string (data, &cval);
			if (pageops)
				gnome_print_beginpage (dest, cval);
			g_free (cval);
			break;
		case GNOME_META_SHOWPAGE:
			if (pageops) gnome_print_showpage (dest);
			break;
		case GNOME_META_GSAVE:
			gnome_print_gsave (dest);
			break;
		case GNOME_META_GRESTORE:
			gnome_print_grestore (dest);
			break;
		case GNOME_META_CLIP:
			data = gpm_decode_bpath (data, &bpath);
			data = decode_int (data, &ival);
			gnome_print_clip_bpath_rule (dest, bpath, ival);
			g_free (bpath);
			break;
		case GNOME_META_FILL:
			data = gpm_decode_bpath (data, &bpath);
			data = decode_int (data, &ival);
			gnome_print_fill_bpath_rule (dest, bpath, ival);
			g_free (bpath);
			break;
		case GNOME_META_STROKE:
			data = gpm_decode_bpath (data, &bpath);
			gnome_print_stroke_bpath (dest, bpath);
			g_free (bpath);
			break;
		case GNOME_META_IMAGE: {
			gdouble affine[6];
			gint32 width, height, channels;
			guchar *buf;

			data = decode_double (data, &affine[0]);
			data = decode_double (data, &affine[1]);
			data = decode_double (data, &affine[2]);
			data = decode_double (data, &affine[3]);
			data = decode_double (data, &affine[4]);
			data = decode_double (data, &affine[5]);
			data = decode_int (data, &height);
			data = decode_int (data, &width);
			data = decode_int (data, &channels);
			buf = g_new (guchar, height * width * channels);
			memcpy (buf, data, height * width * channels);
			data += height * width * channels;
			gnome_print_image_transform (dest, affine, buf, width, height, channels * width, channels);
			g_free (buf);
			break;
		}
		case GNOME_META_GLYPHLIST: {
			GnomeGlyphList *gl;
			gdouble affine[6];
			gint32 len, code, ival, i;
			gdouble dval;

			data = decode_double (data, &affine[0]);
			data = decode_double (data, &affine[1]);
			data = decode_double (data, &affine[2]);
			data = decode_double (data, &affine[3]);
			data = decode_double (data, &affine[4]);
			data = decode_double (data, &affine[5]);
			gl = gnome_glyphlist_new ();
			data = decode_int (data, &len);
			if (len > 0) {
				gl->glyphs = g_new (int, len);
				gl->g_length = len;
				gl->g_size = len;
				for (i = 0; i < len; i++) {
					data = decode_int (data, &ival);
					gl->glyphs[i] = ival;
				}
			}
			data = decode_int (data, &len);
			if (len > 0) {
				gl->rules = g_new (GGLRule, len);
				gl->r_length = len;
				gl->r_size = len;
				for (i = 0; i < len; i++) {
					data = decode_int (data, &code);
					gl->rules[i].code = code;
					switch (code) {
					case GGL_POSITION:
					case GGL_ADVANCE:
					case GGL_COLOR:
						data = decode_int (data, &ival);
						gl->rules[i].value.ival = ival;
						break;
					case GGL_MOVETOX:
					case GGL_MOVETOY:
					case GGL_RMOVETOX:
					case GGL_RMOVETOY:
					case GGL_LETTERSPACE:
					case GGL_KERNING:
						data = decode_double (data, &dval);
						gl->rules[i].value.dval = dval;
						break;
					case GGL_FONT: {
						GnomeFont *font;
						guchar *name;
						data = decode_double (data, &dval);
						data = gpm_decode_string (data, &name);
						font = gnome_font_find (name, dval);
						if (font == NULL)
							g_warning ("Cannot find font: %s\n", name);
						g_free (name);
						gl->rules[i].value.font = font;
						break;
					}
					default:
						break;
					}
				}
			}
			gnome_print_glyphlist_transform (dest, affine, gl);
			gnome_glyphlist_unref (gl);
			break;
		}
		break;
		case GNOME_META_COLOR: {
			gdouble r, g, b, a;
			data = decode_double (data, &r);
			data = decode_double (data, &g);
			data = decode_double (data, &b);
			gnome_print_setrgbcolor (dest, r, g, b);
			data = decode_double (data, &a);
			gnome_print_setopacity (dest, a);
			break;
		}
		case GNOME_META_LINE:
			data = decode_double (data, &dval);
			gnome_print_setlinewidth (dest, dval);
			data = decode_double (data, &dval);
			gnome_print_setmiterlimit (dest, dval);
			data = decode_int (data, &ival);
			gnome_print_setlinejoin (dest, ival);
			data = decode_int (data, &ival);
			gnome_print_setlinecap (dest, ival);
			break;
		case GNOME_META_DASH: {
			int n;
			double *values, offset;

			data = decode_int (data, &n);
			values = g_new (double, n);
			for (i = 0; i < n; i++) {
				data = decode_double (data, &values [i]);
			}
			data = decode_double (data, &offset);
			gnome_print_setdash (dest, n, values, offset);
			g_free (values);
			break;
		}
		default:
			g_warning ("Serious print meta data corruption %d", opcode);
			break;
		}
	}
Пример #4
0
Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int *r_len) {

	const uint8_t *buf = p_buffer;
	int len = p_len;

	if (len < 4) {

		ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
	}

	uint32_t type = decode_uint32(buf);

	ERR_FAIL_COND_V((type & ENCODE_MASK) >= Variant::VARIANT_MAX, ERR_INVALID_DATA);

	buf += 4;
	len -= 4;
	if (r_len)
		*r_len = 4;

	switch (type & ENCODE_MASK) {

		case Variant::NIL: {

			r_variant = Variant();
		} break;
		case Variant::BOOL: {

			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
			bool val = decode_uint32(buf);
			r_variant = val;
			if (r_len)
				(*r_len) += 4;
		} break;
		case Variant::INT: {

			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
			if (type & ENCODE_FLAG_64) {
				int64_t val = decode_uint64(buf);
				r_variant = val;
				if (r_len)
					(*r_len) += 8;

			} else {
				int32_t val = decode_uint32(buf);
				r_variant = val;
				if (r_len)
					(*r_len) += 4;
			}

		} break;
		case Variant::REAL: {

			ERR_FAIL_COND_V(len < (int)4, ERR_INVALID_DATA);

			if (type & ENCODE_FLAG_64) {
				double val = decode_double(buf);
				r_variant = val;
				if (r_len)
					(*r_len) += 8;
			} else {
				float val = decode_float(buf);
				r_variant = val;
				if (r_len)
					(*r_len) += 4;
			}

		} break;
		case Variant::STRING: {

			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
			uint32_t strlen = decode_uint32(buf);
			buf += 4;
			len -= 4;
			ERR_FAIL_COND_V((int)strlen > len, ERR_INVALID_DATA);

			String str;
			str.parse_utf8((const char *)buf, strlen);
			r_variant = str;

			if (r_len) {
				if (strlen % 4)
					(*r_len) += 4 - strlen % 4;
				(*r_len) += 4 + strlen;
			}

		} break;
		// math types

		case Variant::VECTOR2: {

			ERR_FAIL_COND_V(len < (int)4 * 2, ERR_INVALID_DATA);
			Vector2 val;
			val.x = decode_float(&buf[0]);
			val.y = decode_float(&buf[4]);
			r_variant = val;

			if (r_len)
				(*r_len) += 4 * 2;

		} break; // 5
		case Variant::RECT2: {

			ERR_FAIL_COND_V(len < (int)4 * 4, ERR_INVALID_DATA);
			Rect2 val;
			val.position.x = decode_float(&buf[0]);
			val.position.y = decode_float(&buf[4]);
			val.size.x = decode_float(&buf[8]);
			val.size.y = decode_float(&buf[12]);
			r_variant = val;

			if (r_len)
				(*r_len) += 4 * 4;

		} break;
		case Variant::VECTOR3: {

			ERR_FAIL_COND_V(len < (int)4 * 3, ERR_INVALID_DATA);
			Vector3 val;
			val.x = decode_float(&buf[0]);
			val.y = decode_float(&buf[4]);
			val.z = decode_float(&buf[8]);
			r_variant = val;

			if (r_len)
				(*r_len) += 4 * 3;

		} break;
		case Variant::TRANSFORM2D: {

			ERR_FAIL_COND_V(len < (int)4 * 6, ERR_INVALID_DATA);
			Transform2D val;
			for (int i = 0; i < 3; i++) {
				for (int j = 0; j < 2; j++) {

					val.elements[i][j] = decode_float(&buf[(i * 2 + j) * 4]);
				}
			}

			r_variant = val;

			if (r_len)
				(*r_len) += 4 * 6;

		} break;
		case Variant::PLANE: {

			ERR_FAIL_COND_V(len < (int)4 * 4, ERR_INVALID_DATA);
			Plane val;
			val.normal.x = decode_float(&buf[0]);
			val.normal.y = decode_float(&buf[4]);
			val.normal.z = decode_float(&buf[8]);
			val.d = decode_float(&buf[12]);
			r_variant = val;

			if (r_len)
				(*r_len) += 4 * 4;

		} break;
		case Variant::QUAT: {

			ERR_FAIL_COND_V(len < (int)4 * 4, ERR_INVALID_DATA);
			Quat val;
			val.x = decode_float(&buf[0]);
			val.y = decode_float(&buf[4]);
			val.z = decode_float(&buf[8]);
			val.w = decode_float(&buf[12]);
			r_variant = val;

			if (r_len)
				(*r_len) += 4 * 4;

		} break;
		case Variant::RECT3: {

			ERR_FAIL_COND_V(len < (int)4 * 6, ERR_INVALID_DATA);
			Rect3 val;
			val.position.x = decode_float(&buf[0]);
			val.position.y = decode_float(&buf[4]);
			val.position.z = decode_float(&buf[8]);
			val.size.x = decode_float(&buf[12]);
			val.size.y = decode_float(&buf[16]);
			val.size.z = decode_float(&buf[20]);
			r_variant = val;

			if (r_len)
				(*r_len) += 4 * 6;

		} break;
		case Variant::BASIS: {

			ERR_FAIL_COND_V(len < (int)4 * 9, ERR_INVALID_DATA);
			Basis val;
			for (int i = 0; i < 3; i++) {
				for (int j = 0; j < 3; j++) {

					val.elements[i][j] = decode_float(&buf[(i * 3 + j) * 4]);
				}
			}

			r_variant = val;

			if (r_len)
				(*r_len) += 4 * 9;

		} break;
		case Variant::TRANSFORM: {

			ERR_FAIL_COND_V(len < (int)4 * 12, ERR_INVALID_DATA);
			Transform val;
			for (int i = 0; i < 3; i++) {
				for (int j = 0; j < 3; j++) {

					val.basis.elements[i][j] = decode_float(&buf[(i * 3 + j) * 4]);
				}
			}
			val.origin[0] = decode_float(&buf[36]);
			val.origin[1] = decode_float(&buf[40]);
			val.origin[2] = decode_float(&buf[44]);

			r_variant = val;

			if (r_len)
				(*r_len) += 4 * 12;

		} break;

		// misc types
		case Variant::COLOR: {

			ERR_FAIL_COND_V(len < (int)4 * 4, ERR_INVALID_DATA);
			Color val;
			val.r = decode_float(&buf[0]);
			val.g = decode_float(&buf[4]);
			val.b = decode_float(&buf[8]);
			val.a = decode_float(&buf[12]);
			r_variant = val;

			if (r_len)
				(*r_len) += 4 * 4;

		} break;
		case Variant::NODE_PATH: {

			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
			uint32_t strlen = decode_uint32(buf);

			if (strlen & 0x80000000) {
				//new format
				ERR_FAIL_COND_V(len < 12, ERR_INVALID_DATA);
				Vector<StringName> names;
				Vector<StringName> subnames;
				StringName prop;

				uint32_t namecount = strlen &= 0x7FFFFFFF;
				uint32_t subnamecount = decode_uint32(buf + 4);
				uint32_t flags = decode_uint32(buf + 8);

				len -= 12;
				buf += 12;

				int total = namecount + subnamecount;
				if (flags & 2)
					total++;

				if (r_len)
					(*r_len) += 12;

				for (int i = 0; i < total; i++) {

					ERR_FAIL_COND_V((int)len < 4, ERR_INVALID_DATA);
					strlen = decode_uint32(buf);

					int pad = 0;

					if (strlen % 4)
						pad += 4 - strlen % 4;

					buf += 4;
					len -= 4;
					ERR_FAIL_COND_V((int)strlen + pad > len, ERR_INVALID_DATA);

					String str;
					str.parse_utf8((const char *)buf, strlen);

					if (i < namecount)
						names.push_back(str);
					else if (i < namecount + subnamecount)
						subnames.push_back(str);
					else
						prop = str;

					buf += strlen + pad;
					len -= strlen + pad;

					if (r_len)
						(*r_len) += 4 + strlen + pad;
				}

				r_variant = NodePath(names, subnames, flags & 1, prop);

			} else {
				//old format, just a string

				buf += 4;
				len -= 4;
				ERR_FAIL_COND_V((int)strlen > len, ERR_INVALID_DATA);

				String str;
				str.parse_utf8((const char *)buf, strlen);

				r_variant = NodePath(str);

				if (r_len)
					(*r_len) += 4 + strlen;
			}

		} break;
		/*case Variant::RESOURCE: {

			ERR_EXPLAIN("Can't marshallize resources");
			ERR_FAIL_V(ERR_INVALID_DATA); //no, i'm sorry, no go
		} break;*/
		case Variant::_RID: {

			r_variant = RID();
		} break;
		case Variant::OBJECT: {

			r_variant = (Object *)NULL;
		} break;
		case Variant::DICTIONARY: {

			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
			uint32_t count = decode_uint32(buf);
			//  bool shared = count&0x80000000;
			count &= 0x7FFFFFFF;

			buf += 4;
			len -= 4;

			if (r_len) {
				(*r_len) += 4;
			}

			Dictionary d;

			for (uint32_t i = 0; i < count; i++) {

				Variant key, value;

				int used;
				Error err = decode_variant(key, buf, len, &used);
				ERR_FAIL_COND_V(err, err);

				buf += used;
				len -= used;
				if (r_len) {
					(*r_len) += used;
				}

				err = decode_variant(value, buf, len, &used);
				ERR_FAIL_COND_V(err, err);

				buf += used;
				len -= used;
				if (r_len) {
					(*r_len) += used;
				}

				d[key] = value;
			}

			r_variant = d;

		} break;
		case Variant::ARRAY: {

			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
			uint32_t count = decode_uint32(buf);
			//  bool shared = count&0x80000000;
			count &= 0x7FFFFFFF;

			buf += 4;
			len -= 4;

			if (r_len) {
				(*r_len) += 4;
			}

			Array varr;

			for (uint32_t i = 0; i < count; i++) {

				int used = 0;
				Variant v;
				Error err = decode_variant(v, buf, len, &used);
				ERR_FAIL_COND_V(err, err);
				buf += used;
				len -= used;
				varr.push_back(v);
				if (r_len) {
					(*r_len) += used;
				}
			}

			r_variant = varr;

		} break;

		// arrays
		case Variant::POOL_BYTE_ARRAY: {

			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
			uint32_t count = decode_uint32(buf);
			buf += 4;
			len -= 4;
			ERR_FAIL_COND_V((int)count > len, ERR_INVALID_DATA);

			PoolVector<uint8_t> data;

			if (count) {
				data.resize(count);
				PoolVector<uint8_t>::Write w = data.write();
				for (int i = 0; i < count; i++) {

					w[i] = buf[i];
				}

				w = PoolVector<uint8_t>::Write();
			}

			r_variant = data;

			if (r_len) {
				if (count % 4)
					(*r_len) += 4 - count % 4;
				(*r_len) += 4 + count;
			}

		} break;
		case Variant::POOL_INT_ARRAY: {

			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
			uint32_t count = decode_uint32(buf);
			buf += 4;
			len -= 4;
			ERR_FAIL_COND_V((int)count * 4 > len, ERR_INVALID_DATA);

			PoolVector<int> data;

			if (count) {
				//const int*rbuf=(const int*)buf;
				data.resize(count);
				PoolVector<int>::Write w = data.write();
				for (int i = 0; i < count; i++) {

					w[i] = decode_uint32(&buf[i * 4]);
				}

				w = PoolVector<int>::Write();
			}
			r_variant = Variant(data);
			if (r_len) {
				(*r_len) += 4 + count * sizeof(int);
			}

		} break;
		case Variant::POOL_REAL_ARRAY: {

			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
			uint32_t count = decode_uint32(buf);
			buf += 4;
			len -= 4;
			ERR_FAIL_COND_V((int)count * 4 > len, ERR_INVALID_DATA);

			PoolVector<float> data;

			if (count) {
				//const float*rbuf=(const float*)buf;
				data.resize(count);
				PoolVector<float>::Write w = data.write();
				for (int i = 0; i < count; i++) {

					w[i] = decode_float(&buf[i * 4]);
				}

				w = PoolVector<float>::Write();
			}
			r_variant = data;

			if (r_len) {
				(*r_len) += 4 + count * sizeof(float);
			}

		} break;
		case Variant::POOL_STRING_ARRAY: {

			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
			uint32_t count = decode_uint32(buf);

			PoolVector<String> strings;
			buf += 4;
			len -= 4;

			if (r_len)
				(*r_len) += 4;
			//printf("string count: %i\n",count);

			for (int i = 0; i < (int)count; i++) {

				ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
				uint32_t strlen = decode_uint32(buf);

				buf += 4;
				len -= 4;
				ERR_FAIL_COND_V((int)strlen > len, ERR_INVALID_DATA);

				//printf("loaded string: %s\n",(const char*)buf);
				String str;
				str.parse_utf8((const char *)buf, strlen);

				strings.push_back(str);

				buf += strlen;
				len -= strlen;

				if (r_len)
					(*r_len) += 4 + strlen;

				if (strlen % 4) {
					int pad = 4 - (strlen % 4);
					buf += pad;
					len -= pad;
					if (r_len) {
						(*r_len) += pad;
					}
				}
			}

			r_variant = strings;

		} break;
		case Variant::POOL_VECTOR2_ARRAY: {

			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
			uint32_t count = decode_uint32(buf);
			buf += 4;
			len -= 4;

			ERR_FAIL_COND_V((int)count * 4 * 2 > len, ERR_INVALID_DATA);
			PoolVector<Vector2> varray;

			if (r_len) {
				(*r_len) += 4;
			}

			if (count) {
				varray.resize(count);
				PoolVector<Vector2>::Write w = varray.write();

				for (int i = 0; i < (int)count; i++) {

					w[i].x = decode_float(buf + i * 4 * 2 + 4 * 0);
					w[i].y = decode_float(buf + i * 4 * 2 + 4 * 1);
				}

				int adv = 4 * 2 * count;

				if (r_len)
					(*r_len) += adv;
				len -= adv;
				buf += adv;
			}

			r_variant = varray;

		} break;
		case Variant::POOL_VECTOR3_ARRAY: {

			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
			uint32_t count = decode_uint32(buf);
			buf += 4;
			len -= 4;

			ERR_FAIL_COND_V((int)count * 4 * 3 > len, ERR_INVALID_DATA);
			PoolVector<Vector3> varray;

			if (r_len) {
				(*r_len) += 4;
			}

			if (count) {
				varray.resize(count);
				PoolVector<Vector3>::Write w = varray.write();

				for (int i = 0; i < (int)count; i++) {

					w[i].x = decode_float(buf + i * 4 * 3 + 4 * 0);
					w[i].y = decode_float(buf + i * 4 * 3 + 4 * 1);
					w[i].z = decode_float(buf + i * 4 * 3 + 4 * 2);
				}

				int adv = 4 * 3 * count;

				if (r_len)
					(*r_len) += adv;
				len -= adv;
				buf += adv;
			}

			r_variant = varray;

		} break;
		case Variant::POOL_COLOR_ARRAY: {

			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
			uint32_t count = decode_uint32(buf);
			buf += 4;
			len -= 4;

			ERR_FAIL_COND_V((int)count * 4 * 4 > len, ERR_INVALID_DATA);
			PoolVector<Color> carray;

			if (r_len) {
				(*r_len) += 4;
			}

			if (count) {
				carray.resize(count);
				PoolVector<Color>::Write w = carray.write();

				for (int i = 0; i < (int)count; i++) {

					w[i].r = decode_float(buf + i * 4 * 4 + 4 * 0);
					w[i].g = decode_float(buf + i * 4 * 4 + 4 * 1);
					w[i].b = decode_float(buf + i * 4 * 4 + 4 * 2);
					w[i].a = decode_float(buf + i * 4 * 4 + 4 * 3);
				}

				int adv = 4 * 4 * count;

				if (r_len)
					(*r_len) += adv;
				len -= adv;
				buf += adv;
			}

			r_variant = carray;

		} break;
		default: { ERR_FAIL_V(ERR_BUG); }
	}

	return OK;
}
Пример #5
0
void decode_cell(pTHX_ unsigned char *input, STRLEN len, STRLEN *pos, struct cc_type *type, SV *output)
{
    unsigned char *bytes;
    STRLEN bytes_len;

    if (unpack_bytes(aTHX_ input, len, pos, &bytes, &bytes_len) != 0) {
        sv_setsv(output, &PL_sv_undef);
        return;
    }

    switch (type->type_id) {
        case CC_TYPE_ASCII:
        case CC_TYPE_CUSTOM:
        case CC_TYPE_BLOB:
            decode_blob(aTHX_ bytes, bytes_len, type, output);
            break;

        case CC_TYPE_BOOLEAN:
            decode_boolean(aTHX_ bytes, bytes_len, type, output);
            break;

        case CC_TYPE_VARCHAR:
        case CC_TYPE_TEXT:
            decode_utf8(aTHX_ bytes, bytes_len, type, output);
            break;

        case CC_TYPE_INET:
            decode_inet(aTHX_ bytes, bytes_len, type, output);
            break;

        case CC_TYPE_SET:
        case CC_TYPE_LIST:
            decode_list(aTHX_ bytes, bytes_len, type, output);
            break;

        case CC_TYPE_UUID:
        case CC_TYPE_TIMEUUID:
            decode_uuid(aTHX_ bytes, bytes_len, type, output);
            break;

        case CC_TYPE_FLOAT:
            decode_float(aTHX_ bytes, bytes_len, type, output);
            break;

        case CC_TYPE_DOUBLE:
            decode_double(aTHX_ bytes, bytes_len, type, output);
            break;

        case CC_TYPE_DECIMAL:
            decode_decimal(aTHX_ bytes, bytes_len, type, output);
            break;

        case CC_TYPE_VARINT:
        case CC_TYPE_BIGINT:
        case CC_TYPE_COUNTER:
        case CC_TYPE_TIMESTAMP:
        case CC_TYPE_SMALLINT:
        case CC_TYPE_TINYINT:
        case CC_TYPE_INT:
            decode_varint(aTHX_ bytes, bytes_len, type, output);
            break;

        case CC_TYPE_DATE:
            decode_date(aTHX_ bytes, bytes_len, type, output);
            break;

        case CC_TYPE_TIME:
            decode_time(aTHX_ bytes, bytes_len, type, output);
            break;

        case CC_TYPE_MAP:
            decode_map(aTHX_ bytes, bytes_len, type, output);
            break;

        case CC_TYPE_UDT:
            decode_udt(aTHX_ bytes, bytes_len, type, output);
            break;

        case CC_TYPE_TUPLE:
            decode_tuple(aTHX_ bytes, bytes_len, type, output);
            break;

        default:
            sv_setsv(output, &PL_sv_undef);
            warn("Decoder doesn't yet understand type %d, returning undef instead", type->type_id);
            break;
    }
}