void __mp_dbl(const mp_no *x, double *y, int p) {
#if 0
  int i,k;
  double a,c,u,v,z[5];
#endif

  if (X[0] == ZERO)  {*y = ZERO;  return; }

  if      (EX> -42)                 norm(x,y,p);
  else if (EX==-42 && X[1]>=TWO10)  norm(x,y,p);
  else                              denorm(x,y,p);
}
Пример #2
0
/* Convert multiple precision number *X into double precision number *Y.  The
   result is correctly rounded to the nearest/even.  */
void
__mp_dbl (const mp_no *x, double *y, int p)
{
  if (X[0] == 0)
    {
      *y = 0;
      return;
    }

  if (__glibc_likely (EX > -42 || (EX == -42 && X[1] >= TWO10)))
    norm (x, y, p);
  else
    denorm (x, y, p);
}
Пример #3
0
int main(void)
{
	int n = 9 /* 9 */;			/* Problem vector size */
	double x[9];		/* Function input values */
	double fvec[9];		/* Function output values */
	double ss;			/* Search area */
	int info, j;
	double fnorm;
	int nprint = 0;		/* Itteration debugging print = off */
	double tol;

	error_program = "dnsqtest";	/* Set global error reporting string */

	/*	 Driver for dnsqe example. */
	/* Not supplying Jacobian, use approximation */

	/*	 The following starting values provide a rough solution. */
	for (j = 1; j <= 9; ++j) {
		x[j - 1] = -1.f;
	}
	ss = 0.1;

	nprint = 0;

	/*	 Set tol to the square root of the machine precision. */
	/*	 Unless high precision solutions are required, */
	/*	 this is the recommended setting. */

	tol = sqrt(M_DIVER);

	info = dnsqe(NULL, fcn, NULL, n, x, ss, fvec, tol, tol, 0, nprint);
	fnorm = denorm(n, fvec);
	fprintf(stdout,"Final L2 norm of the residuals = %e\n",fnorm);
	fprintf(stdout,"Exit return value = %d (1 = sucess)\n",info);
	fprintf(stdout,"Final approximate solution:\n");
	for (j = 0; j < n; j++) {
		fprintf(stdout,"x[%d] = %f, expect %f\n",j,x[j], expect[j]);
	}

	return 0;
} /* main() */