void TranslationWarperBase<P>::warpBackward(InputArray src, InputArray K, InputArray R, InputArray t, int interp_mode, int border_mode, Size dst_size, OutputArray dst) { projector_.setCameraParams(K, R, t); Point src_tl, src_br; detectResultRoi(dst_size, src_tl, src_br); Size size = src.size(); CV_Assert(src_br.x - src_tl.x + 1 == size.width && src_br.y - src_tl.y + 1 == size.height); Mat xmap(dst_size, CV_32F); Mat ymap(dst_size, CV_32F); float u, v; for (int y = 0; y < dst_size.height; ++y) { for (int x = 0; x < dst_size.width; ++x) { projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v); xmap.at<float>(y, x) = u - src_tl.x; ymap.at<float>(y, x) = v - src_tl.y; } } dst.create(dst_size, src.type()); remap(src, dst, xmap, ymap, interp_mode, border_mode); }
Rect SphericalWarperOcl::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap) { projector_.setCameraParams(K, R); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); if (ocl::useOpenCL()) { ocl::Kernel k("buildWarpSphericalMaps", ocl::stitching::warpers_oclsrc); if (!k.empty()) { Size dsize(dst_br.x - dst_tl.x + 1, dst_br.y - dst_tl.y + 1); xmap.create(dsize, CV_32FC1); ymap.create(dsize, CV_32FC1); Mat r_kinv(1, 9, CV_32FC1, projector_.r_kinv); UMat uxmap = xmap.getUMat(), uymap = ymap.getUMat(), ur_kinv = r_kinv.getUMat(ACCESS_READ); k.args(ocl::KernelArg::WriteOnlyNoSize(uxmap), ocl::KernelArg::WriteOnly(uymap), ocl::KernelArg::PtrReadOnly(ur_kinv), dst_tl.x, dst_tl.y, projector_.scale); size_t globalsize[2] = { dsize.width, dsize.height }; if (k.run(2, globalsize, NULL, true)) return Rect(dst_tl, dst_br); } } return SphericalWarper::buildMaps(src_size, K, R, xmap, ymap); }
Rect CylindricalWarper::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap) { if (ocl::useOpenCL()) { ocl::Kernel k("buildWarpCylindricalMaps", ocl::stitching::warpers_oclsrc); if (!k.empty()) { int rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; projector_.setCameraParams(K, R); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); Size dsize(dst_br.x - dst_tl.x + 1, dst_br.y - dst_tl.y + 1); xmap.create(dsize, CV_32FC1); ymap.create(dsize, CV_32FC1); Mat k_rinv(1, 9, CV_32FC1, projector_.k_rinv); UMat uxmap = xmap.getUMat(), uymap = ymap.getUMat(), uk_rinv = k_rinv.getUMat(ACCESS_READ); k.args(ocl::KernelArg::WriteOnlyNoSize(uxmap), ocl::KernelArg::WriteOnly(uymap), ocl::KernelArg::PtrReadOnly(uk_rinv), dst_tl.x, dst_tl.y, projector_.scale, rowsPerWI); size_t globalsize[2] = { dsize.width, (dsize.height + rowsPerWI - 1) / rowsPerWI }; if (k.run(2, globalsize, NULL, true)) { CV_IMPL_ADD(CV_IMPL_OCL); return Rect(dst_tl, dst_br); } } } return RotationWarperBase<CylindricalProjector>::buildMaps(src_size, K, R, xmap, ymap); }
void RotationWarperBase<P>::warpBackward(const Mat &src, const Mat &K, const Mat &R, int interp_mode, int border_mode, Size dst_size, Mat &dst) { projector_.setCameraParams(K, R); Point src_tl, src_br; detectResultRoi(dst_size, src_tl, src_br); CV_Assert(src_br.x - src_tl.x + 1 == src.cols && src_br.y - src_tl.y + 1 == src.rows); Mat xmap(dst_size, CV_32F); Mat ymap(dst_size, CV_32F); float u, v; for (int y = 0; y < dst_size.height; ++y) { for (int x = 0; x < dst_size.width; ++x) { projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v); xmap.at<float>(y, x) = u - src_tl.x; ymap.at<float>(y, x) = v - src_tl.y; } } dst.create(dst_size, src.type()); remap(src, dst, xmap, ymap, interp_mode, border_mode); }
Rect TranslationWarperBase<P>::warpRoi(Size src_size, InputArray K, InputArray R, InputArray t) { projector_.setCameraParams(K, R, t); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)); }
Rect PlaneWarper::warpRoi(Size src_size, InputArray K, InputArray R, InputArray T) { projector_.setCameraParams(K, R, T); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)); }
Rect PlaneWarper::warpRoi(Size src_size, const Mat &K, const Mat &R, const Mat &T) { projector_.setCameraParams(K, R, T); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)); }
Rect RotationWarperBase<P>::warpRoi(Size src_size, const Mat &K, const Mat &R) { projector_.setCameraParams(K, R); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)); }
Rect CylindricalWarperGpu::buildMaps(Size src_size, InputArray K, InputArray R, cuda::GpuMat & xmap, cuda::GpuMat & ymap) { projector_.setCameraParams(K, R); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); cuda::buildWarpCylindricalMaps(src_size, Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)), K, R, projector_.scale, xmap, ymap); return Rect(dst_tl, dst_br); }
Rect SphericalWarperGpu::buildMaps(Size src_size, const Mat &K, const Mat &R, gpu::GpuMat &xmap, gpu::GpuMat &ymap) { projector_.setCameraParams(K, R); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); gpu::buildWarpSphericalMaps(src_size, Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)), K, R, projector_.scale, xmap, ymap); return Rect(dst_tl, dst_br); }
Rect PlaneWarper::buildMaps(Size src_size, InputArray K, InputArray R, InputArray T, OutputArray _xmap, OutputArray _ymap) { projector_.setCameraParams(K, R, T); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); Size dsize(dst_br.x - dst_tl.x + 1, dst_br.y - dst_tl.y + 1); _xmap.create(dsize, CV_32FC1); _ymap.create(dsize, CV_32FC1); if (ocl::useOpenCL()) { ocl::Kernel k("buildWarpPlaneMaps", ocl::stitching::warpers_oclsrc); if (!k.empty()) { int rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; Mat k_rinv(1, 9, CV_32FC1, projector_.k_rinv), t(1, 3, CV_32FC1, projector_.t); UMat uxmap = _xmap.getUMat(), uymap = _ymap.getUMat(), uk_rinv = k_rinv.getUMat(ACCESS_READ), ut = t.getUMat(ACCESS_READ); k.args(ocl::KernelArg::WriteOnlyNoSize(uxmap), ocl::KernelArg::WriteOnly(uymap), ocl::KernelArg::PtrReadOnly(uk_rinv), ocl::KernelArg::PtrReadOnly(ut), dst_tl.x, dst_tl.y, projector_.scale, rowsPerWI); size_t globalsize[2] = { dsize.width, (dsize.height + rowsPerWI - 1) / rowsPerWI }; if (k.run(2, globalsize, NULL, true)) { CV_IMPL_ADD(CV_IMPL_OCL); return Rect(dst_tl, dst_br); } } } Mat xmap = _xmap.getMat(), ymap = _ymap.getMat(); float x, y; for (int v = dst_tl.y; v <= dst_br.y; ++v) { for (int u = dst_tl.x; u <= dst_br.x; ++u) { projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y); xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x; ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y; } } return Rect(dst_tl, dst_br); }
Rect PlaneWarper::buildMaps(Size src_size, const Mat &K, const Mat &R, const Mat &T, Mat &xmap, Mat &ymap) { projector_.setCameraParams(K, R, T); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); xmap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F); ymap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F); float x, y; for (int v = dst_tl.y; v <= dst_br.y; ++v) { for (int u = dst_tl.x; u <= dst_br.x; ++u) { projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y); xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x; ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y; } } return Rect(dst_tl, dst_br); }
Rect TranslationWarperBase<P>::buildMaps(Size src_size, InputArray K, InputArray R, InputArray t, OutputArray _xmap, OutputArray _ymap) { projector_.setCameraParams(K, R, t); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); _xmap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F); _ymap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F); Mat xmap = _xmap.getMat(), ymap = _ymap.getMat(); float x, y; for (int v = dst_tl.y; v <= dst_br.y; ++v) { for (int u = dst_tl.x; u <= dst_br.x; ++u) { projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y); xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x; ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y; } } return Rect(dst_tl, dst_br); }