size_t generateVPLs(const Scene *scene, Random *random, size_t offset, size_t count, int maxDepth, bool prune, std::deque<VPL> &vpls) { if (maxDepth <= 1) return 0; static Sampler *sampler = NULL; if (!sampler) { Properties props("halton"); props.setInteger("scramble", 0); sampler = static_cast<Sampler *> (PluginManager::getInstance()-> createObject(MTS_CLASS(Sampler), props)); sampler->configure(); } const Sensor *sensor = scene->getSensor(); Float time = sensor->getShutterOpen() + 0.5f * sensor->getShutterOpenTime(); const Frame stdFrame(Vector(1,0,0), Vector(0,1,0), Vector(0,0,1)); while (vpls.size() < count) { sampler->setSampleIndex(++offset); PositionSamplingRecord pRec(time); DirectionSamplingRecord dRec; Spectrum weight = scene->sampleEmitterPosition(pRec, sampler->next2D()); size_t start = vpls.size(); /* Sample an emitted particle */ const Emitter *emitter = static_cast<const Emitter *>(pRec.object); if (!emitter->isEnvironmentEmitter() && emitter->needsDirectionSample()) { VPL lumVPL(EPointEmitterVPL, weight); lumVPL.its.p = pRec.p; lumVPL.its.shFrame = pRec.n.isZero() ? stdFrame : Frame(pRec.n); lumVPL.emitter = emitter; appendVPL(scene, random, lumVPL, prune, vpls); weight *= emitter->sampleDirection(dRec, pRec, sampler->next2D()); } else { /* Hack to get the proper information for directional VPLs */ DirectSamplingRecord diRec( scene->getKDTree()->getAABB().getCenter(), pRec.time); Spectrum weight2 = emitter->sampleDirect(diRec, sampler->next2D()) / scene->pdfEmitterDiscrete(emitter); if (weight2.isZero()) continue; VPL lumVPL(EDirectionalEmitterVPL, weight2); lumVPL.its.p = Point(0.0); lumVPL.its.shFrame = Frame(-diRec.d); lumVPL.emitter = emitter; appendVPL(scene, random, lumVPL, false, vpls); dRec.d = -diRec.d; Point2 offset = Warp::squareToUniformDiskConcentric(sampler->next2D()); Vector perpOffset = Frame(diRec.d).toWorld(Vector(offset.x, offset.y, 0)); BSphere geoBSphere = scene->getKDTree()->getAABB().getBSphere(); pRec.p = geoBSphere.center + (perpOffset - dRec.d) * geoBSphere.radius; weight = weight2 * M_PI * geoBSphere.radius * geoBSphere.radius; } int depth = 2; Ray ray(pRec.p, dRec.d, time); Intersection its; while (!weight.isZero() && (depth < maxDepth || maxDepth == -1)) { if (!scene->rayIntersect(ray, its)) break; const BSDF *bsdf = its.getBSDF(); BSDFSamplingRecord bRec(its, sampler, EImportance); Spectrum bsdfVal = bsdf->sample(bRec, sampler->next2D()); if (bsdfVal.isZero()) break; /* Assuming that BSDF importance sampling is perfect, the following should equal the maximum albedo over all spectral samples */ Float approxAlbedo = std::min((Float) 0.95f, bsdfVal.max()); if (sampler->next1D() > approxAlbedo) break; else weight /= approxAlbedo; VPL vpl(ESurfaceVPL, weight); vpl.its = its; if (BSDF::getMeasure(bRec.sampledType) == ESolidAngle) appendVPL(scene, random, vpl, prune, vpls); weight *= bsdfVal; Vector wi = -ray.d, wo = its.toWorld(bRec.wo); ray = Ray(its.p, wo, 0.0f); /* Prevent light leaks due to the use of shading normals -- [Veach, p. 158] */ Float wiDotGeoN = dot(its.geoFrame.n, wi), woDotGeoN = dot(its.geoFrame.n, wo); if (wiDotGeoN * Frame::cosTheta(bRec.wi) <= 0 || woDotGeoN * Frame::cosTheta(bRec.wo) <= 0) break; /* Disabled for now -- this increases VPL weights and accuracy is not really a big requirement */ #if 0 /* Adjoint BSDF for shading normals -- [Veach, p. 155] */ weight *= std::abs( (Frame::cosTheta(bRec.wi) * woDotGeoN)/ (Frame::cosTheta(bRec.wo) * wiDotGeoN)); #endif ++depth; } size_t end = vpls.size(); for (size_t i=start; i<end; ++i) vpls[i].emitterScale = 1.0f / (end - start); } return offset; }
void MUONTriggerEfficiency(const char* filenameSim="galice_sim.root", const char* filenameRec="galice.root", Bool_t readFromRP = 0) { // Set default CDB storage AliCDBManager* man = AliCDBManager::Instance(); man->SetDefaultStorage("local://$ALICE_ROOT/OCDB"); man->SetRun(0); // output file AliMUONMCDataInterface diSim(filenameSim); AliMUONDataInterface diRec(filenameRec); if (!diSim.IsValid()) { cerr << "Cannot access " << filenameSim << endl; return; } if (!diRec.IsValid()) { cerr << "Cannot access " << filenameRec << endl; return; } FILE* fdat = fopen("MUONTriggerEfficiency.out","w"); if (!fdat) { cerr << "Cannot create output file" << endl; return; } Int_t coincmuon,muonlpt,muonhpt; Int_t CoincMuPlus,CoincMuMinus; coincmuon=0; muonlpt=0; muonhpt=0; Int_t nevents = diSim.NumberOfEvents(); for (Int_t ievent=0; ievent<nevents; ++ievent) { CoincMuPlus=0; CoincMuMinus=0; if (ievent%1000==0) printf("\t Event = %d\n",ievent); // Hits Int_t NbHits[2][4]; for (Int_t j=0; j<2; j++) { for (Int_t jj=0; jj<4; jj++) { NbHits[j][jj]=0; } } Int_t ntracks = (Int_t) diSim.NumberOfTracks(ievent); for ( Int_t itrack=0; itrack<ntracks; ++itrack ) { AliMUONVHitStore* hitStore = diSim.HitStore(ievent,itrack); AliMUONHit* mHit; TIter next(hitStore->CreateIterator()); while ( ( mHit = static_cast<AliMUONHit*>(next()) ) ) { Int_t Nch = mHit->Chamber(); Int_t hittrack = mHit->Track(); Float_t IdPart = mHit->Particle(); for (Int_t j=0;j<4;j++) { Int_t kch=11+j; if (hittrack==1 || hittrack==2) { if (Nch==kch && IdPart==-13 && NbHits[0][j]==0) NbHits[0][j]++; if (Nch==kch && IdPart==13 && NbHits[1][j]==0) NbHits[1][j]++; } } } } // end track loop // 3/4 coincidence Int_t SumNbHits=NbHits[0][0]+NbHits[0][1]+NbHits[0][2]+NbHits[0][3]; if (SumNbHits==3 || SumNbHits==4) CoincMuPlus=1; SumNbHits=NbHits[1][0]+NbHits[1][1]+NbHits[1][2]+NbHits[1][3]; if (SumNbHits==3 || SumNbHits==4) CoincMuMinus=1; if (CoincMuPlus==1 && CoincMuMinus==1) coincmuon++; TString tree("D"); if ( readFromRP ) tree = "R"; AliMUONVTriggerStore* triggerStore = diRec.TriggerStore(ievent,tree.Data()); AliMUONGlobalTrigger* gloTrg = triggerStore->Global(); if (gloTrg->PairUnlikeLpt()>=1) muonlpt++; if (gloTrg->PairUnlikeHpt()>=1) muonhpt++; } // end loop on event // calculate efficiency with as a ref. at least 3/4 planes fired Float_t efficiencylpt,efficiencyhpt; Double_t coincmu,lptmu,hptmu; Float_t error; coincmu=Double_t(coincmuon); lptmu=Double_t(muonlpt); hptmu=Double_t(muonhpt); // output fprintf(fdat,"\n"); fprintf(fdat," Number of events = %d \n",nevents); fprintf(fdat," Number of events with 3/4 coinc = %d \n",coincmuon); fprintf(fdat," Nomber of dimuons with 3/4 coinc Lpt cut = %d \n",muonlpt); fprintf(fdat," Number of dimuons with 3/4 coinc Hpt cut = %d \n",muonhpt); fprintf(fdat,"\n"); efficiencylpt=lptmu/coincmu; error=efficiencylpt*TMath::Sqrt((lptmu+coincmu)/(lptmu*coincmu)); fprintf(fdat," Efficiency Lpt cut = %4.4f +/- %4.4f\n",efficiencylpt,error); efficiencyhpt=hptmu/coincmu; error=efficiencyhpt*TMath::Sqrt((hptmu+coincmu)/(hptmu*coincmu)); fprintf(fdat," Efficiency Hpt cut = %4.4f +/- %4.4f\n",efficiencyhpt,error); fclose(fdat); }