Пример #1
0
/*!
   \brief Calculate a scale division

   \param x1 First interval limit 
   \param x2 Second interval limit 
   \param maxMajSteps Maximum for the number of major steps
   \param maxMinSteps Maximum number of minor steps
   \param stepSize Step size. If stepSize == 0, the scaleEngine
                   calculates one.

   \sa QwtScaleEngine::stepSize(), QwtScaleEngine::subDivide()
*/
QwtScaleDiv QwtLinearScaleEngine::divideScale(double x1, double x2,
    int maxMajSteps, int maxMinSteps, double stepSize) const
{
    QwtDoubleInterval interval = QwtDoubleInterval(x1, x2).normalized();
    if (interval.width() <= 0 )
        return QwtScaleDiv();

    stepSize = qwtAbs(stepSize);
    if ( stepSize == 0.0 )
    {
        if ( maxMajSteps < 1 )
            maxMajSteps = 1;

        stepSize = divideInterval(interval.width(), maxMajSteps);
    }

    QwtScaleDiv scaleDiv;

    if ( stepSize != 0.0 )
    {
        QwtValueList ticks[QwtScaleDiv::NTickTypes];
        buildTicks(interval, stepSize, maxMinSteps, ticks);

        scaleDiv = QwtScaleDiv(interval, ticks);
    }

    if ( x1 > x2 )
        scaleDiv.invert();

    return scaleDiv;
}
Пример #2
0
/*!
    Align and divide an interval 

   \param maxNumSteps Max. number of steps
   \param x1 First limit of the interval (In/Out)
   \param x2 Second limit of the interval (In/Out)
   \param stepSize Step size (Out)

   \sa setAttribute()
*/
void QwtLinearScaleEngine::autoScale(int maxNumSteps, 
    double &x1, double &x2, double &stepSize) const
{
    QwtDoubleInterval interval(x1, x2);
    interval = interval.normalized();

    interval.setMinValue(interval.minValue() - lowerMargin());
    interval.setMaxValue(interval.maxValue() + upperMargin());

    if (testAttribute(QwtScaleEngine::Symmetric))
        interval = interval.symmetrize(reference());
 
    if (testAttribute(QwtScaleEngine::IncludeReference))
        interval = interval.extend(reference());

    if (interval.width() == 0.0)
        interval = buildInterval(interval.minValue());

    stepSize = divideInterval(interval.width(), qwtMax(maxNumSteps, 1));

    if ( !testAttribute(QwtScaleEngine::Floating) )
        interval = align(interval, stepSize);

    x1 = interval.minValue();
    x2 = interval.maxValue();

    if (testAttribute(QwtScaleEngine::Inverted))
    {
        qSwap(x1, x2);
        stepSize = -stepSize;
    }
}
/*!
    Align and divide an interval

   \param maxNumSteps Max. number of steps
   \param x1 First limit of the interval (In/Out)
   \param x2 Second limit of the interval (In/Out)
   \param stepSize Step size (Out)

   \sa QwtScaleEngine::setAttribute()
*/
void QwtLog10ScaleEngine::autoScale(int maxNumSteps, 
    double &x1, double &x2, double &stepSize) const
{
    if ( x1 > x2 )
        qSwap(x1, x2);

    QwtDoubleInterval interval(x1 / pow(10.0, lowerMargin()), 
        x2 * pow(10.0, upperMargin()) );

    if (interval.maxValue() / interval.minValue() < 10.0)
    {
        // scale width is less than one decade -> build linear scale

        QwtLinearScaleEngine linearScaler;
        linearScaler.setAttributes(attributes());
        linearScaler.setReference(reference());
        linearScaler.setMargins(lowerMargin(), upperMargin());

        linearScaler.autoScale(maxNumSteps, x1, x2, stepSize);
        stepSize = ::log10(stepSize);

        return;
    }

    double logRef = 1.0;
    if (reference() > LOG_MIN / 2)
        logRef = qwtMin(reference(), LOG_MAX / 2);

    if (testAttribute(QwtScaleEngine::Symmetric))
    {
        const double delta = qwtMax(interval.maxValue() / logRef,  
            logRef / interval.minValue());
        interval.setInterval(logRef / delta, logRef * delta);
    }

    if (testAttribute(QwtScaleEngine::IncludeReference))
        interval = interval.extend(logRef);

    interval = interval.limited(LOG_MIN, LOG_MAX);

    if (interval.width() == 0.0)
        interval = buildInterval(interval.minValue());

    stepSize = divideInterval(log10(interval).width(), qwtMax(maxNumSteps, 1));
    if ( stepSize < 1.0 )
        stepSize = 1.0;

    if (!testAttribute(QwtScaleEngine::Floating))
        interval = align(interval, stepSize);

    x1 = interval.minValue();
    x2 = interval.maxValue();

    if (testAttribute(QwtScaleEngine::Inverted))
    {
        qSwap(x1, x2);
        stepSize = -stepSize;
    }
}
Пример #4
0
/*!
   \brief Calculate a scale division for an interval

   \param x1 First interval limit
   \param x2 Second interval limit
   \param maxMajorSteps Maximum for the number of major steps
   \param maxMinorSteps Maximum number of minor steps
   \param stepSize Step size. If stepSize == 0, the engine
                   calculates one.

   \return Calculated scale division
*/
QwtScaleDiv QwtLogScaleEngine::divideScale( double x1, double x2,
    int maxMajorSteps, int maxMinorSteps, double stepSize ) const
{
    QwtInterval interval = QwtInterval( x1, x2 ).normalized();
    interval = interval.limited( LOG_MIN, LOG_MAX );

    if ( interval.width() <= 0 )
        return QwtScaleDiv();

    const double logBase = base();

    if ( interval.maxValue() / interval.minValue() < logBase )
    {
        // scale width is less than one decade -> build linear scale

        QwtLinearScaleEngine linearScaler;
        linearScaler.setAttributes( attributes() );
        linearScaler.setReference( reference() );
        linearScaler.setMargins( lowerMargin(), upperMargin() );

        if ( stepSize != 0.0 )
        {
            if ( stepSize < 0.0 )
                stepSize = -qPow( logBase, -stepSize );
            else
                stepSize = qPow( logBase, stepSize );
        }

        return linearScaler.divideScale( x1, x2,
            maxMajorSteps, maxMinorSteps, stepSize );
    }

    stepSize = qAbs( stepSize );
    if ( stepSize == 0.0 )
    {
        if ( maxMajorSteps < 1 )
            maxMajorSteps = 1;

        stepSize = divideInterval( 
            qwtLogInterval( logBase, interval ).width(), maxMajorSteps );
        if ( stepSize < 1.0 )
            stepSize = 1.0; // major step must be >= 1 decade
    }

    QwtScaleDiv scaleDiv;
    if ( stepSize != 0.0 )
    {
        QList<double> ticks[QwtScaleDiv::NTickTypes];
        buildTicks( interval, stepSize, maxMinorSteps, ticks );

        scaleDiv = QwtScaleDiv( interval, ticks );
    }

    if ( x1 > x2 )
        scaleDiv.invert();

    return scaleDiv;
}
/*!
   \brief Calculate a scale division

   \param x1 First interval limit 
   \param x2 Second interval limit 
   \param maxMajSteps Maximum for the number of major steps
   \param maxMinSteps Maximum number of minor steps
   \param stepSize Step size. If stepSize == 0, the scaleEngine
                   calculates one.

   \sa QwtScaleEngine::stepSize, LogTimeScaleEngine::subDivide
*/
QwtScaleDiv LogTimeScaleEngine::divideScale(double x1, double x2,
    int maxMajSteps, int maxMinSteps, double stepSize) const
{
    QwtDoubleInterval interval = QwtDoubleInterval(x1, x2).normalized();
    interval = interval.limited(LOG_MIN, LOG_MAX);

    if (interval.width() <= 0 )
        return QwtScaleDiv();

    if (interval.maxValue() / interval.minValue() < 10.0)
    {
        // scale width is less than one decade -> build linear scale
    
        QwtLinearScaleEngine linearScaler;
        linearScaler.setAttributes(attributes());
        linearScaler.setReference(reference());
        linearScaler.setMargins(
                                #if (QWT_VERSION >= 0x050200)
				lowerMargin(), upperMargin()
				#else
				loMargin(), hiMargin()
				#endif
				);

        return linearScaler.divideScale(x1, x2, 
            maxMajSteps, maxMinSteps, stepSize);
    }

    stepSize = qwtAbs(stepSize);
    if ( stepSize == 0.0 )
    {
        if ( maxMajSteps < 1 )
            maxMajSteps = 1;

        stepSize = divideInterval(log10(interval).width(), maxMajSteps);
        if ( stepSize < 1.0 )
            stepSize = 1.0; // major step must be >= 1 decade
    }

    QwtScaleDiv scaleDiv;
    if ( stepSize != 0.0 )
    {
        QwtValueList ticks[QwtScaleDiv::NTickTypes];
        buildTicks(interval, stepSize, maxMinSteps, ticks);

        scaleDiv = QwtScaleDiv(interval, ticks);
    }

    if ( x1 > x2 )
        scaleDiv.invert();

    return scaleDiv;
}
/*!
    Align and divide an interval

   \param maxNumSteps Max. number of steps
   \param x1 First limit of the interval (In/Out)
   \param x2 Second limit of the interval (In/Out)
   \param stepSize Step size (Out)

   \sa QwtScaleEngine::setAttribute
*/
void LogTimeScaleEngine::autoScale(int maxNumSteps, 
    double &x1, double &x2, double &stepSize) const
{
    if ( x1 > x2 )
        qSwap(x1, x2);

    QwtDoubleInterval interval(
                               
     #if (QWT_VERSION >= 0x050200)
            x1 / pow(10.0, lowerMargin()), 
            x2 * pow(10.0, upperMargin())
     #else
            x1 / pow(10.0, loMargin()), 
            x2 * pow(10.0, hiMargin())
    #endif
    );

    double logRef = 1.0;
    if (reference() > LOG_MIN / 2)
        logRef = qwtMin(reference(), LOG_MAX / 2);

    if (testAttribute(QwtScaleEngine::Symmetric))
    {
        const double delta = qwtMax(interval.maxValue() / logRef,  
            logRef / interval.minValue());
        interval.setInterval(logRef / delta, logRef * delta);
    }

    if (testAttribute(QwtScaleEngine::IncludeReference))
        interval = interval.extend(logRef);

    interval = interval.limited(LOG_MIN, LOG_MAX);

    if (interval.width() == 0.0)
        interval = buildInterval(interval.minValue());

    stepSize = divideInterval(log10(interval).width(), qwtMax(maxNumSteps, 1));
    if ( stepSize < 1.0 )
        stepSize = 1.0;

    if (!testAttribute(QwtScaleEngine::Floating))
        interval = align(interval, stepSize);

    x1 = interval.minValue();
    x2 = interval.maxValue();

    if (testAttribute(QwtScaleEngine::Inverted))
    {
        qSwap(x1, x2);
        stepSize = -stepSize;
    }
}
Пример #7
0
void QwtLinearScaleEngine::buildMinorTicks(
    const QwtValueList& majorTicks,
    int maxMinSteps, double stepSize,
    QwtValueList &minorTicks, 
    QwtValueList &mediumTicks) const
{   
    double minStep = divideInterval(stepSize, maxMinSteps);
    if (minStep == 0.0)  
        return; 
        
    // # ticks per interval
    int numTicks = (int)::ceil(qwtAbs(stepSize / minStep)) - 1;
    
    // Do the minor steps fit into the interval?
    if ( QwtScaleArithmetic::compareEps((numTicks +  1) * qwtAbs(minStep), 
        qwtAbs(stepSize), stepSize) > 0)
    {   
        numTicks = 1;
        minStep = stepSize * 0.5;
    }

    int medIndex = -1;
    if ( numTicks % 2 )
        medIndex = numTicks / 2;

    // calculate minor ticks

    for (int i = 0; i < (int)majorTicks.count(); i++)
    {
        double val = majorTicks[i];
        for (int k = 0; k < numTicks; k++)
        {
            val += minStep;

            double alignedValue = val;
            if (QwtScaleArithmetic::compareEps(val, 0.0, stepSize) == 0) 
                alignedValue = 0.0;

            if ( k == medIndex )
                mediumTicks += alignedValue;
            else
                minorTicks += alignedValue;
        }
    }
}
Пример #8
0
/*!
    Align and divide an interval

   \param maxNumSteps Max. number of steps
   \param x1 First limit of the interval (In/Out)
   \param x2 Second limit of the interval (In/Out)
   \param stepSize Step size (Out)

   \sa QwtScaleEngine::setAttribute()
*/
void QwtLogScaleEngine::autoScale( int maxNumSteps,
    double &x1, double &x2, double &stepSize ) const
{
    if ( x1 > x2 )
        qSwap( x1, x2 );

    const double logBase = base();

    QwtInterval interval( x1 / qPow( logBase, lowerMargin() ),
        x2 * qPow( logBase, upperMargin() ) );

    if ( interval.maxValue() / interval.minValue() < logBase )
    {
        // scale width is less than one step -> try to build a linear scale

        QwtLinearScaleEngine linearScaler;
        linearScaler.setAttributes( attributes() );
        linearScaler.setReference( reference() );
        linearScaler.setMargins( lowerMargin(), upperMargin() );

        linearScaler.autoScale( maxNumSteps, x1, x2, stepSize );

        QwtInterval linearInterval = QwtInterval( x1, x2 ).normalized();
        linearInterval = linearInterval.limited( LOG_MIN, LOG_MAX );

        if ( linearInterval.maxValue() / linearInterval.minValue() < logBase )
        {
            // the aligned scale is still less than one step
            if ( stepSize < 0.0 )
                stepSize = -qwtLog( logBase, qAbs( stepSize ) );
            else
                stepSize = qwtLog( logBase, stepSize );

            return;
        }
    }

    double logRef = 1.0;
    if ( reference() > LOG_MIN / 2 )
        logRef = qMin( reference(), LOG_MAX / 2 );

    if ( testAttribute( QwtScaleEngine::Symmetric ) )
    {
        const double delta = qMax( interval.maxValue() / logRef,
            logRef / interval.minValue() );
        interval.setInterval( logRef / delta, logRef * delta );
    }

    if ( testAttribute( QwtScaleEngine::IncludeReference ) )
        interval = interval.extend( logRef );

    interval = interval.limited( LOG_MIN, LOG_MAX );

    if ( interval.width() == 0.0 )
        interval = buildInterval( interval.minValue() );

    stepSize = divideInterval( qwtLogInterval( logBase, interval ).width(), 
        qMax( maxNumSteps, 1 ) );
    if ( stepSize < 1.0 )
        stepSize = 1.0;

    if ( !testAttribute( QwtScaleEngine::Floating ) )
        interval = align( interval, stepSize );

    x1 = interval.minValue();
    x2 = interval.maxValue();

    if ( testAttribute( QwtScaleEngine::Inverted ) )
    {
        qSwap( x1, x2 );
        stepSize = -stepSize;
    }
}
Пример #9
0
/*!
   \brief Calculate minor/medium ticks for major ticks

   \param majorTicks Major ticks
   \param maxMinorSteps Maximum number of minor steps
   \param stepSize Step size
   \param minorTicks Array to be filled with the calculated minor ticks
   \param mediumTicks Array to be filled with the calculated medium ticks
*/
void QwtLogScaleEngine::buildMinorTicks(
    const QList<double> &majorTicks,
    int maxMinorSteps, double stepSize,
    QList<double> &minorTicks,
    QList<double> &mediumTicks ) const
{
    const double logBase = base();

    if ( stepSize < 1.1 )          // major step width is one base
    {
        double minStep = divideInterval( stepSize, maxMinorSteps + 1 );
        if ( minStep == 0.0 )
            return;
        
        const int numSteps = qRound( stepSize / minStep ); 

        int mediumTickIndex = -1;
        if ( ( numSteps > 2 ) && ( numSteps % 2 == 0 ) )
            mediumTickIndex = numSteps / 2;

        for ( int i = 0; i < majorTicks.count() - 1; i++ )
        {
            const double v = majorTicks[i];
            const double s = logBase / numSteps;

            if ( s >= 1.0 )
            {
                if ( !qFuzzyCompare( s, 1.0 ) )
                    minorTicks += v * s;

                for ( int j = 2; j < numSteps; j++ )
                {
                    minorTicks += v * j * s;
                }
            }
            else
            {
                for ( int j = 1; j < numSteps; j++ )
                {
                    const double tick = v + j * v * ( logBase - 1 ) / numSteps;
                    if ( j == mediumTickIndex )
                        mediumTicks += tick;
                    else
                        minorTicks += tick;
                }
            }
        }
    }
    else
    {
        double minStep = divideInterval( stepSize, maxMinorSteps );
        if ( minStep == 0.0 )
            return;

        if ( minStep < 1.0 )
            minStep = 1.0;

        // # subticks per interval
        int numTicks = qRound( stepSize / minStep ) - 1;

        // Do the minor steps fit into the interval?
        if ( qwtFuzzyCompare( ( numTicks +  1 ) * minStep,
            stepSize, stepSize ) > 0 )
        {
            numTicks = 0;
        }

        if ( numTicks < 1 )
            return; 

        int mediumTickIndex = -1;
        if ( ( numTicks > 2 ) && ( numTicks % 2 ) )
            mediumTickIndex = numTicks / 2;

        // substep factor = base^substeps
        const qreal minFactor = qMax( qPow( logBase, minStep ), qreal( logBase ) );

        for ( int i = 0; i < majorTicks.count(); i++ )
        {
            double tick = majorTicks[i];
            for ( int j = 0; j < numTicks; j++ )
            {
                tick *= minFactor;

                if ( j == mediumTickIndex )
                    mediumTicks += tick;
                else
                    minorTicks += tick;
            }
        }
    }
}
Пример #10
0
QwtValueList QwtLog10ScaleEngine::buildMinorTicks(
    const QwtValueList &majorTicks, 
    int maxMinSteps, double stepSize) const
{   
    if (stepSize < 1.1)            // major step width is one decade
    {
        if ( maxMinSteps < 1 )
            return QwtValueList();
            
        int k0, kstep, kmax;
        
        if (maxMinSteps >= 8)
        {
            k0 = 2;
            kmax = 9;
            kstep = 1;
        }   
        else if (maxMinSteps >= 4)
        {
            k0 = 2;
            kmax = 8;
            kstep = 2;
        }   
        else if (maxMinSteps >= 2)
        {
            k0 = 2;
            kmax = 5;
            kstep = 3;
        }
        else
        {
            k0 = 5;
            kmax = 5;
            kstep = 1;
        }

        QwtValueList minorTicks;

        for (int i = 0; i < (int)majorTicks.count(); i++)
        {
            const double v = majorTicks[i];
            for (int k = k0; k<= kmax; k+=kstep)
                minorTicks += v * double(k);
        }

        return minorTicks;
    }
    else  // major step > one decade
    {
        double minStep = divideInterval(stepSize, maxMinSteps);
        if ( minStep == 0.0 )
            return QwtValueList();

        if ( minStep < 1.0 )
            minStep = 1.0;

        // # subticks per interval
        int nMin = qRound(stepSize / minStep) - 1;

        // Do the minor steps fit into the interval?

        if ( QwtScaleArithmetic::compareEps((nMin +  1) * minStep, 
            qwtAbs(stepSize), stepSize) > 0)
        {
            nMin = 0;
        }

        if (nMin < 1)
            return QwtValueList();      // no subticks

        // substep factor = 10^substeps
        const double minFactor = qwtMax(pow(10.0, minStep), 10.0);

        QwtValueList minorTicks;
        for (int i = 0; i < (int)majorTicks.count(); i++)
        {
            double val = majorTicks[i];
            for (int k=0; k< nMin; k++)
            {
                val *= minFactor;
                minorTicks += val;
            }
        }
        return minorTicks;
    }
}