Пример #1
0
EnergyFrameReaderPtr
openEnergyFileToReadFields(const std::string              &filename,
                           const std::vector<std::string> &namesOfRequiredEnergyFields)
{
    ener_file_ptr energyFile(open_enx(filename.c_str(), "r"));

    if (!energyFile)
    {
        GMX_THROW(FileIOError("Could not open energy file " + filename + " for reading"));
    }

    /* Read in the names of energy fields used in this file. The
     * resulting data structure would leak if an exception was thrown,
     * so transfer the contents that we actually need to a map we can
     * keep.
     *
     * TODO Technically, the insertions into the map could throw
     * std::bad_alloc and we could leak memory allocated by
     * do_enxnms(), but there's nothing we can do about this right
     * now. */
    std::map<std::string, int> indicesOfEnergyFields;
    {
        int          numEnergyTerms;
        gmx_enxnm_t *energyNames = nullptr;
        do_enxnms(energyFile.get(), &numEnergyTerms, &energyNames);
        for (int i = 0; i != numEnergyTerms; ++i)
        {
            const char *name           = energyNames[i].name;
            auto        requiredEnergy = std::find_if(std::begin(namesOfRequiredEnergyFields),
                                                      std::end(namesOfRequiredEnergyFields),
                                                      [name](const std::string &n){
                                                          return 0 == n.compare(name);
                                                      });
            if (requiredEnergy != namesOfRequiredEnergyFields.end())
            {
                indicesOfEnergyFields[name] = i;
            }
        }
        // Clean up old data structures
        free_enxnms(numEnergyTerms, energyNames);
    }

    // Throw if we failed to find the fields we need
    if (indicesOfEnergyFields.size() != namesOfRequiredEnergyFields.size())
    {
        std::string requiredEnergiesNotFound = "Did not find the following required energies in mdrun output:\n";
        for (auto &name : namesOfRequiredEnergyFields)
        {
            auto possibleIndex = indicesOfEnergyFields.find(name);
            if (possibleIndex == indicesOfEnergyFields.end())
            {
                requiredEnergiesNotFound += name + "\n";
            }
        }
        GMX_THROW(APIError(requiredEnergiesNotFound));
    }

    return EnergyFrameReaderPtr(new EnergyFrameReader(indicesOfEnergyFields, energyFile.release()));
}
Пример #2
0
void chk_enx(const char *fn)
{
    int            nre, fnr, ndr;
    ener_file_t    in;
    gmx_enxnm_t   *enm = NULL;
    t_enxframe    *fr;
    gmx_bool       bShowTStep;
    real           t0, old_t1, old_t2;
    char           buf[22];

    fprintf(stderr, "Checking energy file %s\n\n", fn);

    in = open_enx(fn, "r");
    do_enxnms(in, &nre, &enm);
    fprintf(stderr, "%d groups in energy file", nre);
    snew(fr, 1);
    old_t2     = -2.0;
    old_t1     = -1.0;
    fnr        = 0;
    t0         = NOTSET;
    bShowTStep = TRUE;

    while (do_enx(in, fr))
    {
        if (fnr >= 2)
        {
            if (fabs((fr->t-old_t1)-(old_t1-old_t2)) >
                0.1*(fabs(fr->t-old_t1)+fabs(old_t1-old_t2)) )
            {
                bShowTStep = FALSE;
                fprintf(stderr, "\nTimesteps at t=%g don't match (%g, %g)\n",
                        old_t1, old_t1-old_t2, fr->t-old_t1);
            }
        }
        old_t2 = old_t1;
        old_t1 = fr->t;
        if (t0 == NOTSET)
        {
            t0 = fr->t;
        }
        if (fnr == 0)
        {
            fprintf(stderr, "\rframe: %6s (index %6d), t: %10.3f\n",
                    gmx_step_str(fr->step, buf), fnr, fr->t);
        }
        fnr++;
    }
    fprintf(stderr, "\n\nFound %d frames", fnr);
    if (bShowTStep && fnr > 1)
    {
        fprintf(stderr, " with a timestep of %g ps", (old_t1-t0)/(fnr-1));
    }
    fprintf(stderr, ".\n");

    free_enxframe(fr);
    free_enxnms(nre, enm);
    sfree(fr);
}
Пример #3
0
void get_enx_state(char *fn, real t, gmx_groups_t *groups, t_inputrec *ir,
                   t_state *state)
{
  /* Should match the names in mdebin.c */
  static const char *boxvel_nm[] = {
  "Box-Vel-XX", "Box-Vel-YY", "Box-Vel-ZZ",
  "Box-Vel-YX", "Box-Vel-ZX", "Box-Vel-ZY"
  };
  
  static const char *pcouplmu_nm[] = {
    "Pcoupl-Mu-XX", "Pcoupl-Mu-YY", "Pcoupl-Mu-ZZ",
    "Pcoupl-Mu-YX", "Pcoupl-Mu-ZX", "Pcoupl-Mu-ZY"
  };
  int ind0[] = { XX,YY,ZZ,YY,ZZ,ZZ };
  int ind1[] = { XX,YY,ZZ,XX,XX,YY };

  int in,nre,nfr,i,ni,npcoupl;
  char       buf[STRLEN];
  gmx_enxnm_t *enm;
  t_enxframe *fr;

  in = open_enx(fn,"r");
  do_enxnms(in,&nre,&enm);
  snew(fr,1);
  nfr = 0;
  while ((nfr==0 || fr->t != t) && do_enx(in,fr)) {
    nfr++;
  }
  close_enx(in);
  fprintf(stderr,"\n");

  if (nfr == 0 || fr->t != t)
    gmx_fatal(FARGS,"Could not find frame with time %f in '%s'",t,fn);
  
  npcoupl = TRICLINIC(ir->compress) ? 6 : 3;
  if (ir->epc == epcPARRINELLORAHMAN) {
    clear_mat(state->boxv);
    for(i=0; i<npcoupl; i++) {
      state->boxv[ind0[i]][ind1[i]] =
	find_energy(boxvel_nm[i],nre,enm,fr);
    }
    fprintf(stderr,"\nREAD %d BOX VELOCITIES FROM %s\n\n",npcoupl,fn);
  }

  if (ir->etc == etcNOSEHOOVER) {
    for(i=0; i<state->ngtc; i++) {
      ni = groups->grps[egcTC].nm_ind[i];
      sprintf(buf,"Xi-%s",*(groups->grpname[ni]));
      state->nosehoover_xi[i] = find_energy(buf,nre,enm,fr);
    }
    fprintf(stderr,"\nREAD %d NOSE-HOOVER Xi's FROM %s\n\n",state->ngtc,fn);
  }
  
  free_enxnms(nre,enm);
  free_enxframe(fr);
  sfree(fr);
}
Пример #4
0
void list_ene(char *fn)
{
  int        in,ndr;
  bool       bCont;
  t_enxframe *fr;
  int        i,nre,b;
  real       rav,minthird;
  char       **enm=NULL;

  printf("gmxdump: %s\n",fn);
  in = open_enx(fn,"r");
  do_enxnms(in,&nre,&enm);
  
  printf("energy components:\n");
  for(i=0; (i<nre); i++) 
    printf("%5d  %s\n",i,enm[i]);
    
  minthird=-1.0/3.0;
  snew(fr,1);
  do {
    bCont=do_enx(in,fr);
    
    if (bCont) {
      printf("\n%24s  %12.5e  %12s  %12d\n","time:",
	     fr->t,"step:",fr->step);
      if (fr->nre == nre) {
	printf("%24s  %12s  %12s  %12s\n",
	       "Component","Energy","Av. Energy","Sum Energy");
	for(i=0; (i<nre); i++) 
	  printf("%24s  %12.5e  %12.5e  %12.5e\n",
		 enm[i],fr->ener[i].e,fr->ener[i].eav,fr->ener[i].esum);
      }
      if (fr->ndisre > 0) {
	printf("Distance restraint %8s  %8s\n","r(t)","<r^-3>^-3");
	for(i=0; i<fr->ndisre; i++) {
	  rav=pow(fr->disre_rm3tav[i],minthird);
	  printf("%17d  %8.4f  %8.4f\n",i,fr->disre_rt[i],rav);
	}
      }
      for(b=0; b<fr->nblock; b++)
	if (fr->nr[b] > 0) {
	  printf("Block data %2d (%4d elm.) %8s\n",b,fr->nr[b],"value");
	  for(i=0; i<fr->nr[b]; i++)
	    printf("%24d  %8.4f\n",i,fr->block[b][i]);
	}
    }
  } while (bCont);
  
  close_enx(in);

  free_enxframe(fr);
  sfree(fr);
  sfree(enm);
}
Пример #5
0
ener_file_t open_enx(const char *fn,const char *mode)
{
    int        nre,i;
    gmx_enxnm_t *nms=NULL;
    int        file_version=-1;
    t_enxframe *fr;
    gmx_bool       bWrongPrecision,bOK=TRUE;
    struct ener_file *ef;

    snew(ef,1);

    if (mode[0]=='r') {
        ef->fio=gmx_fio_open(fn,mode);
        gmx_fio_checktype(ef->fio);
        gmx_fio_setprecision(ef->fio,FALSE);
        do_enxnms(ef,&nre,&nms);
        snew(fr,1);
        do_eheader(ef,&file_version,fr,nre,&bWrongPrecision,&bOK);
        if(!bOK)
        {
            gmx_file("Cannot read energy file header. Corrupt file?");
        }

        /* Now check whether this file is in single precision */
        if (!bWrongPrecision &&
            ((fr->e_size && (fr->nre == nre) && 
              (nre*4*(long int)sizeof(float) == fr->e_size)) ) )
        {
            fprintf(stderr,"Opened %s as single precision energy file\n",fn);
            free_enxnms(nre,nms);
        }
        else
        {
            gmx_fio_rewind(ef->fio);
            gmx_fio_checktype(ef->fio);
            gmx_fio_setprecision(ef->fio,TRUE);
            do_enxnms(ef,&nre,&nms);
            do_eheader(ef,&file_version,fr,nre,&bWrongPrecision,&bOK);
            if(!bOK)
            {
                gmx_file("Cannot write energy file header; maybe you are out of quota?");
            }

            if (((fr->e_size && (fr->nre == nre) && 
                            (nre*4*(long int)sizeof(double) == fr->e_size)) ))
                fprintf(stderr,"Opened %s as double precision energy file\n",
                        fn);
            else {
                if (empty_file(fn))
                    gmx_fatal(FARGS,"File %s is empty",fn);
                else
                    gmx_fatal(FARGS,"Energy file %s not recognized, maybe different CPU?",
                              fn);
            }
            free_enxnms(nre,nms);
        }
        free_enxframe(fr);
        sfree(fr);
        gmx_fio_rewind(ef->fio);
    }
    else 
        ef->fio = gmx_fio_open(fn,mode);

    ef->framenr=0;
    ef->frametime=0;
    return ef;
}
Пример #6
0
void get_enx_state(const char *fn, real t, gmx_groups_t *groups, t_inputrec *ir,
                   t_state *state)
{
  /* Should match the names in mdebin.c */
  static const char *boxvel_nm[] = {
  "Box-Vel-XX", "Box-Vel-YY", "Box-Vel-ZZ",
  "Box-Vel-YX", "Box-Vel-ZX", "Box-Vel-ZY"
  };
  
  static const char *pcouplmu_nm[] = {
    "Pcoupl-Mu-XX", "Pcoupl-Mu-YY", "Pcoupl-Mu-ZZ",
    "Pcoupl-Mu-YX", "Pcoupl-Mu-ZX", "Pcoupl-Mu-ZY"
  };
  static const char *baro_nm[] = {
    "Barostat"
  };


  int ind0[] = { XX,YY,ZZ,YY,ZZ,ZZ };
  int ind1[] = { XX,YY,ZZ,XX,XX,YY };
  int nre,nfr,i,j,ni,npcoupl;
  char       buf[STRLEN];
  const char *bufi;
  gmx_enxnm_t *enm=NULL;
  t_enxframe *fr;
  ener_file_t in;

  in = open_enx(fn,"r");
  do_enxnms(in,&nre,&enm);
  snew(fr,1);
  nfr = 0;
  while ((nfr==0 || fr->t != t) && do_enx(in,fr)) {
    nfr++;
  }
  close_enx(in);
  fprintf(stderr,"\n");

  if (nfr == 0 || fr->t != t)
    gmx_fatal(FARGS,"Could not find frame with time %f in '%s'",t,fn);
  
  npcoupl = TRICLINIC(ir->compress) ? 6 : 3;
  if (ir->epc == epcPARRINELLORAHMAN) {
    clear_mat(state->boxv);
    for(i=0; i<npcoupl; i++) {
      state->boxv[ind0[i]][ind1[i]] =
	find_energy(boxvel_nm[i],nre,enm,fr);
    }
    fprintf(stderr,"\nREAD %d BOX VELOCITIES FROM %s\n\n",npcoupl,fn);
  }

  if (ir->etc == etcNOSEHOOVER) 
  {
      for(i=0; i<state->ngtc; i++) {
          ni = groups->grps[egcTC].nm_ind[i];
          bufi = *(groups->grpname[ni]);
          for(j=0; (j<state->nhchainlength); j++) 
          {
              sprintf(buf,"Xi-%d-%s",j,bufi);
              state->nosehoover_xi[i] = find_energy(buf,nre,enm,fr);
              sprintf(buf,"vXi-%d-%s",j,bufi);
              state->nosehoover_vxi[i] = find_energy(buf,nre,enm,fr);
          }

      }
      fprintf(stderr,"\nREAD %d NOSE-HOOVER Xi chains FROM %s\n\n",state->ngtc,fn);

      if (IR_NPT_TROTTER(ir)) 
      {
          for(i=0; i<state->nnhpres; i++) {
              bufi = baro_nm[0]; /* All barostat DOF's together for now */
              for(j=0; (j<state->nhchainlength); j++) 
              {
                  sprintf(buf,"Xi-%d-%s",j,bufi); 
                  state->nhpres_xi[i] = find_energy(buf,nre,enm,fr);
                  sprintf(buf,"vXi-%d-%s",j,bufi);
                  state->nhpres_vxi[i] = find_energy(buf,nre,enm,fr);
              }
          }
          fprintf(stderr,"\nREAD %d NOSE-HOOVER BAROSTAT Xi chains FROM %s\n\n",state->nnhpres,fn);
      }
  } 

  free_enxnms(nre,enm);
  free_enxframe(fr);
  sfree(fr);
}
Пример #7
0
int gmx_eneconv(int argc, char *argv[])
{
    const char       *desc[] = {
        "With [IT]multiple files[it] specified for the [TT]-f[tt] option:[PAR]",
        "Concatenates several energy files in sorted order.",
        "In the case of double time frames, the one",
        "in the later file is used. By specifying [TT]-settime[tt] you will be",
        "asked for the start time of each file. The input files are taken",
        "from the command line,",
        "such that the command [TT]gmx eneconv -f *.edr -o fixed.edr[tt] should do",
        "the trick. [PAR]",
        "With [IT]one file[it] specified for [TT]-f[tt]:[PAR]",
        "Reads one energy file and writes another, applying the [TT]-dt[tt],",
        "[TT]-offset[tt], [TT]-t0[tt] and [TT]-settime[tt] options and",
        "converting to a different format if necessary (indicated by file",
        "extentions).[PAR]",
        "[TT]-settime[tt] is applied first, then [TT]-dt[tt]/[TT]-offset[tt]",
        "followed by [TT]-b[tt] and [TT]-e[tt] to select which frames to write."
    };
    const char       *bugs[] = {
        "When combining trajectories the sigma and E^2 (necessary for statistics) are not updated correctly. Only the actual energy is correct. One thus has to compute statistics in another way."
    };
    ener_file_t       in  = NULL, out = NULL;
    gmx_enxnm_t      *enm = NULL;
#if 0
    ener_file_t       in, out = NULL;
    gmx_enxnm_t      *enm = NULL;
#endif
    t_enxframe       *fr, *fro;
    gmx_int64_t       ee_sum_step = 0, ee_sum_nsteps, ee_sum_nsum;
    t_energy         *ee_sum;
    gmx_int64_t       lastfilestep, laststep, startstep_file = 0;
    int               noutfr;
    int               nre, nremax, this_nre, nfile, f, i, kkk, nset, *set = NULL;
    double            last_t;
    char            **fnms;
    real             *readtime, *settime, timestep, tadjust;
    char              buf[22], buf2[22];
    int              *cont_type;
    gmx_bool          bNewFile, bFirst, bNewOutput;
    gmx_output_env_t *oenv;
    gmx_bool          warned_about_dh = FALSE;
    t_enxblock       *blocks          = NULL;
    int               nblocks         = 0;
    int               nblocks_alloc   = 0;

    t_filenm          fnm[] = {
        { efEDR, "-f", NULL,    ffRDMULT },
        { efEDR, "-o", "fixed", ffWRITE  },
    };

#define NFILE asize(fnm)
    gmx_bool         bWrite;
    static real      delta_t   = 0.0, toffset = 0, scalefac = 1;
    static gmx_bool  bSetTime  = FALSE;
    static gmx_bool  bSort     = TRUE, bError = TRUE;
    static real      begin     = -1;
    static real      end       = -1;
    gmx_bool         remove_dh = FALSE;

    t_pargs          pa[] = {
        { "-b",        FALSE, etREAL, {&begin},
          "First time to use"},
        { "-e",        FALSE, etREAL, {&end},
          "Last time to use"},
        { "-dt",       FALSE, etREAL, {&delta_t},
          "Only write out frame when t MOD dt = offset" },
        { "-offset",   FALSE, etREAL, {&toffset},
          "Time offset for [TT]-dt[tt] option" },
        { "-settime",  FALSE, etBOOL, {&bSetTime},
          "Change starting time interactively" },
        { "-sort",     FALSE, etBOOL, {&bSort},
          "Sort energy files (not frames)"},
        { "-rmdh",     FALSE, etBOOL, {&remove_dh},
          "Remove free energy block data" },
        { "-scalefac", FALSE, etREAL, {&scalefac},
          "Multiply energy component by this factor" },
        { "-error",    FALSE, etBOOL, {&bError},
          "Stop on errors in the file" }
    };

    if (!parse_common_args(&argc, argv, 0, NFILE, fnm, asize(pa),
                           pa, asize(desc), desc, asize(bugs), bugs, &oenv))
    {
        return 0;
    }
    tadjust  = 0;
    nremax   = 0;
    nset     = 0;
    timestep = 0.0;
    snew(fnms, argc);
    lastfilestep = 0;
    laststep     = 0;

    nfile = opt2fns(&fnms, "-f", NFILE, fnm);

    if (!nfile)
    {
        gmx_fatal(FARGS, "No input files!");
    }

    snew(settime, nfile+1);
    snew(readtime, nfile+1);
    snew(cont_type, nfile+1);

    nre = scan_ene_files(fnms, nfile, readtime, &timestep, &nremax);
    edit_files(fnms, nfile, readtime, settime, cont_type, bSetTime, bSort);

    ee_sum_nsteps = 0;
    ee_sum_nsum   = 0;
    snew(ee_sum, nremax);

    snew(fr, 1);
    snew(fro, 1);
    fro->t   = -1e20;
    fro->nre = nre;
    snew(fro->ener, nremax);

    noutfr = 0;
    bFirst = TRUE;

    last_t = fro->t;
    for (f = 0; f < nfile; f++)
    {
        bNewFile   = TRUE;
        bNewOutput = TRUE;
        in         = open_enx(fnms[f], "r");
        enm        = NULL;
        do_enxnms(in, &this_nre, &enm);
        if (f == 0)
        {
            if (scalefac != 1)
            {
                set = select_it(nre, enm, &nset);
            }

            /* write names to the output file */
            out = open_enx(opt2fn("-o", NFILE, fnm), "w");
            do_enxnms(out, &nre, &enm);
        }

        /* start reading from the next file */
        while ((fro->t <= (settime[f+1] + GMX_REAL_EPS)) &&
               do_enx(in, fr))
        {
            if (bNewFile)
            {
                startstep_file = fr->step;
                tadjust        = settime[f] - fr->t;
                if (cont_type[f+1] == TIME_LAST)
                {
                    settime[f+1]   = readtime[f+1]-readtime[f]+settime[f];
                    cont_type[f+1] = TIME_EXPLICIT;
                }
                bNewFile = FALSE;
            }

            if (tadjust + fr->t <= last_t)
            {
                /* Skip this frame, since we already have it / past it */
                if (debug)
                {
                    fprintf(debug, "fr->step %s, fr->t %.4f\n",
                            gmx_step_str(fr->step, buf), fr->t);
                    fprintf(debug, "tadjust %12.6e + fr->t %12.6e <= t %12.6e\n",
                            tadjust, fr->t, last_t);
                }
                continue;
            }

            fro->step = lastfilestep + fr->step - startstep_file;
            fro->t    = tadjust  + fr->t;

            bWrite = ((begin < 0 || (fro->t >= begin-GMX_REAL_EPS)) &&
                      (end  < 0  || (fro->t <= end  +GMX_REAL_EPS)) &&
                      (fro->t <= settime[f+1]+0.5*timestep));

            if (debug)
            {
                fprintf(debug,
                        "fr->step %s, fr->t %.4f, fro->step %s fro->t %.4f, w %d\n",
                        gmx_step_str(fr->step, buf), fr->t,
                        gmx_step_str(fro->step, buf2), fro->t, bWrite);
            }

            if (bError)
            {
                if ((end > 0) && (fro->t > end+GMX_REAL_EPS))
                {
                    f = nfile;
                    break;
                }
            }

            if (fro->t >= begin-GMX_REAL_EPS)
            {
                if (bFirst)
                {
                    bFirst    = FALSE;
                }
                if (bWrite)
                {
                    update_ee_sum(nre, &ee_sum_step, &ee_sum_nsteps, &ee_sum_nsum, ee_sum,
                                  fr, fro->step);
                }
            }

            /* determine if we should write it */
            if (bWrite && (delta_t == 0 || bRmod(fro->t, toffset, delta_t)))
            {
                laststep = fro->step;
                last_t   = fro->t;
                if (bNewOutput)
                {
                    bNewOutput = FALSE;
                    fprintf(stderr, "\nContinue writing frames from t=%g, step=%s\n",
                            fro->t, gmx_step_str(fro->step, buf));
                }

                /* Copy the energies */
                for (i = 0; i < nre; i++)
                {
                    fro->ener[i].e = fr->ener[i].e;
                }

                fro->nsteps = ee_sum_nsteps;
                fro->dt     = fr->dt;

                if (ee_sum_nsum <= 1)
                {
                    fro->nsum = 0;
                }
                else
                {
                    fro->nsum = gmx_int64_to_int(ee_sum_nsum,
                                                 "energy average summation");
                    /* Copy the energy sums */
                    for (i = 0; i < nre; i++)
                    {
                        fro->ener[i].esum = ee_sum[i].esum;
                        fro->ener[i].eav  = ee_sum[i].eav;
                    }
                }
                /* We wrote the energies, so reset the counts */
                ee_sum_nsteps = 0;
                ee_sum_nsum   = 0;

                if (scalefac != 1)
                {
                    for (kkk = 0; kkk < nset; kkk++)
                    {
                        fro->ener[set[kkk]].e    *= scalefac;
                        if (fro->nsum > 0)
                        {
                            fro->ener[set[kkk]].eav  *= scalefac*scalefac;
                            fro->ener[set[kkk]].esum *= scalefac;
                        }
                    }
                }
                /* Copy restraint stuff */
                /*fro->ndisre       = fr->ndisre;
                   fro->disre_rm3tav = fr->disre_rm3tav;
                   fro->disre_rt     = fr->disre_rt;*/
                fro->nblock       = fr->nblock;
                /*fro->nr           = fr->nr;*/
                fro->block        = fr->block;

                /* check if we have blocks with delta_h data and are throwing
                   away data */
                if (fro->nblock > 0)
                {
                    if (remove_dh)
                    {
                        int i;
                        if (!blocks || nblocks_alloc < fr->nblock)
                        {
                            /* we pre-allocate the blocks */
                            nblocks_alloc = fr->nblock;
                            snew(blocks, nblocks_alloc);
                        }
                        nblocks = 0; /* number of blocks so far */

                        for (i = 0; i < fr->nblock; i++)
                        {
                            if ( (fr->block[i].id != enxDHCOLL) &&
                                 (fr->block[i].id != enxDH) &&
                                 (fr->block[i].id != enxDHHIST) )
                            {
                                /* copy everything verbatim */
                                blocks[nblocks] = fr->block[i];
                                nblocks++;
                            }
                        }
                        /* now set the block pointer to the new blocks */
                        fro->nblock = nblocks;
                        fro->block  = blocks;
                    }
                    else if (delta_t > 0)
                    {
                        if (!warned_about_dh)
                        {
                            for (i = 0; i < fr->nblock; i++)
                            {
                                if (fr->block[i].id == enxDH ||
                                    fr->block[i].id == enxDHHIST)
                                {
                                    int size;
                                    if (fr->block[i].id == enxDH)
                                    {
                                        size = fr->block[i].sub[2].nr;
                                    }
                                    else
                                    {
                                        size = fr->nsteps;
                                    }
                                    if (size > 0)
                                    {
                                        printf("\nWARNING: %s contains delta H blocks or histograms for which\n"
                                               "         some data is thrown away on a block-by-block basis, where each block\n"
                                               "         contains up to %d samples.\n"
                                               "         This is almost certainly not what you want.\n"
                                               "         Use the -rmdh option to throw all delta H samples away.\n"
                                               "         Use g_energy -odh option to extract these samples.\n",
                                               fnms[f], size);
                                        warned_about_dh = TRUE;
                                        break;
                                    }
                                }
                            }
                        }
                    }
                }

                do_enx(out, fro);
                if (noutfr % 1000 == 0)
                {
                    fprintf(stderr, "Writing frame time %g    ", fro->t);
                }
                noutfr++;
            }
        }
        if (f == nfile)
        {
            f--;
        }
        printf("\nLast step written from %s: t %g, step %s\n",
               fnms[f], last_t, gmx_step_str(laststep, buf));
        lastfilestep = laststep;

        /* set the next time from the last in previous file */
        if (cont_type[f+1] == TIME_CONTINUE)
        {
            settime[f+1] = fro->t;
            /* in this case we have already written the last frame of
             * previous file, so update begin to avoid doubling it
             * with the start of the next file
             */
            begin = fro->t+0.5*timestep;
            /* cont_type[f+1]==TIME_EXPLICIT; */
        }

        if ((fro->t < end) && (f < nfile-1) &&
            (fro->t < settime[f+1]-1.5*timestep))
        {
            fprintf(stderr,
                    "\nWARNING: There might be a gap around t=%g\n", fro->t);
        }

        /* move energies to lastee */
        close_enx(in);
        free_enxnms(this_nre, enm);

        fprintf(stderr, "\n");
    }
    if (noutfr == 0)
    {
        fprintf(stderr, "No frames written.\n");
    }
    else
    {
        fprintf(stderr, "Last frame written was at step %s, time %f\n",
                gmx_step_str(fro->step, buf), fro->t);
        fprintf(stderr, "Wrote %d frames\n", noutfr);
    }

    return 0;
}
Пример #8
0
static int scan_ene_files(char **fnms, int nfiles,
                          real *readtime, real *timestep, int *nremax)
{
    /* Check number of energy terms and start time of all files */
    int          f, nre, nremin = 0, nresav = 0;
    ener_file_t  in;
    real         t1, t2;
    char         inputstring[STRLEN];
    gmx_enxnm_t *enm;
    t_enxframe  *fr;

    snew(fr, 1);

    for (f = 0; f < nfiles; f++)
    {
        in  = open_enx(fnms[f], "r");
        enm = NULL;
        do_enxnms(in, &nre, &enm);

        if (f == 0)
        {
            nresav  = nre;
            nremin  = nre;
            *nremax = nre;
            do_enx(in, fr);
            t1 = fr->t;
            do_enx(in, fr);
            t2          = fr->t;
            *timestep   = t2-t1;
            readtime[f] = t1;
            close_enx(in);
        }
        else
        {
            nremin  = std::min(nremin, fr->nre);
            *nremax = std::max(*nremax, fr->nre);
            if (nre != nresav)
            {
                fprintf(stderr,
                        "Energy files don't match, different number of energies:\n"
                        " %s: %d\n %s: %d\n", fnms[f-1], nresav, fnms[f], fr->nre);
                fprintf(stderr,
                        "\nContinue conversion using only the first %d terms (n/y)?\n"
                        "(you should be sure that the energy terms match)\n", nremin);
                if (NULL == fgets(inputstring, STRLEN-1, stdin))
                {
                    gmx_fatal(FARGS, "Error reading user input");
                }
                if (inputstring[0] != 'y' && inputstring[0] != 'Y')
                {
                    fprintf(stderr, "Will not convert\n");
                    exit(0);
                }
                nresav = fr->nre;
            }
            do_enx(in, fr);
            readtime[f] = fr->t;
            close_enx(in);
        }
        fprintf(stderr, "\n");
        free_enxnms(nre, enm);
    }

    free_enxframe(fr);
    sfree(fr);

    return nremin;
}
Пример #9
0
void list_ene(const char *fn)
{
    int            ndr;
    ener_file_t    in;
    gmx_bool       bCont;
    gmx_enxnm_t   *enm = NULL;
    t_enxframe    *fr;
    int            i, j, nre, b;
    real           rav, minthird;
    char           buf[22];

    printf("gmxdump: %s\n", fn);
    in = open_enx(fn, "r");
    do_enxnms(in, &nre, &enm);
    assert(enm);

    /*printf("energy components:\n");
    for (i = 0; (i < nre); i++)
    {
        printf("%5d  %-24s (%s)\n", i, enm[i].name, enm[i].unit);
    }*/

    minthird = -1.0/3.0;
    snew(fr, 1);
    do
    {
        bCont = do_enx(in, fr);

        if (bCont)
        {
            printf("\n%24s  %12.5e  %12s  %12s\n", "time:",
                   fr->t, "step:", gmx_step_str(fr->step, buf));
            printf("%24s  %12s  %12s  %12s\n",
                   "", "", "nsteps:", gmx_step_str(fr->nsteps, buf));
            printf("%24s  %12.5e  %12s  %12s\n",
                   "delta_t:", fr->dt, "sum steps:", gmx_step_str(fr->nsum, buf));
            if (fr->nre == nre)
            {
                printf("%24s  %12s  %12s  %12s\n",
                       "Component", "Energy", "Av. Energy", "Sum Energy");
                if (fr->nsum > 0)
                {
                    for (i = 0; (i < nre); i++)
                    {
                        printf("%24s  %12.5e  %12.5e  %12.5e\n",
                               enm[i].name, fr->ener[i].e, fr->ener[i].eav,
                               fr->ener[i].esum);
                    }
                }
                else
                {
                    for (i = 0; (i < nre); i++)
                    {
                     if(fr->ener[i].e != 0)
                     {
                        printf("%24s  %12.5e\n",
                               enm[i].name, fr->ener[i].e);
                     }
                    }
                }
            }
            for (b = 0; b < fr->nblock; b++)
            {
                const char *typestr = "";

                t_enxblock *eb = &(fr->block[b]);
                printf("Block data %2d (%3d subblocks, id=%d)\n",
                       b, eb->nsub, eb->id);

                if (eb->id < enxNR)
                {
                    typestr = enx_block_id_name[eb->id];
                }
                printf("  id='%s'\n", typestr);
                for (i = 0; i < eb->nsub; i++)
                {
                    t_enxsubblock *sb = &(eb->sub[i]);
                    printf("  Sub block %3d (%5d elems, type=%s) values:\n",
                           i, sb->nr, xdr_datatype_names[sb->type]);

                    switch (sb->type)
                    {
                        case xdr_datatype_float:
                            for (j = 0; j < sb->nr; j++)
                            {
                                printf("%14d   %8.4f\n", j, sb->fval[j]);
                            }
                            break;
                        case xdr_datatype_double:
                            for (j = 0; j < sb->nr; j++)
                            {
                                printf("%14d   %10.6f\n", j, sb->dval[j]);
                            }
                            break;
                        case xdr_datatype_int:
                            for (j = 0; j < sb->nr; j++)
                            {
                                printf("%14d %10d\n", j, sb->ival[j]);
                            }
                            break;
                        case xdr_datatype_large_int:
                            for (j = 0; j < sb->nr; j++)
                            {
                                printf("%14d %s\n",
                                       j, gmx_step_str(sb->lval[j], buf));
                            }
                            break;
                        case xdr_datatype_char:
                            for (j = 0; j < sb->nr; j++)
                            {
                                printf("%14d %1c\n", j, sb->cval[j]);
                            }
                            break;
                        case xdr_datatype_string:
                            for (j = 0; j < sb->nr; j++)
                            {
                                printf("%14d %80s\n", j, sb->sval[j]);
                            }
                            break;
                        default:
                            gmx_incons("Unknown subblock type");
                    }
                }
            }
        }
    }
    while (bCont);

    close_enx(in);

    free_enxframe(fr);
    sfree(fr);
    sfree(enm);
}
Пример #10
0
int cmain (int argc, char *argv[])
{
    const char       *desc[] = {
        "tpbconv can edit run input files in four ways.[PAR]",
        "[BB]1.[bb] by modifying the number of steps in a run input file",
        "with options [TT]-extend[tt], [TT]-until[tt] or [TT]-nsteps[tt]",
        "(nsteps=-1 means unlimited number of steps)[PAR]",
        "[BB]2.[bb] (OBSOLETE) by creating a run input file",
        "for a continuation run when your simulation has crashed due to e.g.",
        "a full disk, or by making a continuation run input file.",
        "This option is obsolete, since mdrun now writes and reads",
        "checkpoint files.",
        "[BB]Note[bb] that a frame with coordinates and velocities is needed.",
        "When pressure and/or Nose-Hoover temperature coupling is used",
        "an energy file can be supplied to get an exact continuation",
        "of the original run.[PAR]",
        "[BB]3.[bb] by creating a [TT].tpx[tt] file for a subset of your original",
        "tpx file, which is useful when you want to remove the solvent from",
        "your [TT].tpx[tt] file, or when you want to make e.g. a pure C[GRK]alpha[grk] [TT].tpx[tt] file.",
        "Note that you may need to use [TT]-nsteps -1[tt] (or similar) to get",
        "this to work.",
        "[BB]WARNING: this [TT].tpx[tt] file is not fully functional[bb].[PAR]",
        "[BB]4.[bb] by setting the charges of a specified group",
        "to zero. This is useful when doing free energy estimates",
        "using the LIE (Linear Interaction Energy) method."
    };

    const char       *top_fn, *frame_fn;
    t_fileio         *fp;
    ener_file_t       fp_ener = NULL;
    t_trnheader       head;
    int               i;
    gmx_large_int_t   nsteps_req, run_step, frame;
    double            run_t, state_t;
    gmx_bool          bOK, bNsteps, bExtend, bUntil, bTime, bTraj;
    gmx_bool          bFrame, bUse, bSel, bNeedEner, bReadEner, bScanEner, bFepState;
    gmx_mtop_t        mtop;
    t_atoms           atoms;
    t_inputrec       *ir, *irnew = NULL;
    t_gromppopts     *gopts;
    t_state           state;
    rvec             *newx = NULL, *newv = NULL, *tmpx, *tmpv;
    matrix            newbox;
    int               gnx;
    char             *grpname;
    atom_id          *index = NULL;
    int               nre;
    gmx_enxnm_t      *enm     = NULL;
    t_enxframe       *fr_ener = NULL;
    char              buf[200], buf2[200];
    output_env_t      oenv;
    t_filenm          fnm[] = {
        { efTPX, NULL,  NULL,    ffREAD  },
        { efTRN, "-f",  NULL,    ffOPTRD },
        { efEDR, "-e",  NULL,    ffOPTRD },
        { efNDX, NULL,  NULL,    ffOPTRD },
        { efTPX, "-o",  "tpxout", ffWRITE }
    };
#define NFILE asize(fnm)

    /* Command line options */
    static int      nsteps_req_int = 0;
    static real     start_t        = -1.0, extend_t = 0.0, until_t = 0.0;
    static int      init_fep_state = 0;
    static gmx_bool bContinuation  = TRUE, bZeroQ = FALSE, bVel = TRUE;
    static t_pargs  pa[]           = {
        { "-extend",        FALSE, etREAL, {&extend_t},
          "Extend runtime by this amount (ps)" },
        { "-until",         FALSE, etREAL, {&until_t},
          "Extend runtime until this ending time (ps)" },
        { "-nsteps",        FALSE, etINT,  {&nsteps_req_int},
          "Change the number of steps" },
        { "-time",          FALSE, etREAL, {&start_t},
          "Continue from frame at this time (ps) instead of the last frame" },
        { "-zeroq",         FALSE, etBOOL, {&bZeroQ},
          "Set the charges of a group (from the index) to zero" },
        { "-vel",           FALSE, etBOOL, {&bVel},
          "Require velocities from trajectory" },
        { "-cont",          FALSE, etBOOL, {&bContinuation},
          "For exact continuation, the constraints should not be applied before the first step" },
        { "-init_fep_state", FALSE, etINT, {&init_fep_state},
          "fep state to initialize from" },
    };
    int             nerror = 0;

    CopyRight(stderr, argv[0]);

    /* Parse the command line */
    parse_common_args(&argc, argv, 0, NFILE, fnm, asize(pa), pa,
                      asize(desc), desc, 0, NULL, &oenv);

    /* Convert int to gmx_large_int_t */
    nsteps_req = nsteps_req_int;
    bNsteps    = opt2parg_bSet("-nsteps", asize(pa), pa);
    bExtend    = opt2parg_bSet("-extend", asize(pa), pa);
    bUntil     = opt2parg_bSet("-until", asize(pa), pa);
    bFepState  = opt2parg_bSet("-init_fep_state", asize(pa), pa);
    bTime      = opt2parg_bSet("-time", asize(pa), pa);
    bTraj      = (opt2bSet("-f", NFILE, fnm) || bTime);

    top_fn = ftp2fn(efTPX, NFILE, fnm);
    fprintf(stderr, "Reading toplogy and stuff from %s\n", top_fn);

    snew(ir, 1);
    read_tpx_state(top_fn, ir, &state, NULL, &mtop);
    run_step = ir->init_step;
    run_t    = ir->init_step*ir->delta_t + ir->init_t;

    if (!EI_STATE_VELOCITY(ir->eI))
    {
        bVel = FALSE;
    }

    if (bTraj)
    {
        fprintf(stderr, "\n"
                "NOTE: Reading the state from trajectory is an obsolete feature of tpbconv.\n"
                "      Continuation should be done by loading a checkpoint file with mdrun -cpi\n"
                "      This guarantees that all state variables are transferred.\n"
                "      tpbconv is now only useful for increasing nsteps,\n"
                "      but even that can often be avoided by using mdrun -maxh\n"
                "\n");

        if (ir->bContinuation != bContinuation)
        {
            fprintf(stderr, "Modifying ir->bContinuation to %s\n",
                    bool_names[bContinuation]);
        }
        ir->bContinuation = bContinuation;


        bNeedEner = (ir->epc == epcPARRINELLORAHMAN || ir->etc == etcNOSEHOOVER);
        bReadEner = (bNeedEner && ftp2bSet(efEDR, NFILE, fnm));
        bScanEner = (bReadEner && !bTime);

        if (ir->epc != epcNO || EI_SD(ir->eI) || ir->eI == eiBD)
        {
            fprintf(stderr, "NOTE: The simulation uses pressure coupling and/or stochastic dynamics.\n"
                    "tpbconv can not provide binary identical continuation.\n"
                    "If you want that, supply a checkpoint file to mdrun\n\n");
        }

        if (EI_SD(ir->eI) || ir->eI == eiBD)
        {
            fprintf(stderr, "\nChanging ld-seed from %d ", ir->ld_seed);
            ir->ld_seed = make_seed();
            fprintf(stderr, "to %d\n\n", ir->ld_seed);
        }

        frame_fn = ftp2fn(efTRN, NFILE, fnm);

        if (fn2ftp(frame_fn) == efCPT)
        {
            int sim_part;

            fprintf(stderr,
                    "\nREADING STATE FROM CHECKPOINT %s...\n\n",
                    frame_fn);

            read_checkpoint_state(frame_fn, &sim_part,
                                  &run_step, &run_t, &state);
        }
        else
        {
            fprintf(stderr,
                    "\nREADING COORDS, VELS AND BOX FROM TRAJECTORY %s...\n\n",
                    frame_fn);

            fp = open_trn(frame_fn, "r");
            if (bScanEner)
            {
                fp_ener = open_enx(ftp2fn(efEDR, NFILE, fnm), "r");
                do_enxnms(fp_ener, &nre, &enm);
                snew(fr_ener, 1);
                fr_ener->t = -1e-12;
            }

            /* Now scan until the last set of x and v (step == 0)
             * or the ones at step step.
             */
            bFrame = TRUE;
            frame  = 0;
            while (bFrame)
            {
                bFrame = fread_trnheader(fp, &head, &bOK);
                if (bOK && frame == 0)
                {
                    if (mtop.natoms != head.natoms)
                    {
                        gmx_fatal(FARGS, "Number of atoms in Topology (%d) "
                                  "is not the same as in Trajectory (%d)\n",
                                  mtop.natoms, head.natoms);
                    }
                    snew(newx, head.natoms);
                    snew(newv, head.natoms);
                }
                bFrame = bFrame && bOK;
                if (bFrame)
                {
                    bOK = fread_htrn(fp, &head, newbox, newx, newv, NULL);
                }
                bFrame = bFrame && bOK;
                bUse   = FALSE;
                if (bFrame &&
                    (head.x_size) && (head.v_size || !bVel))
                {
                    bUse = TRUE;
                    if (bScanEner)
                    {
                        /* Read until the energy time is >= the trajectory time */
                        while (fr_ener->t < head.t && do_enx(fp_ener, fr_ener))
                        {
                            ;
                        }
                        bUse = (fr_ener->t == head.t);
                    }
                    if (bUse)
                    {
                        tmpx                  = newx;
                        newx                  = state.x;
                        state.x               = tmpx;
                        tmpv                  = newv;
                        newv                  = state.v;
                        state.v               = tmpv;
                        run_t                 = head.t;
                        run_step              = head.step;
                        state.fep_state       = head.fep_state;
                        state.lambda[efptFEP] = head.lambda;
                        copy_mat(newbox, state.box);
                    }
                }
                if (bFrame || !bOK)
                {
                    sprintf(buf, "\r%s %s frame %s%s: step %s%s time %s",
                            "%s", "%s", "%6", gmx_large_int_fmt, "%6", gmx_large_int_fmt, " %8.3f");
                    fprintf(stderr, buf,
                            bUse ? "Read   " : "Skipped", ftp2ext(fn2ftp(frame_fn)),
                            frame, head.step, head.t);
                    frame++;
                    if (bTime && (head.t >= start_t))
                    {
                        bFrame = FALSE;
                    }
                }
            }
            if (bScanEner)
            {
                close_enx(fp_ener);
                free_enxframe(fr_ener);
                free_enxnms(nre, enm);
            }
            close_trn(fp);
            fprintf(stderr, "\n");

            if (!bOK)
            {
                fprintf(stderr, "%s frame %s (step %s, time %g) is incomplete\n",
                        ftp2ext(fn2ftp(frame_fn)), gmx_step_str(frame-1, buf2),
                        gmx_step_str(head.step, buf), head.t);
            }
            fprintf(stderr, "\nUsing frame of step %s time %g\n",
                    gmx_step_str(run_step, buf), run_t);

            if (bNeedEner)
            {
                if (bReadEner)
                {
                    get_enx_state(ftp2fn(efEDR, NFILE, fnm), run_t, &mtop.groups, ir, &state);
                }
                else
                {
                    fprintf(stderr, "\nWARNING: The simulation uses %s temperature and/or %s pressure coupling,\n"
                            "         the continuation will only be exact when an energy file is supplied\n\n",
                            ETCOUPLTYPE(etcNOSEHOOVER),
                            EPCOUPLTYPE(epcPARRINELLORAHMAN));
                }
            }
            if (bFepState)
            {
                ir->fepvals->init_fep_state = init_fep_state;
            }
        }
    }

    if (bNsteps)
    {
        fprintf(stderr, "Setting nsteps to %s\n", gmx_step_str(nsteps_req, buf));
        ir->nsteps = nsteps_req;
    }
    else
    {
        /* Determine total number of steps remaining */
        if (bExtend)
        {
            ir->nsteps = ir->nsteps - (run_step - ir->init_step) + (gmx_large_int_t)(extend_t/ir->delta_t + 0.5);
            printf("Extending remaining runtime of by %g ps (now %s steps)\n",
                   extend_t, gmx_step_str(ir->nsteps, buf));
        }
        else if (bUntil)
        {
            printf("nsteps = %s, run_step = %s, current_t = %g, until = %g\n",
                   gmx_step_str(ir->nsteps, buf),
                   gmx_step_str(run_step, buf2),
                   run_t, until_t);
            ir->nsteps = (gmx_large_int_t)((until_t - run_t)/ir->delta_t + 0.5);
            printf("Extending remaining runtime until %g ps (now %s steps)\n",
                   until_t, gmx_step_str(ir->nsteps, buf));
        }
        else
        {
            ir->nsteps -= run_step - ir->init_step;
            /* Print message */
            printf("%s steps (%g ps) remaining from first run.\n",
                   gmx_step_str(ir->nsteps, buf), ir->nsteps*ir->delta_t);
        }
    }

    if (bNsteps || bZeroQ || (ir->nsteps > 0))
    {
        ir->init_step = run_step;

        if (ftp2bSet(efNDX, NFILE, fnm) ||
            !(bNsteps || bExtend || bUntil || bTraj))
        {
            atoms = gmx_mtop_global_atoms(&mtop);
            get_index(&atoms, ftp2fn_null(efNDX, NFILE, fnm), 1,
                      &gnx, &index, &grpname);
            if (!bZeroQ)
            {
                bSel = (gnx != state.natoms);
                for (i = 0; ((i < gnx) && (!bSel)); i++)
                {
                    bSel = (i != index[i]);
                }
            }
            else
            {
                bSel = FALSE;
            }
            if (bSel)
            {
                fprintf(stderr, "Will write subset %s of original tpx containing %d "
                        "atoms\n", grpname, gnx);
                reduce_topology_x(gnx, index, &mtop, state.x, state.v);
                state.natoms = gnx;
            }
            else if (bZeroQ)
            {
                zeroq(gnx, index, &mtop);
                fprintf(stderr, "Zero-ing charges for group %s\n", grpname);
            }
            else
            {
                fprintf(stderr, "Will write full tpx file (no selection)\n");
            }
        }

        state_t = ir->init_t + ir->init_step*ir->delta_t;
        sprintf(buf,   "Writing statusfile with starting step %s%s and length %s%s steps...\n", "%10", gmx_large_int_fmt, "%10", gmx_large_int_fmt);
        fprintf(stderr, buf, ir->init_step, ir->nsteps);
        fprintf(stderr, "                                 time %10.3f and length %10.3f ps\n",
                state_t, ir->nsteps*ir->delta_t);
        write_tpx_state(opt2fn("-o", NFILE, fnm), ir, &state, &mtop);
    }
    else
    {
        printf("You've simulated long enough. Not writing tpr file\n");
    }
    thanx(stderr);

    return 0;
}
Пример #11
0
t_mdebin *init_mdebin(ener_file_t fp_ene,
                      const gmx_mtop_t *mtop,
                      const t_inputrec *ir,
                      FILE *fp_dhdl)
{
    const char *ener_nm[F_NRE];
    static const char *vir_nm[] = {
        "Vir-XX", "Vir-XY", "Vir-XZ",
        "Vir-YX", "Vir-YY", "Vir-YZ",
        "Vir-ZX", "Vir-ZY", "Vir-ZZ"
    };
    static const char *sv_nm[] = {
        "ShakeVir-XX", "ShakeVir-XY", "ShakeVir-XZ",
        "ShakeVir-YX", "ShakeVir-YY", "ShakeVir-YZ",
        "ShakeVir-ZX", "ShakeVir-ZY", "ShakeVir-ZZ"
    };
    static const char *fv_nm[] = {
        "ForceVir-XX", "ForceVir-XY", "ForceVir-XZ",
        "ForceVir-YX", "ForceVir-YY", "ForceVir-YZ",
        "ForceVir-ZX", "ForceVir-ZY", "ForceVir-ZZ"
    };
    static const char *pres_nm[] = {
        "Pres-XX","Pres-XY","Pres-XZ",
        "Pres-YX","Pres-YY","Pres-YZ",
        "Pres-ZX","Pres-ZY","Pres-ZZ"
    };
    static const char *surft_nm[] = {
        "#Surf*SurfTen"
    };
    static const char *mu_nm[] = {
        "Mu-X", "Mu-Y", "Mu-Z"
    };
    static const char *vcos_nm[] = {
        "2CosZ*Vel-X"
    };
    static const char *visc_nm[] = {
        "1/Viscosity"
    };
    static const char *baro_nm[] = {
        "Barostat"
    };

    char     **grpnms;
    const gmx_groups_t *groups;
    char     **gnm;
    char     buf[256];
    const char     *bufi;
    t_mdebin *md;
    int      i,j,ni,nj,n,nh,k,kk,ncon,nset;
    gmx_bool     bBHAM,bNoseHoover,b14;

    snew(md,1);

    if (EI_DYNAMICS(ir->eI))
    {
        md->delta_t = ir->delta_t;
    }
    else
    {
        md->delta_t = 0;
    }

    groups = &mtop->groups;

    bBHAM = (mtop->ffparams.functype[0] == F_BHAM);
    b14   = (gmx_mtop_ftype_count(mtop,F_LJ14) > 0 ||
             gmx_mtop_ftype_count(mtop,F_LJC14_Q) > 0);

    ncon = gmx_mtop_ftype_count(mtop,F_CONSTR);
    nset = gmx_mtop_ftype_count(mtop,F_SETTLE);
    md->bConstr    = (ncon > 0 || nset > 0);
    md->bConstrVir = FALSE;
    if (md->bConstr) {
        if (ncon > 0 && ir->eConstrAlg == econtLINCS) {
            if (ir->eI == eiSD2)
                md->nCrmsd = 2;
            else
                md->nCrmsd = 1;
        }
        md->bConstrVir = (getenv("GMX_CONSTRAINTVIR") != NULL);
    } else {
        md->nCrmsd = 0;
    }

    /* Energy monitoring */
    for(i=0;i<egNR;i++)
    {
        md->bEInd[i]=FALSE;
    }

#ifndef GMX_OPENMM
    for(i=0; i<F_NRE; i++)
    {
        md->bEner[i] = FALSE;
        if (i == F_LJ)
            md->bEner[i] = !bBHAM;
        else if (i == F_BHAM)
            md->bEner[i] = bBHAM;
        else if (i == F_EQM)
            md->bEner[i] = ir->bQMMM;
        else if (i == F_COUL_LR)
            md->bEner[i] = (ir->rcoulomb > ir->rlist);
        else if (i == F_LJ_LR)
            md->bEner[i] = (!bBHAM && ir->rvdw > ir->rlist);
        else if (i == F_BHAM_LR)
            md->bEner[i] = (bBHAM && ir->rvdw > ir->rlist);
        else if (i == F_RF_EXCL)
            md->bEner[i] = (EEL_RF(ir->coulombtype) && ir->coulombtype != eelRF_NEC);
        else if (i == F_COUL_RECIP)
            md->bEner[i] = EEL_FULL(ir->coulombtype);
        else if (i == F_LJ14)
            md->bEner[i] = b14;
        else if (i == F_COUL14)
            md->bEner[i] = b14;
        else if (i == F_LJC14_Q || i == F_LJC_PAIRS_NB)
            md->bEner[i] = FALSE;
        else if ((i == F_DVDL) || (i == F_DKDL))
            md->bEner[i] = (ir->efep != efepNO);
        else if (i == F_DHDL_CON)
            md->bEner[i] = (ir->efep != efepNO && md->bConstr);
        else if ((interaction_function[i].flags & IF_VSITE) ||
                 (i == F_CONSTR) || (i == F_CONSTRNC) || (i == F_SETTLE))
            md->bEner[i] = FALSE;
        else if ((i == F_COUL_SR) || (i == F_EPOT) || (i == F_PRES)  || (i==F_EQM))
            md->bEner[i] = TRUE;
        else if ((i == F_GBPOL) && ir->implicit_solvent==eisGBSA)
            md->bEner[i] = TRUE;
        else if ((i == F_NPSOLVATION) && ir->implicit_solvent==eisGBSA && (ir->sa_algorithm != esaNO))
            md->bEner[i] = TRUE;
        else if ((i == F_GB12) || (i == F_GB13) || (i == F_GB14))
            md->bEner[i] = FALSE;
        else if ((i == F_ETOT) || (i == F_EKIN) || (i == F_TEMP))
            md->bEner[i] = EI_DYNAMICS(ir->eI);
        else if (i==F_VTEMP) 
            md->bEner[i] =  (EI_DYNAMICS(ir->eI) && getenv("GMX_VIRIAL_TEMPERATURE"));
        else if (i == F_DISPCORR || i == F_PDISPCORR)
            md->bEner[i] = (ir->eDispCorr != edispcNO);
        else if (i == F_DISRESVIOL)
            md->bEner[i] = (gmx_mtop_ftype_count(mtop,F_DISRES) > 0);
        else if (i == F_ORIRESDEV)
            md->bEner[i] = (gmx_mtop_ftype_count(mtop,F_ORIRES) > 0);
        else if (i == F_CONNBONDS)
            md->bEner[i] = FALSE;
        else if (i == F_COM_PULL)
            md->bEner[i] = (ir->ePull == epullUMBRELLA || ir->ePull == epullCONST_F);
        else if (i == F_ECONSERVED)
            md->bEner[i] = ((ir->etc == etcNOSEHOOVER || ir->etc == etcVRESCALE) &&
                            (ir->epc == epcNO || ir->epc==epcMTTK));
        else
            md->bEner[i] = (gmx_mtop_ftype_count(mtop,i) > 0);
    }
#else
    /* OpenMM always produces only the following 4 energy terms */
    md->bEner[F_EPOT] = TRUE;
    md->bEner[F_EKIN] = TRUE;
    md->bEner[F_ETOT] = TRUE;
    md->bEner[F_TEMP] = TRUE;
#endif

    md->f_nre=0;
    for(i=0; i<F_NRE; i++)
    {
        if (md->bEner[i])
        {
            /* FIXME: The constness should not be cast away */
            /*ener_nm[f_nre]=(char *)interaction_function[i].longname;*/
            ener_nm[md->f_nre]=interaction_function[i].longname;
            md->f_nre++;
        }
    }

    md->epc = ir->epc;
    for (i=0;i<DIM;i++) 
    {
        for (j=0;j<DIM;j++) 
        {
            md->ref_p[i][j] = ir->ref_p[i][j];
        }
    }
    md->bTricl = TRICLINIC(ir->compress) || TRICLINIC(ir->deform);
    md->bDynBox = DYNAMIC_BOX(*ir);
    md->etc = ir->etc;
    md->bNHC_trotter = IR_NVT_TROTTER(ir);
    md->bMTTK = IR_NPT_TROTTER(ir);

    md->ebin  = mk_ebin();
    /* Pass NULL for unit to let get_ebin_space determine the units
     * for interaction_function[i].longname
     */
    md->ie    = get_ebin_space(md->ebin,md->f_nre,ener_nm,NULL);
    if (md->nCrmsd)
    {
        /* This should be called directly after the call for md->ie,
         * such that md->iconrmsd follows directly in the list.
         */
        md->iconrmsd = get_ebin_space(md->ebin,md->nCrmsd,conrmsd_nm,"");
    }
    if (md->bDynBox)
    {
        md->ib    = get_ebin_space(md->ebin, 
                                   md->bTricl ? NTRICLBOXS : NBOXS, 
                                   md->bTricl ? tricl_boxs_nm : boxs_nm,
                                   unit_length);
        md->ivol  = get_ebin_space(md->ebin, 1, vol_nm,  unit_volume);
        md->idens = get_ebin_space(md->ebin, 1, dens_nm, unit_density_SI);
        md->ipv   = get_ebin_space(md->ebin, 1, pv_nm,   unit_energy);
        md->ienthalpy = get_ebin_space(md->ebin, 1, enthalpy_nm,   unit_energy);
    }
    if (md->bConstrVir)
    {
        md->isvir = get_ebin_space(md->ebin,asize(sv_nm),sv_nm,unit_energy);
        md->ifvir = get_ebin_space(md->ebin,asize(fv_nm),fv_nm,unit_energy);
    }
    md->ivir   = get_ebin_space(md->ebin,asize(vir_nm),vir_nm,unit_energy);
    md->ipres  = get_ebin_space(md->ebin,asize(pres_nm),pres_nm,unit_pres_bar);
    md->isurft = get_ebin_space(md->ebin,asize(surft_nm),surft_nm,
                                unit_surft_bar);
    if (md->epc == epcPARRINELLORAHMAN || md->epc == epcMTTK)
    {
        md->ipc = get_ebin_space(md->ebin,md->bTricl ? 6 : 3,
                                 boxvel_nm,unit_vel);
    }
    md->imu    = get_ebin_space(md->ebin,asize(mu_nm),mu_nm,unit_dipole_D);
    if (ir->cos_accel != 0)
    {
        md->ivcos = get_ebin_space(md->ebin,asize(vcos_nm),vcos_nm,unit_vel);
        md->ivisc = get_ebin_space(md->ebin,asize(visc_nm),visc_nm,
                                   unit_invvisc_SI);
    }

    /* Energy monitoring */
    for(i=0;i<egNR;i++)
    {
        md->bEInd[i] = FALSE;
    }
    md->bEInd[egCOULSR] = TRUE;
    md->bEInd[egLJSR  ] = TRUE;

    if (ir->rcoulomb > ir->rlist)
    {
        md->bEInd[egCOULLR] = TRUE;
    }
    if (!bBHAM)
    {
        if (ir->rvdw > ir->rlist)
        {
            md->bEInd[egLJLR]   = TRUE;
        }
    }
    else
    {
        md->bEInd[egLJSR]   = FALSE;
        md->bEInd[egBHAMSR] = TRUE;
        if (ir->rvdw > ir->rlist)
        {
            md->bEInd[egBHAMLR]   = TRUE;
        }
    }
    if (b14)
    {
        md->bEInd[egLJ14] = TRUE;
        md->bEInd[egCOUL14] = TRUE;
    }
    md->nEc=0;
    for(i=0; (i<egNR); i++)
    {
        if (md->bEInd[i])
        {
            md->nEc++;
        }
    }

    n=groups->grps[egcENER].nr;
    md->nEg=n;
    md->nE=(n*(n+1))/2;
    snew(md->igrp,md->nE);
    if (md->nE > 1)
    {
        n=0;
        snew(gnm,md->nEc);
        for(k=0; (k<md->nEc); k++)
        {
            snew(gnm[k],STRLEN);
        }
        for(i=0; (i<groups->grps[egcENER].nr); i++)
        {
            ni=groups->grps[egcENER].nm_ind[i];
            for(j=i; (j<groups->grps[egcENER].nr); j++)
            {
                nj=groups->grps[egcENER].nm_ind[j];
                for(k=kk=0; (k<egNR); k++)
                {
                    if (md->bEInd[k])
                    {
                        sprintf(gnm[kk],"%s:%s-%s",egrp_nm[k],
                                *(groups->grpname[ni]),*(groups->grpname[nj]));
                        kk++;
                    }
                }
                md->igrp[n]=get_ebin_space(md->ebin,md->nEc,
                                           (const char **)gnm,unit_energy);
                n++;
            }
        }
        for(k=0; (k<md->nEc); k++)
        {
            sfree(gnm[k]);
        }
        sfree(gnm);

        if (n != md->nE)
        {
            gmx_incons("Number of energy terms wrong");
        }
    }

    md->nTC=groups->grps[egcTC].nr;
    md->nNHC = ir->opts.nhchainlength; /* shorthand for number of NH chains */ 
    if (md->bMTTK)
    {
        md->nTCP = 1;  /* assume only one possible coupling system for barostat 
                          for now */
    } 
    else 
    {
        md->nTCP = 0;
    }

    if (md->etc == etcNOSEHOOVER) {
        if (md->bNHC_trotter) { 
            md->mde_n = 2*md->nNHC*md->nTC;
        }
        else 
        {
            md->mde_n = 2*md->nTC;
        }
        if (md->epc == epcMTTK)
        {
            md->mdeb_n = 2*md->nNHC*md->nTCP;
        }
    } else { 
        md->mde_n = md->nTC;
        md->mdeb_n = 0;
    }

    snew(md->tmp_r,md->mde_n);
    snew(md->tmp_v,md->mde_n);
    snew(md->grpnms,md->mde_n);
    grpnms = md->grpnms;

    for(i=0; (i<md->nTC); i++)
    {
        ni=groups->grps[egcTC].nm_ind[i];
        sprintf(buf,"T-%s",*(groups->grpname[ni]));
        grpnms[i]=strdup(buf);
    }
    md->itemp=get_ebin_space(md->ebin,md->nTC,(const char **)grpnms,
                             unit_temp_K);

    bNoseHoover = (getenv("GMX_NOSEHOOVER_CHAINS") != NULL); /* whether to print Nose-Hoover chains */

    if (md->etc == etcNOSEHOOVER)
    {
        if (bNoseHoover) 
        {
            if (md->bNHC_trotter) 
            {
                for(i=0; (i<md->nTC); i++) 
                {
                    ni=groups->grps[egcTC].nm_ind[i];
                    bufi = *(groups->grpname[ni]);
                    for(j=0; (j<md->nNHC); j++) 
                    {
                        sprintf(buf,"Xi-%d-%s",j,bufi);
                        grpnms[2*(i*md->nNHC+j)]=strdup(buf);
                        sprintf(buf,"vXi-%d-%s",j,bufi);
                        grpnms[2*(i*md->nNHC+j)+1]=strdup(buf);
                    }
                }
                md->itc=get_ebin_space(md->ebin,md->mde_n,
                                       (const char **)grpnms,unit_invtime);
                if (md->bMTTK) 
                {
                    for(i=0; (i<md->nTCP); i++) 
                    {
                        bufi = baro_nm[0];  /* All barostat DOF's together for now. */
                        for(j=0; (j<md->nNHC); j++) 
                        {
                            sprintf(buf,"Xi-%d-%s",j,bufi);
                            grpnms[2*(i*md->nNHC+j)]=strdup(buf);
                            sprintf(buf,"vXi-%d-%s",j,bufi);
                            grpnms[2*(i*md->nNHC+j)+1]=strdup(buf);
                        }
                    }
                    md->itcb=get_ebin_space(md->ebin,md->mdeb_n,
                                            (const char **)grpnms,unit_invtime);
                }
            } 
            else
            {
                for(i=0; (i<md->nTC); i++) 
                {
                    ni=groups->grps[egcTC].nm_ind[i];
                    bufi = *(groups->grpname[ni]);
                    sprintf(buf,"Xi-%s",bufi);
                    grpnms[2*i]=strdup(buf);
                    sprintf(buf,"vXi-%s",bufi);
                    grpnms[2*i+1]=strdup(buf);
                }
                md->itc=get_ebin_space(md->ebin,md->mde_n,
                                       (const char **)grpnms,unit_invtime);
            }
        }
    }
    else if (md->etc == etcBERENDSEN || md->etc == etcYES || 
             md->etc == etcVRESCALE)
    {
        for(i=0; (i<md->nTC); i++)
        {
            ni=groups->grps[egcTC].nm_ind[i];
            sprintf(buf,"Lamb-%s",*(groups->grpname[ni]));
            grpnms[i]=strdup(buf);
        }
        md->itc=get_ebin_space(md->ebin,md->mde_n,(const char **)grpnms,"");
    }

    sfree(grpnms);


    md->nU=groups->grps[egcACC].nr;
    if (md->nU > 1)
    {
        snew(grpnms,3*md->nU);
        for(i=0; (i<md->nU); i++)
        {
            ni=groups->grps[egcACC].nm_ind[i];
            sprintf(buf,"Ux-%s",*(groups->grpname[ni]));
            grpnms[3*i+XX]=strdup(buf);
            sprintf(buf,"Uy-%s",*(groups->grpname[ni]));
            grpnms[3*i+YY]=strdup(buf);
            sprintf(buf,"Uz-%s",*(groups->grpname[ni]));
            grpnms[3*i+ZZ]=strdup(buf);
        }
        md->iu=get_ebin_space(md->ebin,3*md->nU,(const char **)grpnms,unit_vel);
        sfree(grpnms);
    }

    if ( fp_ene )
    {
        do_enxnms(fp_ene,&md->ebin->nener,&md->ebin->enm);
    }

    md->print_grpnms=NULL;

    /* check whether we're going to write dh histograms */
    md->dhc=NULL; 
    if (ir->separate_dhdl_file == sepdhdlfileNO )
    {
        int i;
        snew(md->dhc, 1);

        mde_delta_h_coll_init(md->dhc, ir);
        md->fp_dhdl = NULL;
    }
    else
    {
        md->fp_dhdl = fp_dhdl;
    }
    md->dhdl_derivatives = (ir->dhdl_derivatives==dhdlderivativesYES);
    return md;
}
Пример #12
0
int open_enx(const char *fn,const char *mode)
{
  int        fp,nre,i;
  gmx_enxnm_t *nms=NULL;
  int        file_version=-1;
  t_enxframe *fr;
  bool       bDum=TRUE;

  if (mode[0]=='r') {
    fp=gmx_fio_open(fn,mode);
    gmx_fio_select(fp);
    gmx_fio_setprecision(fp,FALSE);
    do_enxnms(fp,&nre,&nms);
    snew(fr,1);
    do_eheader(fp,&file_version,fr,TRUE,&bDum);
	if(!bDum)
	{
		gmx_file("Cannot read energy file header. Corrupt file?");
	}
	  
    /* Now check whether this file is in single precision */
    if (((fr->e_size && (fr->nre == nre) && 
	  (nre*4*sizeof(float) == fr->e_size)) ||
	 (fr->d_size && 
	  (fr->ndisre*sizeof(float)*2+sizeof(int) == fr->d_size)))){
      fprintf(stderr,"Opened %s as single precision energy file\n",fn);
      free_enxnms(nre,nms);
    }
    else {
      gmx_fio_rewind(fp);
      gmx_fio_select(fp);
      gmx_fio_setprecision(fp,TRUE);
      do_enxnms(fp,&nre,&nms);
      do_eheader(fp,&file_version,fr,TRUE,&bDum);
  	  if(!bDum)
	  {
		  gmx_file("Cannot write energy file header; maybe you are out of quota?");
	  }
		
      if (((fr->e_size && (fr->nre == nre) && 
	    (nre*4*sizeof(double) == fr->e_size)) ||
	   (fr->d_size && 
	    (fr->ndisre*sizeof(double)*2+sizeof(int) == fr->d_size))))
	fprintf(stderr,"Opened %s as double precision energy file\n",fn);
      else {
	if (empty_file(fn))
	  gmx_fatal(FARGS,"File %s is empty",fn);
	else
	  gmx_fatal(FARGS,"Energy file %s not recognized, maybe different CPU?",
		      fn);
      }
      free_enxnms(nre,nms);
    }
    free_enxframe(fr);
    sfree(fr);
    gmx_fio_rewind(fp);
  }
  else 
    fp = gmx_fio_open(fn,mode);
    
  framenr=0;
  frametime=0;

  return fp;
}
Пример #13
0
static void do_dip(t_topology *top,int ePBC,real volume,
                   const char *fn,
                   const char *out_mtot,const char *out_eps,
                   const char *out_aver, const char *dipdist,
                   const char *cosaver, const char *fndip3d,
                   const char *fnadip,  gmx_bool bPairs,
                   const char *corrtype,const char *corf,
                   gmx_bool bGkr,     const char *gkrfn,
                   gmx_bool bPhi,     int  *nlevels,  int ndegrees,
                   int  ncos,
                   const char *cmap,    real rcmax,
                   gmx_bool bQuad,    const char *quadfn,
                   gmx_bool bMU,      const char *mufn,
                   int  *gnx,     int  *molindex[],
                   real mu_max,   real mu_aver,
                   real epsilonRF,real temp,
                   int  *gkatom,  int skip,
                   gmx_bool bSlab,    int nslices,
                   const char *axtitle, const char *slabfn,
                   const output_env_t oenv)
{
    const char *leg_mtot[] = { 
        "M\\sx \\N", 
        "M\\sy \\N",
        "M\\sz \\N",
        "|M\\stot \\N|"
    };
#define NLEGMTOT asize(leg_mtot)
    const char *leg_eps[] = { 
        "epsilon",
        "G\\sk",
        "g\\sk"
    };
#define NLEGEPS asize(leg_eps)
    const char *leg_aver[] = { 
        "< |M|\\S2\\N >", 
        "< |M| >\\S2\\N",
        "< |M|\\S2\\N > - < |M| >\\S2\\N",
        "< |M| >\\S2\\N / < |M|\\S2\\N >"
    };
#define NLEGAVER asize(leg_aver)
    const char *leg_cosaver[] = {
        "\\f{4}<|cos\\f{12}q\\f{4}\\sij\\N|>",
        "RMSD cos",
        "\\f{4}<|cos\\f{12}q\\f{4}\\siX\\N|>",
        "\\f{4}<|cos\\f{12}q\\f{4}\\siY\\N|>",
        "\\f{4}<|cos\\f{12}q\\f{4}\\siZ\\N|>"
    };
#define NLEGCOSAVER asize(leg_cosaver)
    const char *leg_adip[] = {
        "<mu>",
        "Std. Dev.",
        "Error"
    };
#define NLEGADIP asize(leg_adip)

    FILE       *outdd,*outmtot,*outaver,*outeps,*caver=NULL;
    FILE       *dip3d=NULL,*adip=NULL;
    rvec       *x,*dipole=NULL,mu_t,quad,*dipsp=NULL;
    t_gkrbin   *gkrbin = NULL;
    gmx_enxnm_t *enm=NULL;
    t_enxframe *fr;
    int        nframes=1000,nre,timecheck=0,ncolour=0;
    ener_file_t fmu=NULL;
    int        i,j,k,n,m,natom=0,nmol,gnx_tot,teller,tel3;
    t_trxstatus *status;
    int        *dipole_bin,ndipbin,ibin,iVol,step,idim=-1;
    unsigned long mode;
    char       buf[STRLEN];
    real       rcut=0,t,t0,t1,dt,lambda,dd,rms_cos;
    rvec       dipaxis;
    matrix     box;
    gmx_bool   bCorr,bTotal,bCont;
    double     M_diff=0,epsilon,invtel,vol_aver;
    double     mu_ave,mu_mol,M2_ave=0,M_ave2=0,M_av[DIM],M_av2[DIM];
    double     M[3],M2[3],M4[3],Gk=0,g_k=0;
    gmx_stats_t Mx,My,Mz,Msq,Vol,*Qlsq,mulsq,muframelsq=NULL;
    ivec       iMu;
    real       **muall=NULL;
    rvec       *slab_dipoles=NULL;
    t_atom     *atom=NULL;
    t_block    *mols=NULL;
    gmx_rmpbc_t gpbc=NULL;

    gnx_tot = gnx[0];
    if (ncos > 1) {
        gnx_tot += gnx[1];
    }

    vol_aver = 0.0;
      
    iVol=-1;
    if (bMU) 
    {
        fmu = open_enx(mufn,"r");
        do_enxnms(fmu,&nre,&enm);

        /* Determine the indexes of the energy grps we need */
        for (i=0; (i<nre); i++) {
            if (strstr(enm[i].name,"Volume"))
                iVol=i;
            else if (strstr(enm[i].name,"Mu-X"))
                iMu[XX]=i;
            else if (strstr(enm[i].name,"Mu-Y"))
                iMu[YY]=i;
            else if (strstr(enm[i].name,"Mu-Z"))
                iMu[ZZ]=i;
        }
    }
    else 
    {
        atom = top->atoms.atom;
        mols = &(top->mols);
    }
  
    if ((iVol == -1) && bMU)
        printf("Using Volume from topology: %g nm^3\n",volume);

    /* Correlation stuff */ 
    bCorr  = (corrtype[0] != 'n');
    bTotal = (corrtype[0] == 't');
    if (bCorr) 
    {
        if (bTotal) 
        {
            snew(muall,1);
            snew(muall[0],nframes*DIM);
        }
        else 
        {
            snew(muall,gnx[0]);
            for(i=0; (i<gnx[0]); i++)
                snew(muall[i],nframes*DIM);
        }
    }

    /* Allocate array which contains for every molecule in a frame the
     * dipole moment.
     */
    if (!bMU)
        snew(dipole,gnx_tot);

    /* Statistics */
    snew(Qlsq,DIM);
    for(i=0; (i<DIM); i++) 
        Qlsq[i] = gmx_stats_init();
    mulsq = gmx_stats_init();
  
    /* Open all the files */
    outmtot = xvgropen(out_mtot,
                       "Total dipole moment of the simulation box vs. time",
                       "Time (ps)","Total Dipole Moment (Debye)",oenv);
    outeps  = xvgropen(out_eps,"Epsilon and Kirkwood factors",
                       "Time (ps)","",oenv);
    outaver = xvgropen(out_aver,"Total dipole moment",
                       "Time (ps)","D",oenv);
    if (bSlab) 
    {
        idim = axtitle[0] - 'X';
        if ((idim < 0) || (idim >= DIM))
            idim = axtitle[0] - 'x';
        if ((idim < 0) || (idim >= DIM))
            bSlab = FALSE;
        if (nslices < 2)
            bSlab = FALSE;
        fprintf(stderr,"axtitle = %s, nslices = %d, idim = %d\n",
                axtitle,nslices,idim);
        if (bSlab) 
        {
            snew(slab_dipoles,nslices);
            fprintf(stderr,"Doing slab analysis\n");
        }
    }
  
    if (fnadip) 
    {
        adip = xvgropen(fnadip, "Average molecular dipole","Dipole (D)","",oenv);
        xvgr_legend(adip,NLEGADIP,leg_adip, oenv);
  
    }
    if (cosaver) 
    {
        caver = xvgropen(cosaver,bPairs ? "Average pair orientation" :
                         "Average absolute dipole orientation","Time (ps)","",oenv);
        xvgr_legend(caver,NLEGCOSAVER,bPairs ? leg_cosaver : &(leg_cosaver[1]),
                    oenv);
    }
    
    if (fndip3d) 
    {
        snew(dipsp,gnx_tot);
  
        /* we need a dummy file for gnuplot */
        dip3d = (FILE *)ffopen("dummy.dat","w");
        fprintf(dip3d,"%f %f %f", 0.0,0.0,0.0);
        ffclose(dip3d);

        dip3d = (FILE *)ffopen(fndip3d,"w");
        fprintf(dip3d,"# This file was created by %s\n",Program());
        fprintf(dip3d,"# which is part of G R O M A C S:\n");
        fprintf(dip3d,"#\n");
    }
  
    /* Write legends to all the files */
    xvgr_legend(outmtot,NLEGMTOT,leg_mtot,oenv);
    xvgr_legend(outaver,NLEGAVER,leg_aver,oenv);
  
    if (bMU && (mu_aver == -1))
        xvgr_legend(outeps,NLEGEPS-2,leg_eps,oenv);
    else
        xvgr_legend(outeps,NLEGEPS,leg_eps,oenv);
    
    snew(fr,1);
    clear_rvec(mu_t);
    teller = 0;
    /* Read the first frame from energy or traj file */
    if (bMU)
        do 
        {
            bCont = read_mu_from_enx(fmu,iVol,iMu,mu_t,&volume,&t,nre,fr);
            if (bCont) 
            {  
                timecheck=check_times(t);
                if (timecheck < 0)
                    teller++;
                if ((teller % 10) == 0)
                    fprintf(stderr,"\r Skipping Frame %6d, time: %8.3f", teller, t);
            }
            else 
            {
                printf("End of %s reached\n",mufn);
                break;
            }
        } while (bCont && (timecheck < 0));
    else
        natom  = read_first_x(oenv,&status,fn,&t,&x,box);
  
    /* Calculate spacing for dipole bin (simple histogram) */
    ndipbin = 1+(mu_max/0.01);
    snew(dipole_bin, ndipbin);
    epsilon    = 0.0;
    mu_ave     = 0.0;
    for(m=0; (m<DIM); m++) 
    {
        M[m] = M2[m] = M4[m] = 0.0;
    }
  
    if (bGkr) 
    {
        /* Use 0.7 iso 0.5 to account for pressure scaling */
        /*  rcut   = 0.7*sqrt(max_cutoff2(box)); */
        rcut   = 0.7*sqrt(sqr(box[XX][XX])+sqr(box[YY][YY])+sqr(box[ZZ][ZZ]));

        gkrbin = mk_gkrbin(rcut,rcmax,bPhi,ndegrees); 
    }
    gpbc = gmx_rmpbc_init(&top->idef,ePBC,natom,box);

    /* Start while loop over frames */
    t1 = t0 = t;
    teller = 0;
    do 
    {
        if (bCorr && (teller >= nframes)) 
        {
            nframes += 1000;
            if (bTotal) 
            {
                srenew(muall[0],nframes*DIM);
            }
            else 
            {
                for(i=0; (i<gnx_tot); i++)
                    srenew(muall[i],nframes*DIM);
            }
        }
        t1 = t;

        muframelsq = gmx_stats_init();
    
        /* Initialise */
        for(m=0; (m<DIM); m++) 
            M_av2[m] = 0;
            
        if (bMU) 
        {
            /* Copy rvec into double precision local variable */
            for(m=0; (m<DIM); m++)
                M_av[m]  = mu_t[m];
        }
        else 
        {
            /* Initialise */
            for(m=0; (m<DIM); m++) 
                M_av[m] = 0;
                
            gmx_rmpbc(gpbc,natom,box,x);
      
            /* Begin loop of all molecules in frame */
            for(n=0; (n<ncos); n++) 
            {
                for(i=0; (i<gnx[n]); i++) 
                {
                    int gi,ind0,ind1;
	  
                    ind0  = mols->index[molindex[n][i]];
                    ind1  = mols->index[molindex[n][i]+1];
	  
                    mol_dip(ind0,ind1,x,atom,dipole[i]);
                    gmx_stats_add_point(mulsq,0,norm(dipole[i]),0,0);
                    gmx_stats_add_point(muframelsq,0,norm(dipole[i]),0,0);
                    if (bSlab) 
                        update_slab_dipoles(ind0,ind1,x,
                                            dipole[i],idim,nslices,slab_dipoles,box);
                    if (bQuad) 
                    {
                        mol_quad(ind0,ind1,x,atom,quad);
                        for(m=0; (m<DIM); m++)
                            gmx_stats_add_point(Qlsq[m],0,quad[m],0,0);
                    }
                    if (bCorr && !bTotal) 
                    {
                        tel3=DIM*teller;
                        muall[i][tel3+XX] = dipole[i][XX];
                        muall[i][tel3+YY] = dipole[i][YY];
                        muall[i][tel3+ZZ] = dipole[i][ZZ];
                    }
                    mu_mol = 0.0;
                    for(m=0; (m<DIM); m++) 
                    {
                        M_av[m]  += dipole[i][m];               /* M per frame */
                        mu_mol   += dipole[i][m]*dipole[i][m];  /* calc. mu for distribution */
                    }
                    mu_mol = sqrt(mu_mol);
	  
                    mu_ave += mu_mol;                         /* calc. the average mu */
	  
                    /* Update the dipole distribution */
                    ibin = (int)(ndipbin*mu_mol/mu_max + 0.5);
                    if (ibin < ndipbin)
                        dipole_bin[ibin]++;
	  
                    if (fndip3d) 
                    {
                        rvec2sprvec(dipole[i],dipsp[i]);
	    
                        if (dipsp[i][YY] > -M_PI && dipsp[i][YY] < -0.5*M_PI) {
                            if (dipsp[i][ZZ] < 0.5 * M_PI) 
                            {
                                ncolour = 1;
                            } 
                            else 
                            {
                                ncolour = 2;
                            }
                        }
                        else if (dipsp[i][YY] > -0.5*M_PI && dipsp[i][YY] < 0.0*M_PI) 
                        {
                            if (dipsp[i][ZZ] < 0.5 * M_PI) 
                            {
                                ncolour = 3;
                            } 
                            else 
                            {
                                ncolour = 4;
                            }       
                        }else if (dipsp[i][YY] > 0.0 && dipsp[i][YY] < 0.5*M_PI) {
                            if (dipsp[i][ZZ] < 0.5 * M_PI) {
                                ncolour = 5;
                            } else {
                                ncolour = 6;
                            }      
                        }
                        else if (dipsp[i][YY] > 0.5*M_PI && dipsp[i][YY] < M_PI) 
                        {
                            if (dipsp[i][ZZ] < 0.5 * M_PI) 
                            {
                                ncolour = 7;
                            } 
                            else 
                            {
                                ncolour = 8;
                            }
                        }
                        if (dip3d)
                            fprintf(dip3d,"set arrow %d from %f, %f, %f to %f, %f, %f lt %d  # %d %d\n", 
                                    i+1,
                                    x[ind0][XX],
                                    x[ind0][YY],
                                    x[ind0][ZZ],
                                    x[ind0][XX]+dipole[i][XX]/25, 
                                    x[ind0][YY]+dipole[i][YY]/25, 
                                    x[ind0][ZZ]+dipole[i][ZZ]/25, 
                                    ncolour, ind0, i);
                    }
                } /* End loop of all molecules in frame */
	
                if (dip3d) 
                {
                    fprintf(dip3d,"set title \"t = %4.3f\"\n",t);
                    fprintf(dip3d,"set xrange [0.0:%4.2f]\n",box[XX][XX]);
                    fprintf(dip3d,"set yrange [0.0:%4.2f]\n",box[YY][YY]);
                    fprintf(dip3d,"set zrange [0.0:%4.2f]\n\n",box[ZZ][ZZ]);
                    fprintf(dip3d,"splot 'dummy.dat' using 1:2:3 w vec\n");
                    fprintf(dip3d,"pause -1 'Hit return to continue'\n");
                }
            }
        }
        /* Compute square of total dipole */
        for(m=0; (m<DIM); m++)
            M_av2[m] = M_av[m]*M_av[m];
    
        if (cosaver) 
        {
            compute_avercos(gnx_tot,dipole,&dd,dipaxis,bPairs);
            rms_cos = sqrt(sqr(dipaxis[XX]-0.5)+
                           sqr(dipaxis[YY]-0.5)+
                           sqr(dipaxis[ZZ]-0.5));
            if (bPairs) 
                fprintf(caver,"%10.3e  %10.3e  %10.3e  %10.3e  %10.3e  %10.3e\n",
                        t,dd,rms_cos,dipaxis[XX],dipaxis[YY],dipaxis[ZZ]);
            else
                fprintf(caver,"%10.3e  %10.3e  %10.3e  %10.3e  %10.3e\n",
                        t,rms_cos,dipaxis[XX],dipaxis[YY],dipaxis[ZZ]);
        }
    
        if (bGkr) 
        {
            do_gkr(gkrbin,ncos,gnx,molindex,mols->index,x,dipole,ePBC,box,
                   atom,gkatom);
        }
    
        if (bTotal) 
        {
            tel3 = DIM*teller;
            muall[0][tel3+XX] = M_av[XX];
            muall[0][tel3+YY] = M_av[YY];
            muall[0][tel3+ZZ] = M_av[ZZ];
        }

        /* Write to file the total dipole moment of the box, and its components 
         * for this frame.
         */
        if ((skip == 0) || ((teller % skip) == 0))
            fprintf(outmtot,"%10g  %12.8e %12.8e %12.8e %12.8e\n",
                    t,M_av[XX],M_av[YY],M_av[ZZ],
                    sqrt(M_av2[XX]+M_av2[YY]+M_av2[ZZ]));

        for(m=0; (m<DIM); m++) 
        {
            M[m]  += M_av[m];
            M2[m] += M_av2[m];
            M4[m] += sqr(M_av2[m]);
        }
        /* Increment loop counter */
        teller++;
    
        /* Calculate for output the running averages */
        invtel  = 1.0/teller;
        M2_ave  = (M2[XX]+M2[YY]+M2[ZZ])*invtel;
        M_ave2  = invtel*(invtel*(M[XX]*M[XX] + M[YY]*M[YY] + M[ZZ]*M[ZZ]));
        M_diff  = M2_ave - M_ave2;

        /* Compute volume from box in traj, else we use the one from above */
        if (!bMU)
            volume  = det(box);
        vol_aver += volume;
    
        epsilon = calc_eps(M_diff,(vol_aver/teller),epsilonRF,temp);

        /* Calculate running average for dipole */
        if (mu_ave != 0) 
            mu_aver = (mu_ave/gnx_tot)*invtel;
    
        if ((skip == 0) || ((teller % skip) == 0)) 
        {
            /* Write to file < |M|^2 >, |< M >|^2. And the difference between 
             * the two. Here M is sum mu_i. Further write the finite system
             * Kirkwood G factor and epsilon.
             */
            fprintf(outaver,"%10g  %10.3e %10.3e %10.3e %10.3e\n",
                    t,M2_ave,M_ave2,M_diff,M_ave2/M2_ave);
      
            if (fnadip) 
            {
                real aver;
                gmx_stats_get_average(muframelsq,&aver);
                fprintf(adip, "%10g %f \n", t,aver);
            }
            /*if (dipole)
              printf("%f %f\n", norm(dipole[0]), norm(dipole[1]));
            */      
            if (!bMU || (mu_aver != -1)) 
            {
                /* Finite system Kirkwood G-factor */
                Gk = M_diff/(gnx_tot*mu_aver*mu_aver);
                /* Infinite system Kirkwood G-factor */
                if (epsilonRF == 0.0) 
                    g_k = ((2*epsilon+1)*Gk/(3*epsilon));
                else 
                    g_k = ((2*epsilonRF+epsilon)*(2*epsilon+1)*
                           Gk/(3*epsilon*(2*epsilonRF+1)));
	
                fprintf(outeps,"%10g  %10.3e %10.3e %10.3e\n",t,epsilon,Gk,g_k);

            }
            else 
                fprintf(outeps,"%10g  %12.8e\n",t,epsilon);
        }
        gmx_stats_done(muframelsq);
    
        if (bMU)
            bCont = read_mu_from_enx(fmu,iVol,iMu,mu_t,&volume,&t,nre,fr); 
        else
            bCont = read_next_x(oenv,status,&t,natom,x,box);
        timecheck=check_times(t);
    } while (bCont && (timecheck == 0) );
  
    gmx_rmpbc_done(gpbc);

    if (!bMU)
        close_trj(status);
    
    ffclose(outmtot);
    ffclose(outaver);
    ffclose(outeps);

    if (fnadip)
        ffclose(adip);

    if (cosaver)
        ffclose(caver);

    if (dip3d) {
        fprintf(dip3d,"set xrange [0.0:%4.2f]\n",box[XX][XX]);
        fprintf(dip3d,"set yrange [0.0:%4.2f]\n",box[YY][YY]);
        fprintf(dip3d,"set zrange [0.0:%4.2f]\n\n",box[ZZ][ZZ]);
        fprintf(dip3d,"splot 'dummy.dat' using 1:2:3 w vec\n");
        fprintf(dip3d,"pause -1 'Hit return to continue'\n");
        ffclose(dip3d);
    }

    if (bSlab) {
        dump_slab_dipoles(slabfn,idim,nslices,slab_dipoles,box,teller,oenv);
        sfree(slab_dipoles);
    }
  
    vol_aver /= teller;
    printf("Average volume over run is %g\n",vol_aver);
    if (bGkr) {
        print_gkrbin(gkrfn,gkrbin,gnx[0],teller,vol_aver,oenv);
        print_cmap(cmap,gkrbin,nlevels);
    }
    /* Autocorrelation function */  
    if (bCorr) {
        if (teller < 2) {
            printf("Not enough frames for autocorrelation\n");
        }
        else {
            dt=(t1 - t0)/(teller-1);
            printf("t0 %g, t %g, teller %d\n", t0,t,teller);
      
            mode = eacVector;

            if (bTotal)
                do_autocorr(corf,oenv,"Autocorrelation Function of Total Dipole",
                            teller,1,muall,dt,mode,TRUE);
            else
                do_autocorr(corf,oenv,"Dipole Autocorrelation Function",
                            teller,gnx_tot,muall,dt,
                            mode,strcmp(corrtype,"molsep"));
        }
    }
    if (!bMU) {
        real aver,sigma,error,lsq;

        gmx_stats_get_ase(mulsq,&aver,&sigma,&error);
        printf("\nDipole moment (Debye)\n");
        printf("---------------------\n");
        printf("Average  = %8.4f  Std. Dev. = %8.4f  Error = %8.4f\n",
               aver,sigma,error);
        if (bQuad) {
            rvec a,s,e;
            int mm;
            for(m=0; (m<DIM); m++)
                gmx_stats_get_ase(mulsq,&(a[m]),&(s[m]),&(e[m]));
    
            printf("\nQuadrupole moment (Debye-Ang)\n");
            printf("-----------------------------\n");
            printf("Averages  = %8.4f  %8.4f  %8.4f\n",a[XX],a[YY],a[ZZ]);
            printf("Std. Dev. = %8.4f  %8.4f  %8.4f\n",s[XX],s[YY],s[ZZ]);
            printf("Error     = %8.4f  %8.4f  %8.4f\n",e[XX],e[YY],e[ZZ]);
        }
        printf("\n");
    }
    printf("The following averages for the complete trajectory have been calculated:\n\n");
    printf(" Total < M_x > = %g Debye\n", M[XX]/teller);
    printf(" Total < M_y > = %g Debye\n", M[YY]/teller);
    printf(" Total < M_z > = %g Debye\n\n", M[ZZ]/teller);

    printf(" Total < M_x^2 > = %g Debye^2\n", M2[XX]/teller);
    printf(" Total < M_y^2 > = %g Debye^2\n", M2[YY]/teller);
    printf(" Total < M_z^2 > = %g Debye^2\n\n", M2[ZZ]/teller);

    printf(" Total < |M|^2 > = %g Debye^2\n", M2_ave);
    printf(" Total |< M >|^2 = %g Debye^2\n\n", M_ave2);

    printf(" < |M|^2 > - |< M >|^2 = %g Debye^2\n\n", M_diff);
  
    if (!bMU || (mu_aver != -1)) {
        printf("Finite system Kirkwood g factor G_k = %g\n", Gk);
        printf("Infinite system Kirkwood g factor g_k = %g\n\n", g_k);
    }
    printf("Epsilon = %g\n", epsilon);

    if (!bMU) {
        /* Write to file the dipole moment distibution during the simulation.
         */
        outdd=xvgropen(dipdist,"Dipole Moment Distribution","mu (Debye)","",oenv);
        for(i=0; (i<ndipbin); i++)
            fprintf(outdd,"%10g  %10f\n",
                    (i*mu_max)/ndipbin,dipole_bin[i]/(double)teller);
        ffclose(outdd);
        sfree(dipole_bin);
    }
    if (bGkr) 
        done_gkrbin(&gkrbin);
}
Пример #14
0
void comp_enx(const char *fn1, const char *fn2, real ftol, real abstol, const char *lastener)
{
    int            nre, nre1, nre2;
    ener_file_t    in1, in2;
    int            i, j, maxener, *ind1, *ind2, *have;
    gmx_enxnm_t   *enm1 = NULL, *enm2 = NULL;
    t_enxframe    *fr1, *fr2;
    gmx_bool       b1, b2;

    fprintf(stdout, "comparing energy file %s and %s\n\n", fn1, fn2);

    in1 = open_enx(fn1, "r");
    in2 = open_enx(fn2, "r");
    do_enxnms(in1, &nre1, &enm1);
    do_enxnms(in2, &nre2, &enm2);
    if (nre1 != nre2)
    {
        fprintf(stdout, "There are %d and %d terms in the energy files\n\n",
                nre1, nre2);
    }
    else
    {
        fprintf(stdout, "There are %d terms in the energy files\n\n", nre1);
    }

    snew(ind1, nre1);
    snew(ind2, nre2);
    snew(have, nre2);
    nre = 0;
    for (i = 0; i < nre1; i++)
    {
        for (j = 0; j < nre2; j++)
        {
            if (enernm_equal(enm1[i].name, enm2[j].name))
            {
                ind1[nre] = i;
                ind2[nre] = j;
                have[j]   = 1;
                nre++;
                break;
            }
        }
        if (nre == 0 || ind1[nre-1] != i)
        {
            cmp_str(stdout, "enm", i, enm1[i].name, "-");
        }
    }
    for (i = 0; i < nre2; i++)
    {
        if (have[i] == 0)
        {
            cmp_str(stdout, "enm", i, "-", enm2[i].name);
        }
    }

    maxener = nre;
    for (i = 0; i < nre; i++)
    {
        if ((lastener != NULL) && (std::strstr(enm1[i].name, lastener) != NULL))
        {
            maxener = i+1;
            break;
        }
    }

    fprintf(stdout, "There are %d terms to compare in the energy files\n\n",
            maxener);

    for (i = 0; i < maxener; i++)
    {
        cmp_str(stdout, "unit", i, enm1[ind1[i]].unit, enm2[ind2[i]].unit);
    }

    snew(fr1, 1);
    snew(fr2, 1);
    do
    {
        b1 = do_enx(in1, fr1);
        b2 = do_enx(in2, fr2);
        if (b1 && !b2)
        {
            fprintf(stdout, "\nEnd of file on %s but not on %s\n", fn2, fn1);
        }
        else if (!b1 && b2)
        {
            fprintf(stdout, "\nEnd of file on %s but not on %s\n", fn1, fn2);
        }
        else if (!b1 && !b2)
        {
            fprintf(stdout, "\nFiles read successfully\n");
        }
        else
        {
            cmp_real(stdout, "t", -1, fr1->t, fr2->t, ftol, abstol);
            cmp_int(stdout, "step", -1, fr1->step, fr2->step);
            /* We don't want to print the nre mismatch for every frame */
            /* cmp_int(stdout,"nre",-1,fr1->nre,fr2->nre); */
            if ((fr1->nre >= nre) && (fr2->nre >= nre))
            {
                cmp_energies(stdout, fr1->step, fr1->step, fr1->ener, fr2->ener,
                             enm1, ftol, abstol, nre, ind1, ind2, maxener);
            }
            /*cmp_disres(fr1,fr2,ftol,abstol);*/
            cmp_eblocks(fr1, fr2, ftol, abstol);
        }
    }
    while (b1 && b2);

    close_enx(in1);
    close_enx(in2);

    free_enxframe(fr2);
    sfree(fr2);
    free_enxframe(fr1);
    sfree(fr1);
}
Пример #15
0
int gmx_eneconv(int argc,char *argv[])
{
  static char *desc[] = {
    "With [IT]multiple files[it] specified for the [TT]-f[tt] option:[BR]",
    "Concatenates several energy files in sorted order.",
    "In case of double time frames the one",
    "in the later file is used. By specifying [TT]-settime[tt] you will be",
    "asked for the start time of each file. The input files are taken",
    "from the command line,",
    "such that the command [TT]eneconv -o fixed.edr *.edr[tt] should do",
    "the trick. [PAR]",
    "With [IT]one file[it] specified for [TT]-f[tt]:[BR]",
    "Reads one energy file and writes another, applying the [TT]-dt[tt],",
    "[TT]-offset[tt], [TT]-t0[tt] and [TT]-settime[tt] options and",
    "converting to a different format if necessary (indicated by file",
    "extentions).[PAR]",
    "[TT]-settime[tt] is applied first, then [TT]-dt[tt]/[TT]-offset[tt]",
    "followed by [TT]-b[tt] and [TT]-e[tt] to select which frames to write."
  };
  static char *bugs[] = {
    "When combining trajectories the sigma and E^2 (necessary for statistics) are not updated correctly. Only the actual energy is correct. One thus has to compute statistics in another way."
  };
  int        in,out=0;
  t_enxframe *fr,*fro;
  t_energy   *lastee,*startee;
  int        laststep,startstep,startstep_file=0,noutfr;
  int        nre,nremax,this_nre,nfile,i,j,kkk,nset,*set=NULL;
  real       t=0; 
  char       **fnms;
  char       **enm=NULL;
  real       *readtime,*settime,timestep,t1,tadjust;
  char       inputstring[STRLEN],*chptr;
  bool       ok;
  int        *cont_type;
  bool       bNewFile,bFirst,bNewOutput;
  
  t_filenm fnm[] = {
    { efENX, "-f", NULL,    ffRDMULT },
    { efENX, "-o", "fixed", ffWRITE  },
  };

#define NFILE asize(fnm)  
  bool   bWrite;
  static real  delta_t=0.0, toffset=0,scalefac=1;
  static bool  bSetTime=FALSE;
  static bool  bSort=TRUE,bError=TRUE;
  static real  begin=-1;
  static real  end=-1;
  
  t_pargs pa[] = {
    { "-b",        FALSE, etREAL, {&begin},
      "First time to use"},
    { "-e",        FALSE, etREAL, {&end},
      "Last time to use"},
    { "-dt",       FALSE, etREAL, {&delta_t},
      "Only write out frame when t MOD dt = offset" },
    { "-offset",   FALSE, etREAL, {&toffset},
      "Time offset for -dt option" }, 
    { "-settime",  FALSE, etBOOL, {&bSetTime}, 
      "Change starting time interactively" },
    { "-sort",     FALSE, etBOOL, {&bSort},
      "Sort energy files (not frames)"},
    { "-scalefac", FALSE, etREAL, {&scalefac},
      "Multiply energy component by this factor" },
    { "-error",    FALSE, etBOOL, {&bError},
      "Stop on errors in the file" }
  };
  
  CopyRight(stderr,argv[0]);
  parse_common_args(&argc,argv,PCA_BE_NICE ,
		    NFILE,fnm,asize(pa),pa,asize(desc),desc,asize(bugs),bugs);
  tadjust  = 0;
  nremax   = 0;
  nset     = 0;
  timestep = 0.0;
  snew(fnms,argc);
  nfile=0;
  laststep=startstep=0;
  
  nfile = opt2fns(&fnms,"-f",NFILE,fnm);
  
  if (!nfile)
    gmx_fatal(FARGS,"No input files!");
  
  snew(settime,nfile+1);
  snew(readtime,nfile+1);
  snew(cont_type,nfile+1);
  
  nre=scan_ene_files(fnms,nfile,readtime,&timestep,&nremax);   
  edit_files(fnms,nfile,readtime,settime,cont_type,bSetTime,bSort);     

  snew(fr,1);
  snew(fro,1);
  fro->t = -1;
  fro->nre = nre;
  snew(fro->ener,nremax);

  if(nfile>1)
    snew(lastee,nremax);
  else
    lastee=NULL;

  snew(startee,nremax);
    
  noutfr=0;
  bFirst=TRUE;

  for(i=0;i<nfile;i++) {
    bNewFile=TRUE;
    bNewOutput=TRUE;
    in=open_enx(fnms[i],"r");
    do_enxnms(in,&this_nre,&enm);
    if(i==0) {
      if (scalefac != 1)
	set = select_it(nre,enm,&nset);
      
      /* write names to the output file */
      out=open_enx(opt2fn("-o",NFILE,fnm),"w");  
      do_enxnms(out,&nre,&enm);
    }
    
    /* start reading from the next file */
    while((t<(settime[i+1]-GMX_REAL_EPS)) &&
	  do_enx(in,fr)) {
      if(bNewFile) {
	startstep_file = fr->step;
	tadjust = settime[i] - fr->t;	  
	if(cont_type[i+1]==TIME_LAST) {
	  settime[i+1]   = readtime[i+1]-readtime[i]+settime[i];
	  cont_type[i+1] = TIME_EXPLICIT;
	}
	bNewFile = FALSE;
      }
      fro->step = laststep + fr->step - startstep_file;
      t = tadjust + fr->t;

      /*bWrite = ((begin<0 || (begin>=0 && (t >= begin-GMX_REAL_EPS))) && 
		(end  <0 || (end  >=0 && (t <= end  +GMX_REAL_EPS))) &&
		(t < settime[i+1]-GMX_REAL_EPS));*/
      bWrite = ((begin<0 || (begin>=0 && (t >= begin-GMX_REAL_EPS))) && 
		(end  <0 || (end  >=0 && (t <= end  +GMX_REAL_EPS))) &&
		(t < settime[i+1]-0.5*timestep));
      
      if (bError)      
	if ((end > 0) && (t > end+GMX_REAL_EPS)) {
	  i = nfile;
	  break;
	}
      
      if (t >= begin-GMX_REAL_EPS) {
	if (bFirst) {
	  bFirst = FALSE;
	  startstep = fr->step;	
	  if (begin > 0)
	    copy_ee(fr->ener,startee,nre);
	}
	update_ee(lastee,laststep,startee,startstep,
		  fr->ener,fro->step,fro->ener,nre);
      }	  
      
      /* determine if we should write it */
      if (bWrite && (delta_t==0 || bRmod(t,toffset,delta_t))) {
	fro->t = t;
	if(bNewOutput) {
	  bNewOutput=FALSE;
	  fprintf(stderr,"\nContinue writing frames from t=%g, step=%d\n",
		  t,fro->step);
	}
	if (scalefac != 1) {
	  for(kkk=0; kkk<nset; kkk++) {
	    fro->ener[set[kkk]].e    *= scalefac;
	    fro->ener[set[kkk]].eav  *= scalefac;
	    fro->ener[set[kkk]].esum *= scalefac;
	  }
	}
	/* Copy restraint stuff */
	fro->ndisre       = fr->ndisre;
	fro->disre_rm3tav = fr->disre_rm3tav;
	fro->disre_rt     = fr->disre_rt;
	fro->nblock       = fr->nblock;
	fro->nr           = fr->nr;
	fro->block        = fr->block;
	
	do_enx(out,fro);
	if (noutfr % 1000 == 0)
	  fprintf(stderr,"Writing frame time %g    ",fro->t);
	noutfr++;
      }
    }
    /* copy statistics to old */
    if (lastee != NULL) {
	update_last_ee(lastee,laststep,fr->ener,fro->step,nre);
	laststep = fro->step;
	/* remove the last frame from statistics since gromacs2.0 
	 * repeats it in the next file 
	 */
	remove_last_eeframe(lastee,laststep,fr->ener,nre);
	/* the old part now has (laststep) values, and the new (step+1) */
	printf("laststep=%d step=%d\n",laststep,fro->step);
    }
    
    /* set the next time from the last in previous file */
    if (cont_type[i+1]==TIME_CONTINUE) {
	settime[i+1] = fro->t;
	/* in this case we have already written the last frame of
	 * previous file, so update begin to avoid doubling it
	 * with the start of the next file
	 */
	begin = fro->t+0.5*timestep;
	/* cont_type[i+1]==TIME_EXPLICIT; */
    }
    
    if ((fro->t < end) && (i < nfile-1) &&
	(fro->t < settime[i+1]-1.5*timestep)) 
      fprintf(stderr,
	      "\nWARNING: There might be a gap around t=%g\n",t);
    
    /* move energies to lastee */
    close_enx(in);
    for(kkk=0; kkk<this_nre; kkk++)
      sfree(enm[kkk]);
    sfree(enm);
    enm = NULL;

    fprintf(stderr,"\n");
  }
  if (noutfr == 0)
    fprintf(stderr,"No frames written.\n");
  else {
    fprintf(stderr,"Last frame written was at step %d, time %f\n",
	    fro->step,fro->t);
    fprintf(stderr,"Wrote %d frames\n",noutfr);
  }

  thanx(stderr);
  return 0;
}
Пример #16
0
int open_enx(char *fn,char *mode)
{
  int        fp,nre,i;
  char       **nm=NULL;
  t_enxframe *fr;
  bool       bDum=TRUE;
  
  /* Energy files should always be opened as binary files,
   * but that is checked in gmx_fio_open.
   */

  if (mode[0]=='r') {
    fp=gmx_fio_open(fn,mode);
    gmx_fio_select(fp);
    gmx_fio_setprecision(fp,FALSE);
    do_enxnms(fp,&nre,&nm);
    snew(fr,1);
    do_eheader(fp,fr,&bDum);
    
    /* Now check whether this file is in single precision */
    if (((fr->e_size && (fr->nre == nre) && 
	  (nre*4*sizeof(float) == fr->e_size)) ||
	 (fr->d_size && 
	  (fr->ndisre*sizeof(float)*2+sizeof(int) == fr->d_size)))){
      fprintf(stderr,"Opened %s as single precision energy file\n",fn);
      for(i=0; (i<nre); i++)
	sfree(nm[i]);
      sfree(nm);
    }
    else {
      gmx_fio_rewind(fp);
      gmx_fio_select(fp);
      gmx_fio_setprecision(fp,TRUE);
      do_enxnms(fp,&nre,&nm);
      do_eheader(fp,fr,&bDum);
      if (((fr->e_size && (fr->nre == nre) && 
	    (nre*4*sizeof(double) == fr->e_size)) ||
	   (fr->d_size && 
	    (fr->ndisre*sizeof(double)*2+sizeof(int) == fr->d_size))))
	fprintf(stderr,"Opened %s as double precision energy file\n",fn);
      else {
	if (empty_file(fn))
	  fatal_error(0,"File %s is empty",fn);
	else
	  fatal_error(0,"Energy file %s not recognized, maybe different CPU?",
		      fn);
      }
      for(i=0; (i<nre); i++)
	  sfree(nm[i]);
      sfree(nm);
    }
    free_enxframe(fr);
    sfree(fr);
    gmx_fio_rewind(fp);
  }
  else 
    fp = gmx_fio_open(fn,mode);
    
  framenr=0;
    
  return fp;
}
Пример #17
0
t_mdebin *init_mdebin(ener_file_t       fp_ene,
                      const gmx_mtop_t *mtop,
                      const t_inputrec *ir,
                      FILE             *fp_dhdl)
{
    const char         *ener_nm[F_NRE];
    static const char  *vir_nm[] = {
        "Vir-XX", "Vir-XY", "Vir-XZ",
        "Vir-YX", "Vir-YY", "Vir-YZ",
        "Vir-ZX", "Vir-ZY", "Vir-ZZ"
    };
    static const char  *sv_nm[] = {
        "ShakeVir-XX", "ShakeVir-XY", "ShakeVir-XZ",
        "ShakeVir-YX", "ShakeVir-YY", "ShakeVir-YZ",
        "ShakeVir-ZX", "ShakeVir-ZY", "ShakeVir-ZZ"
    };
    static const char  *fv_nm[] = {
        "ForceVir-XX", "ForceVir-XY", "ForceVir-XZ",
        "ForceVir-YX", "ForceVir-YY", "ForceVir-YZ",
        "ForceVir-ZX", "ForceVir-ZY", "ForceVir-ZZ"
    };
    static const char  *pres_nm[] = {
        "Pres-XX", "Pres-XY", "Pres-XZ",
        "Pres-YX", "Pres-YY", "Pres-YZ",
        "Pres-ZX", "Pres-ZY", "Pres-ZZ"
    };
    static const char  *surft_nm[] = {
        "#Surf*SurfTen"
    };
    static const char  *mu_nm[] = {
        "Mu-X", "Mu-Y", "Mu-Z"
    };
    static const char  *vcos_nm[] = {
        "2CosZ*Vel-X"
    };
    static const char  *visc_nm[] = {
        "1/Viscosity"
    };
    static const char  *baro_nm[] = {
        "Barostat"
    };

    char              **grpnms;
    const gmx_groups_t *groups;
    char              **gnm;
    char                buf[256];
    const char         *bufi;
    t_mdebin           *md;
    int                 i, j, ni, nj, n, k, kk, ncon, nset;
    gmx_bool            bBHAM, b14;

    snew(md, 1);

    if (EI_DYNAMICS(ir->eI))
    {
        md->delta_t = ir->delta_t;
    }
    else
    {
        md->delta_t = 0;
    }

    groups = &mtop->groups;

    bBHAM = (mtop->ffparams.functype[0] == F_BHAM);
    b14   = (gmx_mtop_ftype_count(mtop, F_LJ14) > 0 ||
             gmx_mtop_ftype_count(mtop, F_LJC14_Q) > 0);

    ncon           = gmx_mtop_ftype_count(mtop, F_CONSTR);
    nset           = gmx_mtop_ftype_count(mtop, F_SETTLE);
    md->bConstr    = (ncon > 0 || nset > 0);
    md->bConstrVir = FALSE;
    if (md->bConstr)
    {
        if (ncon > 0 && ir->eConstrAlg == econtLINCS)
        {
            md->nCrmsd = 1;
        }
        md->bConstrVir = (getenv("GMX_CONSTRAINTVIR") != NULL);
    }
    else
    {
        md->nCrmsd = 0;
    }

    /* Energy monitoring */
    for (i = 0; i < egNR; i++)
    {
        md->bEInd[i] = FALSE;
    }

    for (i = 0; i < F_NRE; i++)
    {
        md->bEner[i] = FALSE;
        if (i == F_LJ)
        {
            md->bEner[i] = !bBHAM;
        }
        else if (i == F_BHAM)
        {
            md->bEner[i] = bBHAM;
        }
        else if (i == F_EQM)
        {
            md->bEner[i] = ir->bQMMM;
        }
        else if (i == F_RF_EXCL)
        {
            md->bEner[i] = (EEL_RF(ir->coulombtype) && ir->cutoff_scheme == ecutsGROUP);
        }
        else if (i == F_COUL_RECIP)
        {
            md->bEner[i] = EEL_FULL(ir->coulombtype);
        }
        else if (i == F_LJ_RECIP)
        {
            md->bEner[i] = EVDW_PME(ir->vdwtype);
        }
        else if (i == F_LJ14)
        {
            md->bEner[i] = b14;
        }
        else if (i == F_COUL14)
        {
            md->bEner[i] = b14;
        }
        else if (i == F_LJC14_Q || i == F_LJC_PAIRS_NB)
        {
            md->bEner[i] = FALSE;
        }
        else if ((i == F_DVDL_COUL && ir->fepvals->separate_dvdl[efptCOUL]) ||
                 (i == F_DVDL_VDW  && ir->fepvals->separate_dvdl[efptVDW]) ||
                 (i == F_DVDL_BONDED && ir->fepvals->separate_dvdl[efptBONDED]) ||
                 (i == F_DVDL_RESTRAINT && ir->fepvals->separate_dvdl[efptRESTRAINT]) ||
                 (i == F_DKDL && ir->fepvals->separate_dvdl[efptMASS]) ||
                 (i == F_DVDL && ir->fepvals->separate_dvdl[efptFEP]))
        {
            md->bEner[i] = (ir->efep != efepNO);
        }
        else if ((interaction_function[i].flags & IF_VSITE) ||
                 (i == F_CONSTR) || (i == F_CONSTRNC) || (i == F_SETTLE))
        {
            md->bEner[i] = FALSE;
        }
        else if ((i == F_COUL_SR) || (i == F_EPOT) || (i == F_PRES)  || (i == F_EQM))
        {
            md->bEner[i] = TRUE;
        }
        else if ((i == F_GBPOL) && ir->implicit_solvent == eisGBSA)
        {
            md->bEner[i] = TRUE;
        }
        else if ((i == F_NPSOLVATION) && ir->implicit_solvent == eisGBSA && (ir->sa_algorithm != esaNO))
        {
            md->bEner[i] = TRUE;
        }
        else if ((i == F_GB12) || (i == F_GB13) || (i == F_GB14))
        {
            md->bEner[i] = FALSE;
        }
        else if ((i == F_ETOT) || (i == F_EKIN) || (i == F_TEMP))
        {
            md->bEner[i] = EI_DYNAMICS(ir->eI);
        }
        else if (i == F_DISPCORR || i == F_PDISPCORR)
        {
            md->bEner[i] = (ir->eDispCorr != edispcNO);
        }
        else if (i == F_DISRESVIOL)
        {
            md->bEner[i] = (gmx_mtop_ftype_count(mtop, F_DISRES) > 0);
        }
        else if (i == F_ORIRESDEV)
        {
            md->bEner[i] = (gmx_mtop_ftype_count(mtop, F_ORIRES) > 0);
        }
        else if (i == F_CONNBONDS)
        {
            md->bEner[i] = FALSE;
        }
        else if (i == F_COM_PULL)
        {
            md->bEner[i] = (ir->bPull && pull_have_potential(ir->pull_work));
        }
        else if (i == F_ECONSERVED)
        {
            md->bEner[i] = ((ir->etc == etcNOSEHOOVER || ir->etc == etcVRESCALE) &&
                            (ir->epc == epcNO || ir->epc == epcMTTK));
        }
        else
        {
            md->bEner[i] = (gmx_mtop_ftype_count(mtop, i) > 0);
        }
    }

    md->f_nre = 0;
    for (i = 0; i < F_NRE; i++)
    {
        if (md->bEner[i])
        {
            ener_nm[md->f_nre] = interaction_function[i].longname;
            md->f_nre++;
        }
    }

    md->epc            = ir->epc;
    md->bDiagPres      = !TRICLINIC(ir->ref_p);
    md->ref_p          = (ir->ref_p[XX][XX]+ir->ref_p[YY][YY]+ir->ref_p[ZZ][ZZ])/DIM;
    md->bTricl         = TRICLINIC(ir->compress) || TRICLINIC(ir->deform);
    md->bDynBox        = inputrecDynamicBox(ir);
    md->etc            = ir->etc;
    md->bNHC_trotter   = inputrecNvtTrotter(ir);
    md->bPrintNHChains = ir->bPrintNHChains;
    md->bMTTK          = (inputrecNptTrotter(ir) || inputrecNphTrotter(ir));
    md->bMu            = inputrecNeedMutot(ir);

    md->ebin  = mk_ebin();
    /* Pass NULL for unit to let get_ebin_space determine the units
     * for interaction_function[i].longname
     */
    md->ie    = get_ebin_space(md->ebin, md->f_nre, ener_nm, NULL);
    if (md->nCrmsd)
    {
        /* This should be called directly after the call for md->ie,
         * such that md->iconrmsd follows directly in the list.
         */
        md->iconrmsd = get_ebin_space(md->ebin, md->nCrmsd, conrmsd_nm, "");
    }
    if (md->bDynBox)
    {
        md->ib    = get_ebin_space(md->ebin,
                                   md->bTricl ? NTRICLBOXS : NBOXS,
                                   md->bTricl ? tricl_boxs_nm : boxs_nm,
                                   unit_length);
        md->ivol  = get_ebin_space(md->ebin, 1, vol_nm,  unit_volume);
        md->idens = get_ebin_space(md->ebin, 1, dens_nm, unit_density_SI);
        if (md->bDiagPres)
        {
            md->ipv       = get_ebin_space(md->ebin, 1, pv_nm,   unit_energy);
            md->ienthalpy = get_ebin_space(md->ebin, 1, enthalpy_nm,   unit_energy);
        }
    }
    if (md->bConstrVir)
    {
        md->isvir = get_ebin_space(md->ebin, asize(sv_nm), sv_nm, unit_energy);
        md->ifvir = get_ebin_space(md->ebin, asize(fv_nm), fv_nm, unit_energy);
    }
    md->ivir   = get_ebin_space(md->ebin, asize(vir_nm), vir_nm, unit_energy);
    md->ipres  = get_ebin_space(md->ebin, asize(pres_nm), pres_nm, unit_pres_bar);
    md->isurft = get_ebin_space(md->ebin, asize(surft_nm), surft_nm,
                                unit_surft_bar);
    if (md->epc == epcPARRINELLORAHMAN || md->epc == epcMTTK)
    {
        md->ipc = get_ebin_space(md->ebin, md->bTricl ? 6 : 3,
                                 boxvel_nm, unit_vel);
    }
    if (md->bMu)
    {
        md->imu    = get_ebin_space(md->ebin, asize(mu_nm), mu_nm, unit_dipole_D);
    }
    if (ir->cos_accel != 0)
    {
        md->ivcos = get_ebin_space(md->ebin, asize(vcos_nm), vcos_nm, unit_vel);
        md->ivisc = get_ebin_space(md->ebin, asize(visc_nm), visc_nm,
                                   unit_invvisc_SI);
    }

    /* Energy monitoring */
    for (i = 0; i < egNR; i++)
    {
        md->bEInd[i] = FALSE;
    }
    md->bEInd[egCOULSR] = TRUE;
    md->bEInd[egLJSR  ] = TRUE;

    if (bBHAM)
    {
        md->bEInd[egLJSR]   = FALSE;
        md->bEInd[egBHAMSR] = TRUE;
    }
    if (b14)
    {
        md->bEInd[egLJ14]   = TRUE;
        md->bEInd[egCOUL14] = TRUE;
    }
    md->nEc = 0;
    for (i = 0; (i < egNR); i++)
    {
        if (md->bEInd[i])
        {
            md->nEc++;
        }
    }

    n       = groups->grps[egcENER].nr;
    md->nEg = n;
    md->nE  = (n*(n+1))/2;

    snew(md->igrp, md->nE);
    if (md->nE > 1)
    {
        n = 0;
        snew(gnm, md->nEc);
        for (k = 0; (k < md->nEc); k++)
        {
            snew(gnm[k], STRLEN);
        }
        for (i = 0; (i < groups->grps[egcENER].nr); i++)
        {
            ni = groups->grps[egcENER].nm_ind[i];
            for (j = i; (j < groups->grps[egcENER].nr); j++)
            {
                nj = groups->grps[egcENER].nm_ind[j];
                for (k = kk = 0; (k < egNR); k++)
                {
                    if (md->bEInd[k])
                    {
                        sprintf(gnm[kk], "%s:%s-%s", egrp_nm[k],
                                *(groups->grpname[ni]), *(groups->grpname[nj]));
                        kk++;
                    }
                }
                md->igrp[n] = get_ebin_space(md->ebin, md->nEc,
                                             (const char **)gnm, unit_energy);
                n++;
            }
        }
        for (k = 0; (k < md->nEc); k++)
        {
            sfree(gnm[k]);
        }
        sfree(gnm);

        if (n != md->nE)
        {
            gmx_incons("Number of energy terms wrong");
        }
    }

    md->nTC  = groups->grps[egcTC].nr;
    md->nNHC = ir->opts.nhchainlength; /* shorthand for number of NH chains */
    if (md->bMTTK)
    {
        md->nTCP = 1;  /* assume only one possible coupling system for barostat
                          for now */
    }
    else
    {
        md->nTCP = 0;
    }
    if (md->etc == etcNOSEHOOVER)
    {
        if (md->bNHC_trotter)
        {
            md->mde_n = 2*md->nNHC*md->nTC;
        }
        else
        {
            md->mde_n = 2*md->nTC;
        }
        if (md->epc == epcMTTK)
        {
            md->mdeb_n = 2*md->nNHC*md->nTCP;
        }
    }
    else
    {
        md->mde_n  = md->nTC;
        md->mdeb_n = 0;
    }

    snew(md->tmp_r, md->mde_n);
    snew(md->tmp_v, md->mde_n);
    snew(md->grpnms, md->mde_n);
    grpnms = md->grpnms;

    for (i = 0; (i < md->nTC); i++)
    {
        ni = groups->grps[egcTC].nm_ind[i];
        sprintf(buf, "T-%s", *(groups->grpname[ni]));
        grpnms[i] = gmx_strdup(buf);
    }
    md->itemp = get_ebin_space(md->ebin, md->nTC, (const char **)grpnms,
                               unit_temp_K);

    if (md->etc == etcNOSEHOOVER)
    {
        if (md->bPrintNHChains)
        {
            if (md->bNHC_trotter)
            {
                for (i = 0; (i < md->nTC); i++)
                {
                    ni   = groups->grps[egcTC].nm_ind[i];
                    bufi = *(groups->grpname[ni]);
                    for (j = 0; (j < md->nNHC); j++)
                    {
                        sprintf(buf, "Xi-%d-%s", j, bufi);
                        grpnms[2*(i*md->nNHC+j)] = gmx_strdup(buf);
                        sprintf(buf, "vXi-%d-%s", j, bufi);
                        grpnms[2*(i*md->nNHC+j)+1] = gmx_strdup(buf);
                    }
                }
                md->itc = get_ebin_space(md->ebin, md->mde_n,
                                         (const char **)grpnms, unit_invtime);
                if (md->bMTTK)
                {
                    for (i = 0; (i < md->nTCP); i++)
                    {
                        bufi = baro_nm[0];  /* All barostat DOF's together for now. */
                        for (j = 0; (j < md->nNHC); j++)
                        {
                            sprintf(buf, "Xi-%d-%s", j, bufi);
                            grpnms[2*(i*md->nNHC+j)] = gmx_strdup(buf);
                            sprintf(buf, "vXi-%d-%s", j, bufi);
                            grpnms[2*(i*md->nNHC+j)+1] = gmx_strdup(buf);
                        }
                    }
                    md->itcb = get_ebin_space(md->ebin, md->mdeb_n,
                                              (const char **)grpnms, unit_invtime);
                }
            }
            else
            {
                for (i = 0; (i < md->nTC); i++)
                {
                    ni   = groups->grps[egcTC].nm_ind[i];
                    bufi = *(groups->grpname[ni]);
                    sprintf(buf, "Xi-%s", bufi);
                    grpnms[2*i] = gmx_strdup(buf);
                    sprintf(buf, "vXi-%s", bufi);
                    grpnms[2*i+1] = gmx_strdup(buf);
                }
                md->itc = get_ebin_space(md->ebin, md->mde_n,
                                         (const char **)grpnms, unit_invtime);
            }
        }
    }
    else if (md->etc == etcBERENDSEN || md->etc == etcYES ||
             md->etc == etcVRESCALE)
    {
        for (i = 0; (i < md->nTC); i++)
        {
            ni = groups->grps[egcTC].nm_ind[i];
            sprintf(buf, "Lamb-%s", *(groups->grpname[ni]));
            grpnms[i] = gmx_strdup(buf);
        }
        md->itc = get_ebin_space(md->ebin, md->mde_n, (const char **)grpnms, "");
    }

    sfree(grpnms);


    md->nU = groups->grps[egcACC].nr;
    if (md->nU > 1)
    {
        snew(grpnms, 3*md->nU);
        for (i = 0; (i < md->nU); i++)
        {
            ni = groups->grps[egcACC].nm_ind[i];
            sprintf(buf, "Ux-%s", *(groups->grpname[ni]));
            grpnms[3*i+XX] = gmx_strdup(buf);
            sprintf(buf, "Uy-%s", *(groups->grpname[ni]));
            grpnms[3*i+YY] = gmx_strdup(buf);
            sprintf(buf, "Uz-%s", *(groups->grpname[ni]));
            grpnms[3*i+ZZ] = gmx_strdup(buf);
        }
        md->iu = get_ebin_space(md->ebin, 3*md->nU, (const char **)grpnms, unit_vel);
        sfree(grpnms);
    }

    if (fp_ene)
    {
        do_enxnms(fp_ene, &md->ebin->nener, &md->ebin->enm);
    }

    md->print_grpnms = NULL;

    /* check whether we're going to write dh histograms */
    md->dhc = NULL;
    if (ir->fepvals->separate_dhdl_file == esepdhdlfileNO)
    {
        /* Currently dh histograms are only written with dynamics */
        if (EI_DYNAMICS(ir->eI))
        {
            snew(md->dhc, 1);

            mde_delta_h_coll_init(md->dhc, ir);
        }
        md->fp_dhdl = NULL;
        snew(md->dE, ir->fepvals->n_lambda);
    }
    else
    {
        md->fp_dhdl = fp_dhdl;
        snew(md->dE, ir->fepvals->n_lambda);
    }
    if (ir->bSimTemp)
    {
        int i;
        snew(md->temperatures, ir->fepvals->n_lambda);
        for (i = 0; i < ir->fepvals->n_lambda; i++)
        {
            md->temperatures[i] = ir->simtempvals->temperatures[i];
        }
    }
    return md;
}
Пример #18
0
int gmx_lie(int argc, char *argv[])
{
    const char        *desc[] = {
        "[THISMODULE] computes a free energy estimate based on an energy analysis",
        "from nonbonded energies. One needs an energy file with the following components:",
        "Coul-(A-B) LJ-SR (A-B) etc.[PAR]",
        "To utilize [TT]g_lie[tt] correctly, two simulations are required: one with the",
        "molecule of interest bound to its receptor and one with the molecule in water.",
        "Both need to utilize [TT]energygrps[tt] such that Coul-SR(A-B), LJ-SR(A-B), etc. terms",
        "are written to the [REF].edr[ref] file. Values from the molecule-in-water simulation",
        "are necessary for supplying suitable values for -Elj and -Eqq."
    };
    static real        lie_lj = 0, lie_qq = 0, fac_lj = 0.181, fac_qq = 0.5;
    static const char *ligand = "none";
    t_pargs            pa[]   = {
        { "-Elj",  FALSE, etREAL, {&lie_lj},
          "Lennard-Jones interaction between ligand and solvent" },
        { "-Eqq",  FALSE, etREAL, {&lie_qq},
          "Coulomb interaction between ligand and solvent" },
        { "-Clj",  FALSE, etREAL, {&fac_lj},
          "Factor in the LIE equation for Lennard-Jones component of energy" },
        { "-Cqq",  FALSE, etREAL, {&fac_qq},
          "Factor in the LIE equation for Coulomb component of energy" },
        { "-ligand",  FALSE, etSTR, {&ligand},
          "Name of the ligand in the energy file" }
    };
#define NPA asize(pa)

    FILE             *out;
    int               nre, nframes = 0, ct = 0;
    ener_file_t       fp;
    t_liedata        *ld;
    gmx_enxnm_t      *enm = NULL;
    t_enxframe       *fr;
    real              lie;
    double            lieaver = 0, lieav2 = 0;
    gmx_output_env_t *oenv;

    t_filenm          fnm[] = {
        { efEDR, "-f",    "ener",     ffREAD   },
        { efXVG, "-o",    "lie",      ffWRITE  }
    };
#define NFILE asize(fnm)

    if (!parse_common_args(&argc, argv, PCA_CAN_VIEW | PCA_CAN_TIME,
                           NFILE, fnm, NPA, pa, asize(desc), desc, 0, NULL, &oenv))
    {
        return 0;
    }

    fp = open_enx(ftp2fn(efEDR, NFILE, fnm), "r");
    do_enxnms(fp, &nre, &enm);

    ld = analyze_names(nre, enm, ligand);
    snew(fr, 1);

    out = xvgropen(ftp2fn(efXVG, NFILE, fnm), "LIE free energy estimate",
                   "Time (ps)", "DGbind (kJ/mol)", oenv);
    while (do_enx(fp, fr))
    {
        ct = check_times(fr->t);
        if (ct == 0)
        {
            lie      = calc_lie(ld, fr->ener, lie_lj, lie_qq, fac_lj, fac_qq);
            lieaver += lie;
            lieav2  += lie*lie;
            nframes++;
            fprintf(out, "%10g  %10g\n", fr->t, lie);
        }
    }
    close_enx(fp);
    xvgrclose(out);
    fprintf(stderr, "\n");

    if (nframes > 0)
    {
        printf("DGbind = %.3f (%.3f)\n", lieaver/nframes,
               std::sqrt(lieav2/nframes-sqr(lieaver/nframes)));
    }

    do_view(oenv, ftp2fn(efXVG, NFILE, fnm), "-nxy");

    return 0;
}
Пример #19
0
t_mdebin *init_mdebin(int fp_ene,t_groups *grps,t_atoms *atoms,t_idef *idef,
		      bool bLR,bool bLJLR,bool bBHAM,bool b14,bool bFEP,
		      bool bPcoupl,bool bDispCorr,bool bTriclinic, bool bNoseHoover,t_commrec *cr)
{
  char *ener_nm[F_NRE];
  static char *vir_nm[] = {
    "Vir-XX", "Vir-XY", "Vir-XZ",
    "Vir-YX", "Vir-YY", "Vir-YZ",
    "Vir-ZX", "Vir-ZY", "Vir-ZZ"
  };
  static char *sv_nm[] = {
    "ShakeVir-XX", "ShakeVir-XY", "ShakeVir-XZ",
    "ShakeVir-YX", "ShakeVir-YY", "ShakeVir-YZ",
    "ShakeVir-ZX", "ShakeVir-ZY", "ShakeVir-ZZ"
  };
  static char *fv_nm[] = {
    "ForceVir-XX", "ForceVir-XY", "ForceVir-XZ",
    "ForceVir-YX", "ForceVir-YY", "ForceVir-YZ",
    "ForceVir-ZX", "ForceVir-ZY", "ForceVir-ZZ"
  };
  static char *pres_nm[] = {
    "Pres-XX (bar)","Pres-XY (bar)","Pres-XZ (bar)",
    "Pres-YX (bar)","Pres-YY (bar)","Pres-YZ (bar)",
    "Pres-ZX (bar)","Pres-ZY (bar)","Pres-ZZ (bar)"
  };
  static char *surft_nm[] = {
    "#Surf*SurfTen"
  };
  static char *mu_nm[] = {
    "Mu-X", "Mu-Y", "Mu-Z"
  };
  static char *vcos_nm[] = {
    "2CosZ*Vel-X"
  };
  static char *visc_nm[] = {
    "1/Viscosity (SI)"
  };
  static   char   **grpnms;
  char     **gnm;
  char     buf[256];
  t_mdebin *md;
  int      i,j,ni,nj,n,k,kk;
  
  for(i=0; i<F_NRE; i++) {
    bEner[i] = FALSE;
    if (i == F_LJ)
      bEner[i] = !bBHAM;
    else if (i == F_BHAM)
      bEner[i] = bBHAM;
    else if (i == F_LR)
      bEner[i] = bLR;
    else if (i == F_LJLR)
      bEner[i] = bLJLR;
    else if (i == F_LJ14)
      bEner[i] = b14;
    else if (i == F_COUL14)
      bEner[i] = b14;
    else if ((i == F_DVDL) || (i == F_DVDLKIN))
      bEner[i] = bFEP;
    else if ((strstr(interaction_function[i].name,"DUM") != NULL) ||
	     (i == F_SHAKE) || (i == F_SETTLE))
      bEner[i] = FALSE;
    else if ((i == F_SR) || (i == F_EPOT) || (i == F_ETOT) || (i == F_EKIN) ||
	     (i == F_TEMP) || (i == F_PRES))
      bEner[i] = TRUE;
    else if ((i == F_DISPCORR) && bDispCorr)
      bEner[i] = TRUE;
    else if (i == F_DISRESVIOL)
      bEner[i] = (idef->il[F_DISRES].nr > 0);
    else if (i == F_ORIRESDEV)
      bEner[i] = (idef->il[F_ORIRES].nr > 0);
    else if (i == F_CONNBONDS)
      bEner[i] = FALSE;
    else
      bEner[i] = (idef->il[i].nr > 0);
  }
  if (PAR(cr))
    gmx_sumi(F_NRE,bEner,cr);

  for(i=0; i<F_NRE; i++)
    if (bEner[i]) {
      ener_nm[f_nre]=interaction_function[i].longname;
      f_nre++;
    }

  bShake = (idef->il[F_SHAKE].nr > 0) || (idef->il[F_SETTLE].nr > 0);

  if (bShake) 
#ifdef SPEC_CPU
    bShake = FALSE;
#else
    bShake = (getenv("SHAKEVIR") != NULL);
#endif
  bPC    = bPcoupl;
  bTricl = bTriclinic;
  
  /* Energy monitoring */
  snew(md,1);
  md->ebin  = mk_ebin();
  md->ie    = get_ebin_space(md->ebin,f_nre,ener_nm);
  if (bPC)
    md->ib    = get_ebin_space(md->ebin, bTricl ? NTRICLBOXS :
			       NBOXS, bTricl ? tricl_boxs_nm : boxs_nm);
  if (bShake) {
    md->isvir = get_ebin_space(md->ebin,asize(sv_nm),sv_nm);
    md->ifvir = get_ebin_space(md->ebin,asize(fv_nm),fv_nm);
  }
  md->ivir   = get_ebin_space(md->ebin,asize(vir_nm),vir_nm);
  md->ipres  = get_ebin_space(md->ebin,asize(pres_nm),pres_nm);
  md->isurft = get_ebin_space(md->ebin,asize(surft_nm),surft_nm);
  md->imu    = get_ebin_space(md->ebin,asize(mu_nm),mu_nm);
  if (fabs(grps->cosacc.cos_accel)>GMX_REAL_MIN) {
    md->ivcos = get_ebin_space(md->ebin,asize(vcos_nm),vcos_nm);
    md->ivisc = get_ebin_space(md->ebin,asize(visc_nm),visc_nm);
  }
  if (bLR) 
    bEInd[egLR]   = TRUE;
  if (bLJLR)
    bEInd[egLJLR] = TRUE;
  if (bBHAM) {
    bEInd[egLJ]   = FALSE;
    bEInd[egBHAM] = TRUE;
  }
  if (b14) {
    bEInd[egLJ14] = TRUE;
    bEInd[egCOUL14] = TRUE;
  }
  md->nEc=0;
  for(i=0; (i<egNR); i++)
    if (bEInd[i])
      md->nEc++;
      
  n=atoms->grps[egcENER].nr;
  md->nEg=n;
  md->nE=(n*(n+1))/2;
  snew(md->igrp,md->nE);
  if (md->nE > 1) {
    n=0;
    snew(gnm,md->nEc);
    for(k=0; (k<md->nEc); k++)
      snew(gnm[k],STRLEN);
    for(i=0; (i<atoms->grps[egcENER].nr); i++) {
      ni=atoms->grps[egcENER].nm_ind[i];
      for(j=i; (j<atoms->grps[egcENER].nr); j++) {
	nj=atoms->grps[egcENER].nm_ind[j];
	for(k=kk=0; (k<egNR); k++) {
	  if (bEInd[k]) {
	    sprintf(gnm[kk],"%s:%s-%s",egrp_nm[k],
		    *(atoms->grpname[ni]),*(atoms->grpname[nj]));
	    kk++;
	  }
	}
	md->igrp[n]=get_ebin_space(md->ebin,md->nEc,gnm);
	n++;
      }
    }
    for(k=0; (k<md->nEc); k++)
      sfree(gnm[k]);
    sfree(gnm);
    
    assert(n==md->nE);
  }
  
  md->nTC=atoms->grps[egcTC].nr;
  snew(grpnms,2*md->nTC);
  for(i=0; (i<md->nTC); i++) {
    ni=atoms->grps[egcTC].nm_ind[i];
    sprintf(buf,"T-%s",*(atoms->grpname[ni]));
    grpnms[2*i]=strdup(buf);
    if(bNoseHoover) 
      sprintf(buf,"Xi-%s",*(atoms->grpname[ni]));
    else 
      sprintf(buf,"Lamb-%s",*(atoms->grpname[ni]));
    grpnms[2*i+1]=strdup(buf);
  }
  md->itc=get_ebin_space(md->ebin,2*md->nTC,grpnms);
  sfree(grpnms);
  
  md->nU=atoms->grps[egcACC].nr;
  if (md->nU > 1) {
    snew(grpnms,3*md->nU);
    for(i=0; (i<md->nU); i++) {
      ni=atoms->grps[egcACC].nm_ind[i];
      sprintf(buf,"Ux-%s",*(atoms->grpname[ni]));
      grpnms[3*i+XX]=strdup(buf);
      sprintf(buf,"Uy-%s",*(atoms->grpname[ni]));
      grpnms[3*i+YY]=strdup(buf);
      sprintf(buf,"Uz-%s",*(atoms->grpname[ni]));
      grpnms[3*i+ZZ]=strdup(buf);
    }
    md->iu=get_ebin_space(md->ebin,3*md->nU,grpnms);
    sfree(grpnms);
  }
  
  if (fp_ene != -1)
    do_enxnms(fp_ene,&md->ebin->nener,&md->ebin->enm);
    
#ifdef DEBUG
  for(i=0; (i<md->ebin->nener); i++)
    fprintf(stdlog,"%5d  %20s\n",i,md->ebin->enm[i]);
#endif
  return md;
}
Пример #20
0
int gmx_enemat(int argc, char *argv[])
{
    const char     *desc[] = {
        "[THISMODULE] extracts an energy matrix from the energy file ([TT]-f[tt]).",
        "With [TT]-groups[tt] a file must be supplied with on each",
        "line a group of atoms to be used. For these groups matrix of",
        "interaction energies will be extracted from the energy file",
        "by looking for energy groups with names corresponding to pairs",
        "of groups of atoms, e.g. if your [TT]-groups[tt] file contains::",
        "",
        "    2",
        "    Protein",
        "    SOL",
        "",
        "then energy groups with names like 'Coul-SR:Protein-SOL' and ",
        "'LJ:Protein-SOL' are expected in the energy file (although",
        "[THISMODULE] is most useful if many groups are analyzed",
        "simultaneously). Matrices for different energy types are written",
        "out separately, as controlled by the",
        "[TT]-[no]coul[tt], [TT]-[no]coulr[tt], [TT]-[no]coul14[tt], ",
        "[TT]-[no]lj[tt], [TT]-[no]lj14[tt], ",
        "[TT]-[no]bham[tt] and [TT]-[no]free[tt] options.",
        "Finally, the total interaction energy energy per group can be ",
        "calculated ([TT]-etot[tt]).[PAR]",

        "An approximation of the free energy can be calculated using:",
        "[MATH]E[SUB]free[sub] = E[SUB]0[sub] + kT [LOG][CHEVRON][EXP](E-E[SUB]0[sub])/kT[exp][chevron][log][math], where '[MATH][CHEVRON][chevron][math]'",
        "stands for time-average. A file with reference free energies",
        "can be supplied to calculate the free energy difference",
        "with some reference state. Group names (e.g. residue names)",
        "in the reference file should correspond to the group names",
        "as used in the [TT]-groups[tt] file, but a appended number",
        "(e.g. residue number) in the [TT]-groups[tt] will be ignored",
        "in the comparison."
    };
    static gmx_bool bSum      = FALSE;
    static gmx_bool bMeanEmtx = TRUE;
    static int      skip      = 0, nlevels = 20;
    static real     cutmax    = 1e20, cutmin = -1e20, reftemp = 300.0;
    static gmx_bool bCoulSR   = TRUE, bCoul14 = FALSE;
    static gmx_bool bLJSR     = TRUE, bLJ14 = FALSE, bBhamSR = FALSE,
                    bFree     = TRUE;
    t_pargs         pa[]      = {
        { "-sum",  FALSE, etBOOL, {&bSum},
          "Sum the energy terms selected rather than display them all" },
        { "-skip", FALSE, etINT,  {&skip},
          "Skip number of frames between data points" },
        { "-mean", FALSE, etBOOL, {&bMeanEmtx},
          "with [TT]-groups[tt] extracts matrix of mean energies instead of "
          "matrix for each timestep" },
        { "-nlevels", FALSE, etINT, {&nlevels}, "number of levels for matrix colors"},
        { "-max", FALSE, etREAL, {&cutmax}, "max value for energies"},
        { "-min", FALSE, etREAL, {&cutmin}, "min value for energies"},
        { "-coulsr", FALSE, etBOOL, {&bCoulSR}, "extract Coulomb SR energies"},
        { "-coul14", FALSE, etBOOL, {&bCoul14}, "extract Coulomb 1-4 energies"},
        { "-ljsr", FALSE, etBOOL, {&bLJSR}, "extract Lennard-Jones SR energies"},
        { "-lj14", FALSE, etBOOL, {&bLJ14}, "extract Lennard-Jones 1-4 energies"},
        { "-bhamsr", FALSE, etBOOL, {&bBhamSR}, "extract Buckingham SR energies"},
        { "-free", FALSE, etBOOL, {&bFree}, "calculate free energy"},
        { "-temp", FALSE, etREAL, {&reftemp},
          "reference temperature for free energy calculation"}
    };
    /* We will define egSP more energy-groups:
       egTotal (total energy) */
#define egTotal egNR
#define egSP 1
    gmx_bool          egrp_use[egNR+egSP];
    ener_file_t       in;
    FILE             *out;
    int               timecheck = 0;
    gmx_enxnm_t      *enm       = NULL;
    t_enxframe       *fr;
    int               teller = 0;
    real              sum;
    gmx_bool          bCont, bRef;
    gmx_bool          bCutmax, bCutmin;
    real            **eneset, *time = NULL;
    int              *set, i, j, k, prevk, m = 0, n, nre, nset, nenergy;
    char            **groups = NULL;
    char              groupname[255], fn[255];
    int               ngroups;
    t_rgb             rlo, rhi, rmid;
    real              emax, emid, emin;
    real           ***emat, **etot, *groupnr;
    double            beta, expE, **e, *eaver, *efree = NULL, edum;
    char              label[234];
    char            **ereflines, **erefres = NULL;
    real             *eref  = NULL, *edif = NULL;
    int               neref = 0;
    gmx_output_env_t *oenv;

    t_filenm          fnm[] = {
        { efEDR, "-f", NULL, ffOPTRD },
        { efDAT, "-groups", "groups", ffREAD },
        { efDAT, "-eref",   "eref",   ffOPTRD },
        { efXPM, "-emat",   "emat",   ffWRITE },
        { efXVG, "-etot",   "energy", ffWRITE }
    };
#define NFILE asize(fnm)

    if (!parse_common_args(&argc, argv, PCA_CAN_VIEW | PCA_CAN_TIME,
                           NFILE, fnm, asize(pa), pa, asize(desc), desc, 0, NULL, &oenv))
    {
        return 0;
    }

    for (i = 0; (i < egNR+egSP); i++)
    {
        egrp_use[i] = FALSE;
    }
    egrp_use[egCOULSR] = bCoulSR;
    egrp_use[egLJSR]   = bLJSR;
    egrp_use[egBHAMSR] = bBhamSR;
    egrp_use[egCOUL14] = bCoul14;
    egrp_use[egLJ14]   = bLJ14;
    egrp_use[egTotal]  = TRUE;

    bRef = opt2bSet("-eref", NFILE, fnm);
    in   = open_enx(ftp2fn(efEDR, NFILE, fnm), "r");
    do_enxnms(in, &nre, &enm);

    if (nre == 0)
    {
        gmx_fatal(FARGS, "No energies!\n");
    }

    bCutmax = opt2parg_bSet("-max", asize(pa), pa);
    bCutmin = opt2parg_bSet("-min", asize(pa), pa);

    nenergy = 0;

    /* Read groupnames from input file and construct selection of
       energy groups from it*/

    fprintf(stderr, "Will read groupnames from inputfile\n");
    ngroups = get_lines(opt2fn("-groups", NFILE, fnm), &groups);
    fprintf(stderr, "Read %d groups\n", ngroups);
    snew(set, static_cast<size_t>(gmx::square(ngroups)*egNR/2));
    n     = 0;
    prevk = 0;
    for (i = 0; (i < ngroups); i++)
    {
        fprintf(stderr, "\rgroup %d", i);
        for (j = i; (j < ngroups); j++)
        {
            for (m = 0; (m < egNR); m++)
            {
                if (egrp_use[m])
                {
                    sprintf(groupname, "%s:%s-%s", egrp_nm[m], groups[i], groups[j]);
#ifdef DEBUG
                    fprintf(stderr, "\r%-15s %5d", groupname, n);
#endif
                    for (k = prevk; (k < prevk+nre); k++)
                    {
                        if (std::strcmp(enm[k%nre].name, groupname) == 0)
                        {
                            set[n++] = k;
                            break;
                        }
                    }
                    if (k == prevk+nre)
                    {
                        fprintf(stderr, "WARNING! could not find group %s (%d,%d)"
                                "in energy file\n", groupname, i, j);
                    }
                    else
                    {
                        prevk = k;
                    }
                }
            }
        }
    }
    fprintf(stderr, "\n");
    nset = n;
    snew(eneset, nset+1);
    fprintf(stderr, "Will select half-matrix of energies with %d elements\n", n);

    /* Start reading energy frames */
    snew(fr, 1);
    do
    {
        do
        {
            bCont = do_enx(in, fr);
            if (bCont)
            {
                timecheck = check_times(fr->t);
            }
        }
        while (bCont && (timecheck < 0));

        if (timecheck == 0)
        {
#define DONTSKIP(cnt) (skip) ? ((cnt % skip) == 0) : TRUE

            if (bCont)
            {
                fprintf(stderr, "\rRead frame: %d, Time: %.3f", teller, fr->t);

                if ((nenergy % 1000) == 0)
                {
                    srenew(time, nenergy+1000);
                    for (i = 0; (i <= nset); i++)
                    {
                        srenew(eneset[i], nenergy+1000);
                    }
                }
                time[nenergy] = fr->t;
                sum           = 0;
                for (i = 0; (i < nset); i++)
                {
                    eneset[i][nenergy] = fr->ener[set[i]].e;
                    sum               += fr->ener[set[i]].e;
                }
                if (bSum)
                {
                    eneset[nset][nenergy] = sum;
                }
                nenergy++;
            }
            teller++;
        }
    }
    while (bCont && (timecheck == 0));

    fprintf(stderr, "\n");

    fprintf(stderr, "Will build energy half-matrix of %d groups, %d elements, "
            "over %d frames\n", ngroups, nset, nenergy);

    snew(emat, egNR+egSP);
    for (j = 0; (j < egNR+egSP); j++)
    {
        if (egrp_use[m])
        {
            snew(emat[j], ngroups);
            for (i = 0; (i < ngroups); i++)
            {
                snew(emat[j][i], ngroups);
            }
        }
    }
    snew(groupnr, ngroups);
    for (i = 0; (i < ngroups); i++)
    {
        groupnr[i] = i+1;
    }
    rlo.r  = 1.0, rlo.g  = 0.0, rlo.b  = 0.0;
    rmid.r = 1.0, rmid.g = 1.0, rmid.b = 1.0;
    rhi.r  = 0.0, rhi.g  = 0.0, rhi.b  = 1.0;
    if (bMeanEmtx)
    {
        snew(e, ngroups);
        for (i = 0; (i < ngroups); i++)
        {
            snew(e[i], nenergy);
        }
        n = 0;
        for (i = 0; (i < ngroups); i++)
        {
            for (j = i; (j < ngroups); j++)
            {
                for (m = 0; (m < egNR); m++)
                {
                    if (egrp_use[m])
                    {
                        for (k = 0; (k < nenergy); k++)
                        {
                            emat[m][i][j] += eneset[n][k];
                            e[i][k]       += eneset[n][k]; /* *0.5; */
                            e[j][k]       += eneset[n][k]; /* *0.5; */
                        }
                        n++;
                        emat[egTotal][i][j] += emat[m][i][j];
                        emat[m][i][j]       /= nenergy;
                        emat[m][j][i]        = emat[m][i][j];
                    }
                }
                emat[egTotal][i][j] /= nenergy;
                emat[egTotal][j][i]  = emat[egTotal][i][j];
            }
        }
        if (bFree)
        {
            if (bRef)
            {
                fprintf(stderr, "Will read reference energies from inputfile\n");
                neref = get_lines(opt2fn("-eref", NFILE, fnm), &ereflines);
                fprintf(stderr, "Read %d reference energies\n", neref);
                snew(eref, neref);
                snew(erefres, neref);
                for (i = 0; (i < neref); i++)
                {
                    snew(erefres[i], 5);
                    sscanf(ereflines[i], "%s %lf", erefres[i], &edum);
                    eref[i] = edum;
                }
            }
            snew(eaver, ngroups);
            for (i = 0; (i < ngroups); i++)
            {
                for (k = 0; (k < nenergy); k++)
                {
                    eaver[i] += e[i][k];
                }
                eaver[i] /= nenergy;
            }
            beta = 1.0/(BOLTZ*reftemp);
            snew(efree, ngroups);
            snew(edif, ngroups);
            for (i = 0; (i < ngroups); i++)
            {
                expE = 0;
                for (k = 0; (k < nenergy); k++)
                {
                    expE += std::exp(beta*(e[i][k]-eaver[i]));
                }
                efree[i] = std::log(expE/nenergy)/beta + eaver[i];
                if (bRef)
                {
                    n = search_str2(neref, erefres, groups[i]);
                    if (n != -1)
                    {
                        edif[i] = efree[i]-eref[n];
                    }
                    else
                    {
                        edif[i] = efree[i];
                        fprintf(stderr, "WARNING: group %s not found "
                                "in reference energies.\n", groups[i]);
                    }
                }
                else
                {
                    edif[i] = 0;
                }
            }
        }

        emid             = 0.0; /*(emin+emax)*0.5;*/
        egrp_nm[egTotal] = "total";
        for (m = 0; (m < egNR+egSP); m++)
        {
            if (egrp_use[m])
            {
                emin = 1e10;
                emax = -1e10;
                for (i = 0; (i < ngroups); i++)
                {
                    for (j = i; (j < ngroups); j++)
                    {
                        if (emat[m][i][j] > emax)
                        {
                            emax = emat[m][i][j];
                        }
                        else if (emat[m][i][j] < emin)
                        {
                            emin = emat[m][i][j];
                        }
                    }
                }
                if (emax == emin)
                {
                    fprintf(stderr, "Matrix of %s energy is uniform at %f "
                            "(will not produce output).\n", egrp_nm[m], emax);
                }
                else
                {
                    fprintf(stderr, "Matrix of %s energy ranges from %f to %f\n",
                            egrp_nm[m], emin, emax);
                    if ((bCutmax) || (emax > cutmax))
                    {
                        emax = cutmax;
                    }
                    if ((bCutmin) || (emin < cutmin))
                    {
                        emin = cutmin;
                    }
                    if ((emax == cutmax) || (emin == cutmin))
                    {
                        fprintf(stderr, "Energy range adjusted: %f to %f\n", emin, emax);
                    }

                    sprintf(fn, "%s%s", egrp_nm[m], ftp2fn(efXPM, NFILE, fnm));
                    sprintf(label, "%s Interaction Energies", egrp_nm[m]);
                    out = gmx_ffopen(fn, "w");
                    if (emin >= emid)
                    {
                        write_xpm(out, 0, label, "Energy (kJ/mol)",
                                  "Residue Index", "Residue Index",
                                  ngroups, ngroups, groupnr, groupnr, emat[m],
                                  emid, emax, rmid, rhi, &nlevels);
                    }
                    else if (emax <= emid)
                    {
                        write_xpm(out, 0, label, "Energy (kJ/mol)",
                                  "Residue Index", "Residue Index",
                                  ngroups, ngroups, groupnr, groupnr, emat[m],
                                  emin, emid, rlo, rmid, &nlevels);
                    }
                    else
                    {
                        write_xpm3(out, 0, label, "Energy (kJ/mol)",
                                   "Residue Index", "Residue Index",
                                   ngroups, ngroups, groupnr, groupnr, emat[m],
                                   emin, emid, emax, rlo, rmid, rhi, &nlevels);
                    }
                    gmx_ffclose(out);
                }
            }
        }
        snew(etot, egNR+egSP);
        for (m = 0; (m < egNR+egSP); m++)
        {
            snew(etot[m], ngroups);
            for (i = 0; (i < ngroups); i++)
            {
                for (j = 0; (j < ngroups); j++)
                {
                    etot[m][i] += emat[m][i][j];
                }
            }
        }

        out = xvgropen(ftp2fn(efXVG, NFILE, fnm), "Mean Energy", "Residue", "kJ/mol",
                       oenv);
        xvgr_legend(out, 0, NULL, oenv);
        j = 0;
        if (output_env_get_print_xvgr_codes(oenv))
        {
            char str1[STRLEN], str2[STRLEN];
            if (output_env_get_xvg_format(oenv) == exvgXMGR)
            {
                sprintf(str1, "@ legend string ");
                sprintf(str2, " ");
            }
            else
            {
                sprintf(str1, "@ s");
                sprintf(str2, " legend ");
            }

            for (m = 0; (m < egNR+egSP); m++)
            {
                if (egrp_use[m])
                {
                    fprintf(out, "%s%d%s \"%s\"\n", str1, j++, str2, egrp_nm[m]);
                }
            }
            if (bFree)
            {
                fprintf(out, "%s%d%s \"%s\"\n", str1, j++, str2, "Free");
            }
            if (bFree)
            {
                fprintf(out, "%s%d%s \"%s\"\n", str1, j++, str2, "Diff");
            }
            fprintf(out, "@TYPE xy\n");
            fprintf(out, "#%3s", "grp");

            for (m = 0; (m < egNR+egSP); m++)
            {
                if (egrp_use[m])
                {
                    fprintf(out, " %9s", egrp_nm[m]);
                }
            }
            if (bFree)
            {
                fprintf(out, " %9s", "Free");
            }
            if (bFree)
            {
                fprintf(out, " %9s", "Diff");
            }
            fprintf(out, "\n");
        }
        for (i = 0; (i < ngroups); i++)
        {
            fprintf(out, "%3.0f", groupnr[i]);
            for (m = 0; (m < egNR+egSP); m++)
            {
                if (egrp_use[m])
                {
                    fprintf(out, " %9.5g", etot[m][i]);
                }
            }
            if (bFree)
            {
                fprintf(out, " %9.5g", efree[i]);
            }
            if (bRef)
            {
                fprintf(out, " %9.5g", edif[i]);
            }
            fprintf(out, "\n");
        }
        xvgrclose(out);
    }
    else
    {
        fprintf(stderr, "While typing at your keyboard, suddenly...\n"
                "...nothing happens.\nWARNING: Not Implemented Yet\n");
/*
    out=ftp2FILE(efMAT,NFILE,fnm,"w");
    n=0;
    emin=emax=0.0;
    for (k=0; (k<nenergy); k++) {
      for (i=0; (i<ngroups); i++)
    for (j=i+1; (j<ngroups); j++)
      emat[i][j]=eneset[n][k];
      sprintf(label,"t=%.0f ps",time[k]);
      write_matrix(out,ngroups,1,ngroups,groupnr,emat,label,emin,emax,nlevels);
      n++;
    }
    gmx_ffclose(out);
 */
    }
    close_enx(in);

    return 0;
}
Пример #21
0
int gmx_lie(int argc,char *argv[])
{
  const char *desc[] = {
    "g_lie computes a free energy estimate based on an energy analysis",
    "from. One needs an energy file with the following components:",
    "Coul (A-B) LJ-SR (A-B) etc."
  };
  static real lie_lj=0,lie_qq=0,fac_lj=0.181,fac_qq=0.5;
  static const char *ligand="none";
  t_pargs pa[] = {
    { "-Elj",  FALSE, etREAL, {&lie_lj},
      "Lennard-Jones interaction between ligand and solvent" },
    { "-Eqq",  FALSE, etREAL, {&lie_qq},
      "Coulomb interaction between ligand and solvent" },
    { "-Clj",  FALSE, etREAL, {&fac_lj},
      "Factor in the LIE equation for Lennard-Jones component of energy" },
    { "-Cqq",  FALSE, etREAL, {&fac_qq},
      "Factor in the LIE equation for Coulomb component of energy" },
    { "-ligand",  FALSE, etSTR, {&ligand},
      "Name of the ligand in the energy file" }
  };
#define NPA asize(pa)

  FILE      *out;
  int       nre,nframes=0,ct=0;
  ener_file_t fp;
  gmx_bool      bCont;
  t_liedata *ld;
  gmx_enxnm_t *enm=NULL;
  t_enxframe *fr;
  real      lie;
  double    lieaver=0,lieav2=0;
  output_env_t oenv;
    
  t_filenm fnm[] = { 
    { efEDR, "-f",    "ener",     ffREAD   },
    { efXVG, "-o",    "lie",      ffWRITE  }
  }; 
#define NFILE asize(fnm) 

  CopyRight(stderr,argv[0]); 
  parse_common_args(&argc,argv,PCA_CAN_VIEW | PCA_CAN_TIME | PCA_BE_NICE,
		    NFILE,fnm,NPA,pa,asize(desc),desc,0,NULL,&oenv); 
    
  fp = open_enx(ftp2fn(efEDR,NFILE,fnm),"r");
  do_enxnms(fp,&nre,&enm);
  
  ld = analyze_names(nre,enm,ligand);
  snew(fr,1);
  out = xvgropen(ftp2fn(efXVG,NFILE,fnm),"LIE free energy estimate",
		 "Time (ps)","DGbind (kJ/mol)",oenv);
  do {
    bCont = do_enx(fp,fr);
    ct    = check_times(fr->t);
    if (ct == 0) {
      lie = calc_lie(ld,fr->ener,lie_lj,lie_qq,fac_lj,fac_qq);
      lieaver += lie;
      lieav2  += lie*lie;
      nframes ++;
      fprintf(out,"%10g  %10g\n",fr->t,lie);
    }
  } while (bCont);
  close_enx(fp);
  ffclose(out);
  fprintf(stderr,"\n");
  
  if (nframes > 0)
    printf("DGbind = %.3f (%.3f)\n",lieaver/nframes,
	   sqrt(lieav2/nframes-sqr(lieaver/nframes)));
  
  do_view(oenv,ftp2fn(efXVG,NFILE,fnm),"-nxy");
    
  thanx(stderr);

  return 0;
}
Пример #22
0
t_mdebin *init_mdebin(int fp_ene,
		      const gmx_mtop_t *mtop,
		      const t_inputrec *ir)
{
  char *ener_nm[F_NRE];
  static char *vir_nm[] = {
    "Vir-XX", "Vir-XY", "Vir-XZ",
    "Vir-YX", "Vir-YY", "Vir-YZ",
    "Vir-ZX", "Vir-ZY", "Vir-ZZ"
  };
  static char *sv_nm[] = {
    "ShakeVir-XX", "ShakeVir-XY", "ShakeVir-XZ",
    "ShakeVir-YX", "ShakeVir-YY", "ShakeVir-YZ",
    "ShakeVir-ZX", "ShakeVir-ZY", "ShakeVir-ZZ"
  };
  static char *fv_nm[] = {
    "ForceVir-XX", "ForceVir-XY", "ForceVir-XZ",
    "ForceVir-YX", "ForceVir-YY", "ForceVir-YZ",
    "ForceVir-ZX", "ForceVir-ZY", "ForceVir-ZZ"
  };
  static char *pres_nm[] = {
    "Pres-XX (bar)","Pres-XY (bar)","Pres-XZ (bar)",
    "Pres-YX (bar)","Pres-YY (bar)","Pres-YZ (bar)",
    "Pres-ZX (bar)","Pres-ZY (bar)","Pres-ZZ (bar)"
  };
  static char *surft_nm[] = {
    "#Surf*SurfTen"
  };
  static char *mu_nm[] = {
    "Mu-X", "Mu-Y", "Mu-Z"
  };
  static char *vcos_nm[] = {
    "2CosZ*Vel-X"
  };
  static char *visc_nm[] = {
    "1/Viscosity (SI)"
  };
  static   char   **grpnms;
  const gmx_groups_t *groups;
  char     **gnm;
  char     buf[256];
  t_mdebin *md;
  int      i,j,ni,nj,n,k,kk,ncon,nset;
  bool     bBHAM,b14;
  
  f_nre  = 0; // otherwise, multiple calls to mdrunner_integrate are not possible!NnCrmsd; 
  groups = &mtop->groups;

  bBHAM = (mtop->ffparams.functype[0] == F_BHAM);
  b14   = (gmx_mtop_ftype_count(mtop,F_LJ14) > 0 ||
	   gmx_mtop_ftype_count(mtop,F_LJC14_Q) > 0);

  ncon = gmx_mtop_ftype_count(mtop,F_CONSTR);
  nset = gmx_mtop_ftype_count(mtop,F_SETTLE);
  bConstr    = (ncon > 0 || nset > 0);
  bConstrVir = FALSE;
  if (bConstr) {
    if (ncon > 0 && ir->eConstrAlg == econtLINCS) {
      if (ir->eI == eiSD2)
	nCrmsd = 2;
      else
	nCrmsd = 1;
    }
    bConstrVir = (getenv("GMX_CONSTRAINTVIR") != NULL);
  } else {
    nCrmsd = 0;
  }

  for(i=0; i<F_NRE; i++) {
    bEner[i] = FALSE;
    if (i == F_LJ)
      bEner[i] = !bBHAM;
    else if (i == F_BHAM)
      bEner[i] = bBHAM;
    else if (i == F_EQM)
      bEner[i] = ir->bQMMM;
    else if (i == F_COUL_LR)
      bEner[i] = (ir->rcoulomb > ir->rlist);
    else if (i == F_LJ_LR)
      bEner[i] = (!bBHAM && ir->rvdw > ir->rlist);
    else if (i == F_BHAM_LR)
      bEner[i] = (bBHAM && ir->rvdw > ir->rlist);
    else if (i == F_RF_EXCL)
      bEner[i] = (EEL_RF(ir->coulombtype) && ir->coulombtype != eelRF_NEC);
    else if (i == F_COUL_RECIP)
      bEner[i] = EEL_FULL(ir->coulombtype);
    else if (i == F_LJ14)
      bEner[i] = b14;
    else if (i == F_COUL14)
      bEner[i] = b14;
    else if (i == F_LJC14_Q || i == F_LJC_PAIRS_NB)
      bEner[i] = FALSE;
    else if ((i == F_DVDL) || (i == F_DKDL))
      bEner[i] = (ir->efep != efepNO);
    else if (i == F_DGDL_CON)
      bEner[i] = (ir->efep != efepNO && bConstr);
    else if ((interaction_function[i].flags & IF_VSITE) ||
	     (i == F_CONSTR) || (i == F_SETTLE))
      bEner[i] = FALSE;
    else if ((i == F_COUL_SR) || (i == F_EPOT) || (i == F_PRES)  || (i==F_EQM))
      bEner[i] = TRUE;
    else if ((i == F_ETOT) || (i == F_EKIN) || (i == F_TEMP))
      bEner[i] = EI_DYNAMICS(ir->eI);
    else if (i == F_DISPCORR)
      bEner[i] = (ir->eDispCorr != edispcNO);
    else if (i == F_DISRESVIOL)
      bEner[i] = (gmx_mtop_ftype_count(mtop,F_DISRES) > 0);
    else if (i == F_ORIRESDEV)
      bEner[i] = (gmx_mtop_ftype_count(mtop,F_ORIRES) > 0);
    else if (i == F_CONNBONDS)
      bEner[i] = FALSE;
    else if (i == F_COM_PULL)
      bEner[i] = (ir->ePull == epullUMBRELLA || ir->ePull == epullCONST_F);
    else if (i == F_ECONSERVED)
      bEner[i] = ((ir->etc == etcNOSEHOOVER || ir->etc == etcVRESCALE) &&
		  ir->epc == epcNO);
    else
      bEner[i] = (gmx_mtop_ftype_count(mtop,i) > 0);
  }

  for(i=0; i<F_NRE; i++)
    if (bEner[i]) {
      ener_nm[f_nre]=interaction_function[i].longname;
      f_nre++;
    }

  epc = ir->epc;
  bTricl = TRICLINIC(ir->compress) || TRICLINIC(ir->deform);
  bDynBox = DYNAMIC_BOX(*ir);
  etc = ir->etc;
  
  /* Energy monitoring */
  snew(md,1);
  md->ebin  = mk_ebin();
  md->ie    = get_ebin_space(md->ebin,f_nre,ener_nm);
  if (nCrmsd) {
    /* This should be called directly after the call for md->ie,
     * such that md->iconrmsd follows directly in the list.
     */
    md->iconrmsd = get_ebin_space(md->ebin,nCrmsd,conrmsd_nm);
  }
  if (bDynBox)
    md->ib    = get_ebin_space(md->ebin, bTricl ? NTRICLBOXS :
			       NBOXS, bTricl ? tricl_boxs_nm : boxs_nm);
  if (bConstrVir) {
    md->isvir = get_ebin_space(md->ebin,asize(sv_nm),sv_nm);
    md->ifvir = get_ebin_space(md->ebin,asize(fv_nm),fv_nm);
  }
  md->ivir   = get_ebin_space(md->ebin,asize(vir_nm),vir_nm);
  md->ipres  = get_ebin_space(md->ebin,asize(pres_nm),pres_nm);
  md->isurft = get_ebin_space(md->ebin,asize(surft_nm),surft_nm);
  if (epc == epcPARRINELLORAHMAN) {
    md->ipc  = get_ebin_space(md->ebin,bTricl ? 6 : 3,boxvel_nm);
  }
  md->imu    = get_ebin_space(md->ebin,asize(mu_nm),mu_nm);
  if (ir->cos_accel != 0) {
    md->ivcos = get_ebin_space(md->ebin,asize(vcos_nm),vcos_nm);
    md->ivisc = get_ebin_space(md->ebin,asize(visc_nm),visc_nm);
  }
  if (ir->rcoulomb > ir->rlist) 
    bEInd[egCOULLR] = TRUE;
  if (!bBHAM) {
    if (ir->rvdw > ir->rlist)
      bEInd[egLJLR]   = TRUE;
  } else {
    bEInd[egLJSR]   = FALSE;
    bEInd[egBHAMSR] = TRUE;
    if (ir->rvdw > ir->rlist)
      bEInd[egBHAMLR]   = TRUE;
  }
  if (b14) {
    bEInd[egLJ14] = TRUE;
    bEInd[egCOUL14] = TRUE;
  }
  md->nEc=0;
  for(i=0; (i<egNR); i++)
    if (bEInd[i])
      md->nEc++;
      
  n=groups->grps[egcENER].nr;
  md->nEg=n;
  md->nE=(n*(n+1))/2;
  snew(md->igrp,md->nE);
  if (md->nE > 1) {
    n=0;
    snew(gnm,md->nEc);
    for(k=0; (k<md->nEc); k++)
      snew(gnm[k],STRLEN);
    for(i=0; (i<groups->grps[egcENER].nr); i++) {
      ni=groups->grps[egcENER].nm_ind[i];
      for(j=i; (j<groups->grps[egcENER].nr); j++) {
	nj=groups->grps[egcENER].nm_ind[j];
	for(k=kk=0; (k<egNR); k++) {
	  if (bEInd[k]) {
	    sprintf(gnm[kk],"%s:%s-%s",egrp_nm[k],
		    *(groups->grpname[ni]),*(groups->grpname[nj]));
	    kk++;
	  }
	}
	md->igrp[n]=get_ebin_space(md->ebin,md->nEc,gnm);
	n++;
      }
    }
    for(k=0; (k<md->nEc); k++)
      sfree(gnm[k]);
    sfree(gnm);
    
    if (n != md->nE)
      gmx_incons("Number of energy terms wrong");
  }
  
  md->nTC=groups->grps[egcTC].nr;
  snew(grpnms,md->nTC);
  for(i=0; (i<md->nTC); i++) {
    ni=groups->grps[egcTC].nm_ind[i];
    sprintf(buf,"T-%s",*(groups->grpname[ni]));
    grpnms[i]=strdup(buf);
  }
  md->itemp=get_ebin_space(md->ebin,md->nTC,grpnms);
  sfree(*grpnms);
  if (etc == etcNOSEHOOVER) {
    for(i=0; (i<md->nTC); i++) {
      ni=groups->grps[egcTC].nm_ind[i];
      sprintf(buf,"Xi-%s",*(groups->grpname[ni]));
      grpnms[i]=strdup(buf);
    }
    md->itc=get_ebin_space(md->ebin,md->nTC,grpnms);
    sfree(*grpnms);
  } else  if (etc == etcBERENDSEN || etc == etcYES || etc == etcVRESCALE) {
    for(i=0; (i<md->nTC); i++) {
      ni=groups->grps[egcTC].nm_ind[i];
      sprintf(buf,"Lamb-%s",*(groups->grpname[ni]));
      grpnms[i]=strdup(buf);
    }
    md->itc=get_ebin_space(md->ebin,md->nTC,grpnms);
    sfree(*grpnms);
  }
  sfree(grpnms);
  
  md->nU=groups->grps[egcACC].nr;
  if (md->nU > 1) {
    snew(grpnms,3*md->nU);
    for(i=0; (i<md->nU); i++) {
      ni=groups->grps[egcACC].nm_ind[i];
      sprintf(buf,"Ux-%s",*(groups->grpname[ni]));
      grpnms[3*i+XX]=strdup(buf);
      sprintf(buf,"Uy-%s",*(groups->grpname[ni]));
      grpnms[3*i+YY]=strdup(buf);
      sprintf(buf,"Uz-%s",*(groups->grpname[ni]));
      grpnms[3*i+ZZ]=strdup(buf);
    }
    md->iu=get_ebin_space(md->ebin,3*md->nU,grpnms);
    sfree(*grpnms);
    sfree(grpnms);
  }

  if (fp_ene != -1)
    do_enxnms(fp_ene,&md->ebin->nener,&md->ebin->enm);
  
  return md;
}